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Abstract

The aim of the thesis is to study Propp-Wilson algorithm and its modifications. This
algorithm, also called coupling from the past, is used for the so called perfect simula-
tion that allows us in favourable cases to sample exactly from the stationary distribu-
tion of a Markov chain. We study the original algorithm, its monotone "sandwiching"
modification for Markov chains with an ordering on the state space and the so called
Wilson’s or read-once randomness modification. And finally we apply the algorithm
to the Ising model.
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Chapter 1

Introduction

Coupling from the Past (CFTP), a method generating independent draws from a
stationary distribution of a Markov chain, was invented in 1996 by James Propp and
David Wilson. It was published in their paper Exact Sampling with Coupled Markov
Chains and Applications to Statistical Mechanics [7]. After that many scientists used
it, modified it and also researched some of its aspects (accuracy, efficiency).

Before we get to the structure of this thesis let us talk a bit about the motivation for
CFTP. Why do we need such a method? It is quite simple — it can serve as a random
number generator, producing draws from a given distribution in case, when we are
not able to sample from this distribution for example by transforming uniformly dis-
tributed random variable into one with the desired distribution. In such a case we
can solve our task by formulating an ergodic Markov chain, that has the desired dis-
tribution as its stationary distribution, and simulating it till we get a draw from the
stationary distribution.

This can be done approximately by Monte Carlo methods, that had been known
long before CFTP occurred. In Monte Carlo we just run the Markov chain for a suffi-
ciently long time period, getting a draw from the stationary distribution as an output.
But this method does not give us the exact distribution of outputs and is also very de-
manding in terms of determining for how long do we have to run the chain and when
to stop.

These problems can be avoided by using the Propp-Wilson algorithm, that is unlike
the usual Monte Carlo methods able to identify on its own when the stationary distri-
bution was reached and the outputs are distributed exactly according to the stationary
distribution.

In Chapter 2 of this thesis we will present the crucial definitions and theorems
needed in the rest of this text. They were put together from [6], [9] and [3]. We will



also introduce a trivial Markov chain with a very small state space on that we will
show all of the properties necessary for CFTP. This example will be used throughout
the whole thesis and all of the basic simulations.

Next chapter is about the computer simulation of Markov chains. We will explain
some theory from [3] and also explain what method of updating the chain we will use
for our example.

Chapter 4 sums up the basic theory of the Propp-Wilson algorithm according to [3],
[5] and [8] and shows some outputs of the simulations.

After that we will focus on two modifications of the basic algorithm, implement
them again for the example introduced in Chapter 2 and see the results. The first
modification is so called sandwiching and it is the topic of Chapter 5, for that we used
[3]. Chapter 6 is about the Read-Once Randomness modification according to [3], [10]
and [2].

Finally in Chapter 7 we abandon the basic example and apply one of the modifica-
tions of the algorithm on Ising model. The theory of the Ising model and the notions
how to implement CFTP for this model we get from [1], [4] and [3].



Chapter 2

Preliminaries

In this chapter we will introduce some basic theory that we will need in the rest of
this thesis. Because CFTP is a method for sampling from the stationary distribution of
Markov chains first thing we need to define is a Markov chain.

Definition 2.1. Let (Q), A, P) be a probability space and let T C R. A collection of real
random variables {X;, t € T} defined on (O, A, P) is a random (stochastic) process.

In this work we will consider only random processes with discrete time n € Z and
also discrete and finite state space S C Z. In addition to that we will require a few
more restrictions.

Definition 2.2. Discrete-time Markov chain is a random process (X, n € Z) with state
space S C Z meeting the so called Markov property, saying, that the conditional prob-
ability of the chain being in state 7 in time n 4 1, when we know all the states it has
been in before, is dependant only on the state in which it has been in the previous
moment 7:

P(Xy41 = j|Xn =1, Xpn-1 = in-1,...,Xo = 1p) = P(Xp+1 = j|Xn = 0).
First we need the chain to be time-homogeneous, that means that the probability of
going from state i to state j is the same in any time:
P(Xur = j1Xa = 1) = P(Xs1 = 1 X =1) Vnm € Z.
When a Markov chain is time-homogeneous we can create a transition-probability

matrix P, in that we collect all the transition probabilities between any pair of states in
S, defined as the conditional probabilities of going from state i to state j:

pij = P(Xn+1 = ]|Xn = 1) Vl,] € S.



Example 1:
Let us consider a Markov chain with state space S = {si,...,s5} and transition-
probability matrix

1/3 2/3 0 0 0

/3 0 2/3 0 0

P= 0o 1/3 0 2/3 0
0 0 1/3 0 2/3
0 0 0 1/3 2/3

Such a Markov chain can be interpreted as a ladder walk. We have a ladder and we
can go only one step up or one step down. When we are all the way down, we can
go only up or stay where we are, the same applies to the upper state, from where we
can go only down or stay there. In Figure 2.1 this idea is demonstrated on a transition

graph.

Figure 2.1: Transition Graph for Example 1

Second we need the Markov chain to be ergodic.

Definition 2.3. A Markov chain (X,,n € Z) is said to be aperiodic, when all states S
are aperiodic, i.e. if

VieS: ged(n:P(X,=ilXo=1i)>0)=1.

Definition 2.4. A Markov chain (X,,n € Z) is called irreducible, when all its states are
irreducible:
Wi jeS In>0: piti=P(Xy=jXo=1)>0.

Definition 2.5. A Markov chain (X, n € Z) is ergodic if it is aperiodic and irreducible.



Next property we need the chain to have is reversibility.

Definition 2.6. Markov chain (X;,n € Z) with transition matrix P = (p; ;) is reversible
if there exists a probability distribution over states 7t = (77;) such that

Vl,] €8S: 7'[1'}71',]' = 71']';7]',1'
And finally we can get to the stationary distribution of Markov chain.

Definition 2.7. A row vector m = (71;) is a stationary distribution of Markov chain
(Xn,n € Z) with state space S = (s;) if it is a probability distribution (7r; > 0 and

Y mr; = 1) and it also satisfies
i
P = 7.

Theorem 2.1. For every ergodic Markov chain there exists at least one stationary distribution
TT.

The proof of this theorem can be found for example in [3].

Example 1(continued): Stationary distribution of the Markov chain from Example 1
can be easily found:

1/3 2/3 0 0 0
1/3 0 2/3 0 0
[m m m3 m ms x| 0 1/3 0 2/3 0 =[m m m m 7|
0 o 1/3 0 2/3
0 0 0 1/3 2/3

By computing this we get the system of five linear equations
1/3m +1/3m = m
2/3m +1/3m3 = o
2/3m +1/3m4 = 113
2/3m3+1/3m5 = 1y
2/3my +2/3m5 = 7115

for five unknowns 7y, ..., 7s.
Non-trivial solution of this system is

Ty = 2711, 713 = 47111, 714 = 8711, 715 = 16714,

where 71 is arbitrary.
By adding the property of any probability distribution, that the sum of all the proba-
bilities in this distribution has to be equal to 1

m(1+2+4+8+16) =1,



and so
T = 1/31

we get the stationary distribution of our chain in this form
m=[1/31 2/31 4/31 8/31 16/31 ].

Now we can check if the Markov chain in our example has all the needed properties.
1. Aperiodicity:
for states; € S: gcd(1,2,4,6,...
for state s, € S : gcd(2,3,4,5, ...
for state s3 € S: gcd(2,4,5,6, ...
(
(

for state sy € S: gcd(2,3,4,5,. ..
for state s5 € S : gcd(1,2,4,6,...

S e e e N
Il
U U G W Y

2. Irreducibility:
it is obvious (see Picture 1), that from any state we can get to any other state with
probability greater than zero.

3. Reversibility:
we will only do this for a few randomly chosen couples i, j.
for states 51,5, € S:1/31%x2/3=2/31%1/3
for states 5,54, € S:2/31%x0=8/31%0
for states s3,s4 € S:4/31%x2/3=8/31%1/3
by repeating this procedure for every combination of i and j we can check this property
for the whole chain.

In the rest of this text we will consider only time-homogeneous ergodic Markov
chains with discrete time and finite and discrete state space, so every time we mention
a Markov chain all these properties will be anticipated.



Chapter 3

Computer Simulation of Markov
Chain

Next we need a way to simulate Markov chains using a computer. For that we
need a programming language with a (pseudo) random numbers generator that will
produce a sequence Uy, Uy, ... of random variables with the uniform distribution on
(0,1). We will use the rand () function in Matlab, that implements the Mersenne-
Twister algorithm.

You can see [3] for more information about the initial function, however, in the
Propp-Wilson algorithm there is no need for that since we will be starting from all
possible states and because of that we do not need to generate one randomly chosen
initial state.

To move from one state to the other with passing time we construct a piecewise
constant function ¢ called an update function, that gives us the state of the Markov
chain in time 7 based on the state in time n — 1 and a random number U,,. In order for
that function to be valid we need the total length of intervals for which the input state
is s; and the output state s; be equal to p;; Vs;, s; € S.

Example 1 (cont.): For our example of ladder walk we can use this update function:

B S1, X € [0,1/3)
Plor,x) = { s, x€[1/3,1]

N S1, X E [0,1/3)
Pls2,x) = { s3, x€[1/3,1]
)

{ Sy, X € [0,1/3

Plsa,x) = ss, x€[1/3,1]
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b (54, x) = { ss, x€1[0,1/3

)
ss, x€[1/3,1]

[ ss, x€][0,1/3)
(P(SS/X) - { S5, X € [1/3’1]

This function can be formulated in many different ways. For example if we define

[ s, x€][0,1/3)
(P(Sl,x) - { s1, X€ [1/3’1]

and the rest of the update function stays the same, it would be also a valid update
function.

There is of course a lot of other versions of update functions for Markov chains with
bigger state spaces and non-zero transition probabilities as we will see for example
in Chapter 7. Also, there exists a lot of combinations of these parts, so it is possible
to create a function ¢ for that the algorithm never terminates (coalescence can not be
reached). To avoid this complication we will use only the first version, where the
smallest random numbers indicate transition to the first state we can reach and the
largest random numbers send the chain to the last reachable state of the state space.

In our implementation we will use a matrix of row cumulative sums of P. We will
label it Q = (g;;). Every time we need to update the current state s; € S of the chain
we will go through the i-th row of Q and compare the value of the random number
used in this update to values g;;. The first j for that the random number is smaller
than g; ; we output state s; as the new state of the Markov chain. This would work for
any update function with the property mentioned in the last paragraph.

Example 1 (cont): For our example we get matrix Q in form:

/3 1 1 1
1/3 1/3 1 1
Q=1 0 1/3 1/3 1
0 0 1/3 1/3
0O 0 o0 1/3

S U Y

And if we run the chain for ten steps we can get for example the trajectory in Figure
3.1.

11



state

Cne randorm trajectory

time

Figure 3.1: Ten steps of a random trajectory

12



Chapter 4

Propp-Wilson Algorithm

Propp-Wilson Algorithm also known as Coupling from the Past is an algorithm,
that has a sample from its stationary distribution as an output. The input can be for
example the transition probability matrix (which we use) or some other characteris-
tic properties of the Markov chain. Propp-Wilson algorithm will continue as long as
needed and end, when the stationary distribution has been achieved.

The main difference between Propp-Wilson algorithm and standard Markov chain
Monte Carlo methods is, that we do not just simulate one copy of Markov chain at a
time, we run several copies at once and we wait, until all the chains get to the same
state at the same time (we call this event coalescence of the Markov chain) and then
they will all stay in one state, given the way we run the algorithm. This idea of evolv-
ing together in the same way until reaching coalescence is also called coupling.

How many copies of the Markov chain do we run and what is the difference among
them? We have to run as many copies as is the number of states, the cardinality of the
state space. And the trick is to start one copy of the Markov chain from any possible
starting state. This means, we will have to run as many chains as is the number of
states. We call this coupling. But the trick is not to run these into the future, but from
some point in the past to time zero. Because the algorithm determines when to stop
on its own, the running time is random.

We use the algorithm to simulate from the probability distribution 7 on a finite
state space S = {s1,...,s¢}. We create a Markov chain (X, n € Z), that is reversible,
irreducible and aperiodic with respect to 7. P = (p;;) is the transition probability
matrix of that Markov chain and ¢ : S x [0, 1] — S is the update function.

After that we just need to create a strictly increasing sequence of natural num-
bers N1, N2, N3, ..., that will serve as starting times for the coupling (with opposite
sign). In the original paper [7] authors of the algorithm considered sequence Ny =

13



2k=1 And the last thing we need to prepare before starting the algorithm is a se-
quence of independent random variables identically distributed on (0,1) that we de-
note U(), LLl, u_z, e

Propp-Wilson Algorithm:
1. Wesetm = 1.

2. Foreverys € {si,...,s¢} we simulate a Markov chain starting at state s and run-
ning from time —N,, to time 0. To simulate the chain we use update function ¢ and
sequence of random numbers U_y,,+1, U-nN,,+2,...,U_1, Uy — it is very important to
reuse the same numbers U_y, ,+1,..., Up for every earlier starting time and only add
the newest numbers U_y, 1 to Uy,_1, otherwise the results would be biased. Also
we have to use the same sequence U_y, 11, ..., Up for all the chain with all possible
starting states. If we used different numbers for every copy of the chain, not only the
samples would be biased but the termination of the algorithm could be threatened.

3. If we get the same final state s for every copy of the Markov chain in step 2., we
terminate the algorithm and s is the state we were looking for, otherwise we increment
m and repeat step 2.

Example 1 (cont.) Now we can return to our example. We use sequence of starting
times Nj = 2K1, so first we start from time -1 (k = 1; —N; = —1). On the first picture
nn Figure 4.1 we see the situation when Uy, our only random number, was greater
than 1/3. The values of the chain at 0 are:

¢(s1,Up) = s2
P(s2,Up) = s3
¢(s3,Up) = s4
(P<S4/ uO) =55
¢(ss5,Up) = s5

14
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Figure 4.1: First four non-coalescent restarts

Figures 4.1 above shows the trajectories in the first four unsuccessful (not coalescent)
restarts of the algorithm. The upper left picture starts at time -1 and goes one state up.
It is impossible to reach coalescence in one step in this example (the least number of
steps needed is 4 so we can get from the lowest state to the highest). This means we can
not reach coalescence even in the second case starting at -2. The other two restarts are
apparently also unsuccessful. Please note that for example in the lower right picture
starting at -8 we can clearly see, that the chains evolve the same from time -4, as do the
ones in the previous picture (lower left) because the same random numbers are being
reused.

In Figure 4.2 there is the final coalescent restart. It is again visible, that the random
numbers are reused.
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Figure 4.2: Coalescent restart

Next Figure 4.3 shows the fit to the theoretically counted stationary distribution (for
100 outputs).

Histogram of the Propp-Wilson Algorithm Outputs
G0
83 52
50
40 B outputs
= 30 28
= B counted values of the
stationary distribution
20 373 £
i &
p I |_. : : :
1 2 3 4 5
state

Figure 4.3: Histogram

We can see that it is pretty close but there are some differences. So the question is
how many time would we have to repeat the algorithm to achieve some given error?

16



We tried to answer that by an experiment and found out, the numbers are very diverse.
If we want the error to be smaller than 102 we can achieve this in less than 400 draws
but it can also take us more than 10 000 simulations. We tried it 1000 times and from
these the mean number of simulations was 2262. In Figure 4.4 we can se the evolution
of the error.

Errar in dependance on number of runs

errar

1 1 1 1 1 1
0 a0 100 150 200 250 300 350 400
number of runs

Figure 4.4: Error

Let us focus on the choice of the sequence of the starting times. In the last chapter
we mentioned that we are using the sequence 25~1.

Theorem 4.1. If the algorithm for our Markov chain terminates with probability 1 and we
denote the output of the algorithm Y, than for Vs; € S the probability

P(Y = Sl‘) = T7i;,
where T = (71;) is the stationary distribution.

For proof see [3].

Can we choose some other sequence of initial times, for example {1,2,3,4,...}? It
is of course possible but if we assign N to the time from which (with the minus sign)
we have to start the simulation for the algorithm to terminate and we count all the

steps done in all the restarts until coalescence, it would be 1 +2+3+4+---+ N =

1
N(N+1) for the sequence {1,2,3,4...} andonly 1+2+4+48+---+ N = 2N — 1 for

sequence 2F-1. So it is logical to choose the sequence for which the number of steps
grows only linearly rather than the one for that it grows like N2.

17



Chapter 5

Sandwiching

We call the Propp-Wilson algorithm a perfect simulation because it produces exactly
the corresponding probability distribution we need. This accuracy however comes at
a high price. First there is no guarantee the algorithm will ever terminate (the chains
will reach coalescence in finite time) for a general function ¢. This can be solved by
some additional requirements for the function ¢.

Second disadvantage of this algorithm is its high computational complexity. It is
very demanding to run all the copies of Markov chains with very big state spaces and
also to store all the random numbers U_y,, 11, ..., Uy when we have a long time to
coalescence.

The first problem regarding big state spaces can be solved easily if the Markov chain
satisfies the so called sandwich (or monotone) property. It basically means that there
exists an ordering on the state space S = {s1,...,5¢}, s1 < sp < -+ < s, thatis
preserved also by the update function ¢.

For that we do not need to simulate all the chains, corresponding to all possible
initial states, in fact only two chains would be enough. Which two? It is obvious that
all the chains, starting from a somehow higher state will be always higher than these
starting from a lower state and the same applies in the reversed case, when all chains
starting lower will never get higher than a chain starting from a higher state. This
means that all chains in the middle will be always closed between the chain starting in
the lowest state s; and the chain starting in the highest state s;,. When this two chains
meet, all the chains between them will be in the same state.

The Markov chain from our example has the ordering, needed for this modification,
so in Figure 5.1 we can observe how it works. All the chains evolve according to the
same random numbers, so in this case they all go one state up or one state down
at a time, because the transition probabilities are the same for all the states and the

18



update function is designed that way. That means that the chains starting at s, s3 and
s4 are sandwiched between the chains starting at s; and s5 (the bolder black lines in
the picture). At one point all the trajectories meet and they all continue the same way
till time 0.

Figure 5.1: Trajectories of CFTP and use of sandwiching

Figure 5.2 shows that this modification will not change the fit to the stationary distri-
bution. Also the speed of convergence to this stationary distribution will be obviously
the same, because the only thing that changes in this modification is the computational
complexity.

Histogram of the Sandwiching Algorithm Outputs

53 52

40 O outputs
N B counted values of the
stationary distribution
2 KK N
10 4
0 4

Figure 5.2: Histogram

This modification can help a lot with chains with a big state space, but it can be used
only for a relatively small number of chains, because not all chains have this sandwich

property.
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Chapter 6

Propp-Wilson Algorithm with
Read-Once Randomness

At the beginning of the previous chapter we have mentioned two essential weak-
nesses of the algorithm and we have shown a way to avoid one of these at least for
some special chains. Here we will try to avoid the second problem — the huge amount
of random numbers U_y, 11, . .., Up that has to be stored and reused again and again.

After the Propp-Wilson algorithm was published, many people were trying to deal
with this disadvantage of the algorithm. Some ideas concerning adjustments of the
seed of a random number generator occurred, but these algorithms were not able to
produce unbiased results.

Algorithm 1 In 2000, David Wilson published a paper [10] where he modified the
original Propp-Wilson algorithm by introducing the so called read-once randomness.
Later in the literature this modification has been referred to as Wilson’s modification,
we will use the term Propp-Wilson with read-once randomness. It is not only dif-
ferent from the initial algorithm because we do not reuse the random numbers, but
it also runs from zero to the future, not from the past to zero. Here we will use the
explanation from [3] where the idea is described by gradually modifying the original
algorithm.

Let Ny, No, N3, . .. be a strictly increasing sequence of random natural numbers inde-
pendent on Uy, U_1,U_»,.... Next we realize that when a chain reaches coalescence
at time zero, it would end in the exactly same state when we run it from a random
earlier time. By running the coupling to the future algorithm we get a sequence of
independent natural random numbers N;, Ny, ..., times needed for coalescence of
CTTE. Then we obtain the sequence Ny, N>, N3, ... by this summing:

Ny = N;

20



Ny = Nf + NJ
N3 = Ni + Nj + Nj etc.

It is also possible to prove (see [3]), that the probability of getting coalescence before
or exactly at time zero, with the starting time —N; = —Nj is atleast 1/2. To show this,
imagine, we can start the Propp-Wilson algorithm at time —N; and continue, until we
reach coalescence (even past zero if necessary). Let M; be the number of steps needed
to get coalescence in that case. Then M; and N have the same distribution and are
independent. From this we get that

and we also know that

P(M; < N})+P(M; > N;) = 1—P(M; > N;)+1—P(M; < Nj)
2— (P(M; > Nf) +P(M; < Ny))
2—P(M; # Ny)
2-1=1

AV

If we combine these two pieces of information, we get that P(M; < Ny) > 1/2. Of
course we would rather work with probability exactly equal to 1/2. The only problem
is the case when M; = N;. That we can solve by tossing a coin whenever this happens.
With probability 1/2 we get that the chain starting at Ny was *-successful, that means
it reached coalescence in less than M; steps or exactly in M; steps and the coin toss
came up heads. In the opposite case the restart is called *failing.

Moreover it is possible to prove that when the first restart is not successful, the sec-
ond one starting from time — N will be *-successful (now it has to reach coalescence
in time —Nj) with conditional probability 1/2 etc. The number of *—failing restarts Y
we have to do before getting a *—successful restart has a geometrical distribution with
parameter 1/2. So when we start in time — Ny we get coalescence at zero.

Now we can run two independent copies of coupling to the future algorithm ! until
both copies reach coalescence. We will call this a twin run. We denote the first coa-
lescent copy the winner and the second one the loser. We again toss a coin whey they
reach coalescence at the same time. So after the twin run we let the chain evolve in the
same way as did the winner of the twin run from time — Ny to time —Ny.

!t is similar to the coupling to the future algorithm but we start at zero and continue until we reach
coalescence. This algorithm, unlike coupling from the past, does not produce the right distribution of
outcomes.

21



Now we generate the geometrically distributed random variable Y and we repeat
this procedure with the twin run Y times. The only difference is that now, we will let
the chain evolve as the loser and go only for the same amount of step that needed the
winner to get coalescence. And in zero we get an unbiased sample from the stationery
distribution of our Markov chain.

Algorithm 2

However, there are different ways to simulate Propp-Wilson algorithm with read-once
randomness and we use a different one in the simulation shown bellow. In this version
we fix an arbitrary number of steps T (that has to be at least equal to the smallest
number of steps in which we can get from any state s; € S to any other states; € S
so it would be possible to get coalescence in this time; also it should not be too large
so we will not waste time and resources for running the chain longer than necessary)
and we run a coupling into the future algorithm for exactly T steps. We repeat this
until we get an evolution of the chain that is coalescent in time T (it does not matter if
the chain reaches coalescence before T or exactly at T). Then we let our chain evolve
this way for the first T steps.

Now we repeat the into the future algorithm for T steps but we do exactly the op-
posite — if the coupling is coalescent we end the algorithm and will not use this last
evolution (leading to coalescence). On the contrary if the restart is not coalescent at T
we use this trajectory to evolve our chain for next T steps. One trajectory of the chain
is shown in Figure 6.1.

In our example the smallest choice of T possible would be 4 (the number of steps
needed to get from s; to s5 and vice versa). The simulation is run with T=7 because
it seems to be a efficient compromise between too small (we have to run the coupling
to the future too many times to get one coalescent copy) and too large (just one run of
the coupling would be unnecessarily long).

state

time

Figure 6.1: One random trajectory of read-once randomness algorithm 2 (T=5)
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Figure 6.2 shows us the distribution of outcomes produced by this algorithm, com-
pared to the theoretically obtained stationary distribution of the chain.

Histogram of the Read-Once Algorithm Outputs
G0
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Figure 6.2: Histogram

Figure 6.3 shows the evolution of the difference between the computed stationary
distribution and the distribution of the simulation outputs until it is equal or less than
1072, Again from 1000 repetitions we got the mean number of simulations needed
equal to 2246, which is slightly less than in the CFTP algorithm, but on the other hand
it took a little more time.
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Figure 6.3: Error of the Read-Once Randomness modification
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Chapter 7

Ising Model

Ising model is designed to demonstrate the behaviour of an ferromagnetic material
at given temperature. It can be solved in any number of dimensions, we will consider
only a two dimensional square example and try to get unbiased samples of possible
solutions at different temperatures.

What does the model look like? In our case it is going to be a square lattice. We
can describe it as a graph G = (V, E). To every vertex (atom) from V a number ¢ €
{—1,1} (spin) should be assigned. How do we assign this number? Randomly with
accordance to the probability measure 7 4(¢)

76p(8) = leexp(—ﬁH(C)) — Lewp ¥ i)

Zcp () €E

Where B > 0 is the inverse temperature, H({) stands for Hamiltonian or the energy
of the model and Zg g is a constant that makes the sum of all the probabilities equal to

1.
H(G) = - ¥ &x)¢y)
(xy)€E
Zop = Y exp(BH(n)t)
ne{-11}V

Now we get to the Propp-Wilson algorithm. We will consider any spin configu-
ration a state of a Markov chain. It is possible to show that there does not exist an
ordering on the state space but we can find a minimal (all —1s) and maximal (all +1s)
spin configuration and if we let two copies evolve form the maximal and the minimal
state in parallel, the minimal will at any time in the future remain smaller than the
maximal, unless they are equal. That equality would mean coalescence. This property
is sufficient for us to use the sandwiching algorithm.
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The updates will be done by randomly choosing one vertex x € V at a time and
changing or leaving its value. So next thing we need if we want to use the Propp-
Wilson algorithm is to be able to tell the next value at this randomly chosen vertex
X,+1(x) with knowledge of the previous value X, (x) and a uniformly distributed
random number U, 1.

; exp(2B(k (x,6)—k—(x,8)))
Xpoa(x) = 4 T1 Ut < G006, (v % )14
-1 otherwise,

where k. (x, {) is the number of neighbour of x having the spin +1 and k_(x, {) is the
number of neighbours of x with spin —1.

And last but not least we need to deal with the fact that some of the vertices have less
than four neighbours. The easiest way is to introduce some additional edges between
the vertices on the boundary making the vertexes on the top neighbour to the vertexes
on the bottom and the same with left and right side.

In the following figures we can observe the behaviour of the model at different
inverse temperatures. Close to zero there is nearly the same amount of black and
white (-1s and +1s) as in Figure 7.1 at inverse temperature = 0.05. The closer we
get to the so called critical temperature B. = 3log(1 + v/2) the more the neighbours
tend to have the same spin, some groups are formed and one colour (spin) dominates
the other. This is only slightly noticeable in Figure 7.2 at f = 0.25, but evident at the
inverse temperature 0.4 in Figure 7.3.
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model at inverse temperature f = 0.05

=X 1 1 lelelelelelel lol T lol I To1 lelel lelelelelelel 11}
saeslelesiolel lol Jol 1 ol 1 L1 leeisleielele lol | 1
R L L del deteetel L1 1 L L] LA L L elele | 1 [ele]
Lo Lo 1 1 elelel Jo] ‘ol 16 Jol | ] (o 1 [$.616l6e] J
Lol leel | slelel | leiele]l o 1 letel L | leleielel | 1 &
L il deel Lo L1 il L el el lel f ] 11 L leel )
L L L leelsleielelel Jelesieslel Jolel 1 12 11 L1 leel |
ol 1 1 eleleeleleislolesiolel lole |
oL 1 1 elslesleleial | ol leelelel ]
jelele] _eleleielel | loleieleleel 1 | Jeleialel L L 1 0 1 &
L elelealel | ol L leleelel ol 1 eleleielel [ 1 1. 1
jolelel | 1 leielel [ lelel lol | 1 1 elel leleleel 1 . 1o
L L Ieleeisleie]l 1 | 1 leielele loleielel eoleleel 16 lo)
L eleleaialois]l 1 olel olsl | 1 1 sleleielels. 1ol | I8

= Lo = Lo = Lo o
o ™ (] =5 —

26

Figure 7.2: One randomly generated draw from the stationary distribution of the Ising

model at inverse temperature f = 0.25
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Figure 7.3: One randomly generated draw from the stationary distribution of the Ising
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model at inverse temperature f = 0.4



Chapter 8

Conclusion

The aim of the thesis was to explain and implement the Propp-Wilson algorithm and
two of its modifications. In this section we summarize the results for chosen examples.

For the Ising model we used only the monotone sandwiching modification of CFTP,
because it is very difficult to simulate the chain from all possible initial states, consid-
ering the number of possible states grows as a square of the number of vertices. For a
square grid n X n in will be n* chains and that is very hard to simulate even for very
small grids like 10 x 10. Because of that for this type of examples with larger state
spaces the sandwiching modification is practically the only applicable alternative. Of
course only in case there exists an ordering on the state space allowing us to use this
algorithm.

Considering a simple Markov chain in Example 1 we applied all three algorithms:
CFTP, sandwiching and read-once randomness CFTP and measured, how many simu-
lations we have to make until we get the stationary distribution with an error smaller
than 1072. Surprisingly the mean number of simulations needed ranged for all the
algorithms between 2240 and 2280 and therefore the accuracy of the algorithms seems
very similar. Also the mean computational time it took to get the desired accuracy was
not significantly different. Since the chain from Example 1 is in fact very small (only 5
states), the difference in time needed in CFTP and sandwiching is not nearly as big as
it would be for example for the Ising model.

So which one of these algorithms should we choose? If the chain has an ordering
on the state space, the sandwiching algorithm is the best possibility. If we can not
use sandwiching, we can choose any from the others. The read-once randomness
CFTP can be implemented using less memory, but that is not usually an issue with
modern computers. On the other hand the original CFTP took slightly less time for our
example. The accuracy of both algorithms was comparable. So probably the original
Propp-Wilson algorithm would be a better option.
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Appendix

Content of the CD

/Thesis/............ includes all the LaTex files for generating
the thesis (texts and settings)

/Matlab/............ includes all the Matlab codes used for gene-—
rating figures or other outputs

/Figures/........... includes all the figures used in the thesis

ChrbolkovaBT.pdf....text of the thesis

README .txt.......... this file
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