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Annotation

The thesis concerns contact problem focused on biomechanical systems modelled by multi-
body approach. The example is modelling impact between human body and infrastruc-
ture. The work firstly presents algorithms for collision detection and for calculation of
minimum distance, respectively. In the thesis the analytical method using tangential plain
perpendicular to initial one is analysed. The Hertz, the spring-dashpot and the nonlinear
damping contact force models are applied in approximation of the contact force, gener-
ated during the impact of bodies. Later on, numerical optimization method is put upon
bouncing ball example. The difference between initial experiment and simulation curves
is desirable to be minimise. Purpose of optimization is to find the most corresponding
results of simulation to an original experiment. As consequence of these, adequate param-
eters of all the three contact force models are calculated. Derivation of double pendulum
equation of motion is performed using Lagrange equation of second kind. Generalized
force vector concerns the force, generated in case of impact performance scenario. Var-
ious of possible biomechanics applications such as motion of arm and legform impactor
are developed for the purpose to motivate engineers for further studies.

Key word: Double pendulum, multibody approach, contact force models, minimum
distance problem, contact force parameters, biomechanics applications



Anotace

Práce se věnuje kontaktńım problémům biomechanických systémů modelovaných po-
moćı př́ıstupu multi-body. Př́ıkladem je modelováńı nárazu lidského těla do infrastruk-
tury. Práce se nejprve věnuje algoritmům pro detekci kolize a pro výpočet minimalńı
vzdálenosti. V práci je popsána analytická metoda využ́ıvaj́ıćı tečné roviny rovnoběžné
s p̊uvodńı. Hertz̊uv model, model pružina-tlumič a model s nelineárnim tlumeńım jsou
využity pro aproximaci kontaktńı śıly, generované srážkou těles. Dále je aplikován proces
numerické optimalizace na př́ıkladu skákaj́ıćıho mı́čku. Rozd́ıl mezi křivkami simulace
a experimentu je minimalizován za účelem nalezeńı řešeńı, které se bude nejlépe bĺıžit
danému experimentu. Výsledkem optimalizace jsou př́ıslušné parametry všech tř́ı model̊u
kontaktńı śıly. Pro odvozeńı pohybové rovnice dvojkyvadla je využito Lagrangeových
rovnic druhého druhu. Vektor zobecněných sil zahrnuje śılu vzniklou v připadě impaktu.
Možné aplikace do oblasti biomechaniky, jako je pohyb horńı končetiny a impaktor lidské
nohy jsou ukazány za účelem motivace k daľśımu vývoji.

Kĺıčová slova: Dvojkyvadlo, multibody př́ıstup, modely kontaktńı śıly, minimalńı vzdálenost,
parametry kontaktńı śıly, aplikace v biomechanice
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Chapter 1

Introduction

Impact of biomechanics studies to the consequences to the human body impact like a
car crash, a pedestrian impact, falls and sports injuries. This field motivates engineers
and designers to develop better safety systems for people exposed to an impact injuries.
Anyone who drives a car or plays any sport is directly benefiting from impact biomechanics
research.

Virtual human body models start to play an important role in the impact biomechanics.
There are several approaches to develop and run such numerical models. Since the simple,
usually articulated rigid body models, can evaluate mainly global human body kinematics
under external loading. Detailed deformable models can even simulate tissue injuries.
However the detailed models spend a lot of computational time. So the articulated rigid
body models are usually sufficient tool for the first approximation and these might predict
long duration global human behaviour, in very short computational time. For such models,
contact modelling and contact parameters optimization are crucial aspects of a successful
descriptions of a human behaviour under external impact loading. Multibody approach
based on rigid bodies linked to the open kinematics chain speeds up the calculation even
more. The aim of this thesis is to test the contact algorithm in the double pendulum
contact problem and analyse the results.

The thesis focuses firstly on review of published researches dealing with contact mechanics
problem. Algorithms for collision detection and for calculation of minimum distance
between two bodies are summarized in the Chapter 2. This chapter includes also a review
of contact force approaches. Differences between discrete and continuous contact models,
their advantages, disadvantages and possibilities of application are discussed.

Chapter 3 describes a double pendulum as a simple articulated rigid body system based on
multi-body approach. Author uses Lagrange’s equation with multipliers to evaluate equa-
tion of motion of double pendulum. Derivation of impact algorithm based on multibody
approach using contact force models is demonstrated. The three contact force models are
Hertz’s model, spring-dashpot model and nonlinear damping model, respectively. Later
on, principle of numerical optimization is applied on simple contact mechanics example
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of a bouncing ball. The purpose of the optimization is to evaluate contact parameters
according to the behaviour of a real system.

In Chapter 4 results of particular calculations and simulations are displayed. Free motion
of double pendulum is presented to be a sufficient model of human arm. Trajectories of
elbow and wrist are compared with curves of 2D approach model of human arm and also
with experiment. Optimized values of contact force parameters are used in bouncing ball
example and the results of simulations are provided. Possibilities of further biomechanics
applications are demonstrated on experimental leg impactor. Impactor can be simply
modelled to be a system of two linked ellipsoid and these are getting into impact with a
plain. Chapter 5 concludes the thesis.



Chapter 2

Literature review

2.1 Motivation for impact biomechanics

Impact, or contact, is a complex phenomenon that occurs, when at least two bodies
undergo a collision, see Fig. 2.3. Impact (or contact) problem arise in many engineering
applications, such as multi-body dynamics, robotics, aircraft, biomechanics and many
others. An impact is defined as the collision of two bodies that occur over a significantly
short time interval. One can characterize the impact to be a scenario presenting by
large reaction forces, rapid energy dissipation and very high decrease and increase of
accelerations.

2.2 Contact detection and minimum distance

Computing the minimum distance between two object of arbitrary shape is very important
and it is deeply associated with impact applications. Ellipsoids are frequently used for
particular shape representation for many natural organism, such as segments of human
body.

There are many efficient algorithm for collision detection and related minimum distance
calculation between objects. Generally there are two approaches. The first one only
provides information, whether the bodies are separated, contacting at one point or the
bodies are in collision, such as [2, 21]. The second one concerns algorithm, which is
computing distance between bodies, respectively between surfaces [18, 21, 19].

2.2.1 Surface approximation

Sohn [18] presents an algorithm for computing distance between two free surfaces. The
main idea is using line geometry to approximate shape, see Fig. 2.1, of bodies to refor-
mulate the distance calculation problem to intersection between surfaces. By using line
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geometry, one can reduce the number of variables and number of equations, that are
solved. For example, two ellipsoids distance calculation problem implies four equations in
four variables. This approach transforms it in a two equations in two variables system.

Figure 2.1: Line approximation of bodies [18]

Three main aspects of this particular method are pointed out. Let us summarise line
coordinates in three dimensional space and hints how to express arbitrary surface using
homogeneous coordinates associated with the Cartesian coordinate system. Let us con-
sider arbitrary surface in the three dimensional space. Each point on this surface may
be associated with a normal line through this point which is spanned by normal vector.
These lines formulate two dimensional system of lines called congruence. Parametric and
implicit representation of normal congruence is described and sort of basic examples are
demonstrated. Minimum distance between two bodies is computed to be a minimum
distance between boundaries of such surface.

To sum up this methods:

1. Generate a line coordinates of normal congruence of the surfaces. Calculate two two
dimensional surfaces, which are releases with particular quadratics.

2. Calculate an intersection of two normals congruence in order to find joint normal of
both surfaces. This considers finding intersection of two two dimension surfaces.

3. Find two foot points of all joint normals and check the minimum distance.

Sohn is considering the solution of the problem of minimum distance between two ellip-
soids.

2.2.2 Contact detection

Wang [21] presents efficient and accurate algorithm for detection of collision in case of two
moving ellipsoids. This work contains two approaches, namely a simple algebraic test for
disjunction of two ellipsoids and a method for separating plain construction. Compared
with tetrahedron surface approximation algorithm, this algorithm reduces calculation time
and has a higher accuracy.



2.2 Contact detection and minimum distance 13

Collision detection

Interiors of two ellipsoids A and B are represented by matrix equations XTAX < 0 and
XTBX < 0 respectively where A and B are real symmetric matrices of dimension equal
to 4 and X = [x, y, z, w]T expresses a point in homogeneous coordinates.

A simple algebraic test for separating of two ellipsoids is established by giving two surfaces
A : XTAX = 0 and B : XTBX = 0 and the quartic equation f(λ) = det(λA− B). This
quantity is called characteristic equation of A and B.

Figure 2.2: Two (a) disjoint and (b) overlapping ellipsoids and corresponding f(λ) [21]

This two ellipsoids are disjoint if and only if equation f(λ) = 0 has two distinct positive
roots. They touch each other in a single contact point if f(λ) = 0 has one positive double
root. Note that ellipsoids are in contact, if the characteristic equation has no positive
roots, see Fig. 2.2.

2.2.3 Minimum distance calculation

Constructing of a separating plain

Wang [21] is demonstrating how to construct a plain, which is separating two ellipsoids.
Since the plain is separating the bodies, there can be no collision between ellipsoid until
one of them impacts with the plain. Wang is applying affine transformation to plain and
ellipsoid problem to reduce it to a problem of a sphere and a plain. Afterwards the problem
of calculation between the sphere and the plain becomes a problem of distance between
the centre of the sphere and the plain. However, generally speaking, affine transformation
does not keep the distance magnitude, hence the truthfulness of this method can be
discussable and should be proved. Due to this fact, constructing a separating plain will
not be subjected to further studying . It can be observed in [21].
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Pedestrian model

Moser [12] is presenting precise model of a human body for contact with vehicle application
in his work. Pedestrian model is coming into contact with a rigid surfaces of the form of
the car, and subsequent motion of human model is developed. Moser is using iteration
process for testing distance between the surfaces of the bodies. Although precise algorithm
is not reported, distance between any two points of bodies is checked and the minimum
distance is determined. This algorithm can be efficient for simple geometry, which does
not require high number of points.

Quadratics equation of ellipsoid

Eberly [2] is presenting similar approach to [21] based on solution of algebraic equations.
However this method is only testing a collision and it is not interested in minimum distance
calculation. Moser introduces two algorithms for intersection calculation. The first one
is based on roots estimation and the second one is using gradient approach, which is
identified later on.

Eberly defines an ellipsoid Ei by the quadratic equation

Qi(X) = XTAiX +XTBi + Ci (2.1)

or

Qi(X) =
[
x y z

] a
i
00 ai01 ai02

ai10 ai11 ai12

ai20 ai21 ai22


xy
z

+
[
bi0 bi1 bi2

] xy
z

+ ci, fori ∈ {1, 2}. (2.2)

Whilst Qi(X) < 0 defines interior of the ellipsoid, Qi(X] > 0 defines the exterior. It is
obvious that Qi(X = 0 express point on the surface.

Roots calculation

Two polynomials f(z) = α0 +α1z+α2z
2 and g(z) = β0 +β1z+β2z

2 have a common root
if and only if the Bézout determinant is equal to zero, namely

(α2β1 − α1β2)(α1β0 − α0β1)− (α2β0 − α0β2)
2 = 0. (2.3)

When the Bézout determinant is equal to zero, a common roots of f(z) and g(z) are

z̃ =
α2β0 − α0β2
α1β2 − α2β1

. (2.4)
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Ellipsoid equation may be written to be a quadratic in z, whose coefficients are polynomial
in the way of x and y as

QI(x, y, z) =
(
ai00x

2 + 2ai01xy + ai11y + bi0x+ bi1y + ci
)

+

+
(
2ai02x+ 2ai12y + bi2

)
z + ai22z

2. (2.5)

Using the algorithm mentioned above, one can get a polynomial of degree 16 and can find
the particular roots. The main disadvantage of this approach is that calculation of the
the roots may cause ill-conditioned problem.

Gradient approach

Alternative solution is to set up a system of differential equations, which is walking along
one ellipsoid and is searching the point of intersection with the second one. The method
results in finding the particular point or evaluate that there is no such points.

One starts with point X0 such as that Q0(X0) = 0. It concerns any point placed on
the surface. The first step is testing if Q1(X0) = 0. If so, contact point was directly
found. This condition means that the particular point is on the surface of both ellipsoids.
If Q1(X0) < 0 the point X0 lies inside and if Q1(X0) > 0, it lies outside the second
ellipsoid respectively. The main idea is to follow the direction of tangential of the first
surface in such a way to reach value of Q1 = 0. The best and fastest approach provides
the direction of gradient Q1. Once the point Xn is found, for which Q1(Xn) = 0, the
point distance method can be applied. For detailed description see [2].

Analytical solution

Rob [19] defines minimum distance between line

y = kx+ q (2.6)

and ellipse

Ax2 +By2 = C. (2.7)

The points where the extrema are located are points where the tangent to the ellipse is
parallel to the line. The slope of the line is k, so the task is to find the points where the
tangent has slope k. Doing this by using implicit differentiation on the equation of the
ellipse, one gets
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2Ax+ 2By
∂y

∂x
= 0 (2.8)

∂y

∂x
= −Ax

By
(2.9)

−Ax
By

= k (2.10)

x =
Bky

A
. (2.11)

The extrema both lie on this line and the ellipse, so finding their intersection will give us
the extrema. One will be a maximum and one a minimum, so the minimum distance d
of a point [x0, y0] from the line 2.6 is

d = min

{
|kx0 − y0 + q|√

k2 + 1

}
. (2.12)

2.3 Contact force models

The purpose of this section is to provide an overview of impact and contact model method-
ologies. Energy absorbing, behaviour of a friction model, solution approach, multi-contact
problem and experimental testing verification are some of aspects, which are taken into
account. Here, it brings a review of results already presented in literature describing
the existing models, their relationships other and applications of these impact (contact)
models.

Figure 2.3: Impact of two bodies [3]

In general, two different approaches for contact analysis can be distinguished, namely
the discrete and continuous contact model. This text describes both, including unilateral
constrain approach, that is generalization of discrete model for multi-contact problem.
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2.3.1 Discrete contact model

The discrete contact model formulation is based on the assumption that the impact pro-
cess is instantaneous, impact forces are impulsive kinetic variables having discontinuous
changes, while no displacements occur during the impact and other forces are neglectible.
This models are usually used for rigid or very hard bodies, whilst the effects of deformation
at the contact point are taking into account through coefficients. The impact problem
is then solved by the linear and angular impulse-momentum characteristics between the
variables before and after the impact using the coefficient of restitution.

Classical impact theory

Let us assume the planar impact of two bodies with masses mi, i ∈ {1, 2} and initial
velocities vi0, i ∈ {1, 2} and let us divide the impact process into 2 phases, see Fig. 2.4.
Consequently loading in t ∈ [t1, t2] is characterized by the linear impulse P1 and unloading
during t ∈ (t2, t3] is characterized by the linear impulse P2 as

P2 = εP1, (2.13)

where the coefficient of restitution ε ∈ {0, 1} describes the local changes and

Figure 2.4: Loading and unloading phases of discrete contact model

P1 =

t2∫
t1

Fdt, (2.14)
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is the impulse caused by the one dimensional impact, see Fig. 2.4. Here t ∈ [t0, t2] is the
impact interval. Whilst ε = 1 means completely plastic impact, ε = 0 means completely
elastic impact.

Linear and angular velocities of particular bodies can be defined [3] as

v1 = v10 − (1 + ε) P1

m1
,

v2 = v20 + (1 + ε) P1

m2
,

ω1 = ω10 − (1 + ε)rS1
P1

IS1
,

ω2 = ω20 + (1 + ε)rS2
P1

IS2
.

(2.15)

Equations (2.15) can be simply solved for impacts between 2 bodies. However, system
with more bodies together is complicated to be handled because each impact state in-
fluence the remaining system kinematics. Furthermore, the problems involving multiple
impacts should be managed as a complex system for better algorithm development and
programming.

Coefficient of restitution models

Let have the triad vector (n, t, b) defining a coordinate system with origin at the contact
point where n is the normal vector to body at this point and vectors t b define tangent
plain (obviously perpendicular to n). The total linear impulse can be written as

P = Pnn+ Ptt+ Pbb. (2.16)

The relative linear velocity at the contact point has following components: compression
velocity along normal direction and component velocity along t and b direction called
sliding velocity. Main variations of the restitution models are reported.

Poisson’s model

The total normal impulse Pf is divided into two parts, Pc and Pr, corresponding to
compression and restitution phases, respectively. Coefficient of restitution is than defined
as

ε =
Pr
Pc
, Pf = Pc + Pr. (2.17)

The condition for the end of compression phase is expressed by relative velocity along the
normal direction equal to zero.
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Newton’s model

The coefficient of restitution here is

ε =
C(tf ) n

C(t0) n
= −Cf

C0

. (2.18)

This model is based on kinematic point of view and only the initial and final conditions
for the relative normal velocity are taken into account.

Stronge’s model

This model is based on the internal energy dissipation hypothesis. The coefficient of
restitution is defined as the square root of the ratio of energy released during restitution
to the energy absorbed during compression phase. In the terms of work done by the
normal force during compression and restitution phases, the coefficient or restitution can
be calculated from

ε2 =
Wr

−Wc

. (2.19)

Unilateral constraints approach

The unilateral constraints approach is based on the discrete impact model but it overcomes
the problem by defining multiple impact. The multiple contact includes a combinatorial
problem of a large dimension. If one contact changes, all other contacts are influenced
and it makes a new set of contact configurations necessary to be analysed [15]. Hence it
makes sense to define the sets

IS = {1, . . . ,m} , with m contact point,
IC(t) = {j ∈ IS(t) : ΦNj

= 0} , with mC elements,

IN(t) = {j ∈ IC(t) : Φ̇Nj
= 0} , with mNelements,

IT (t) = {j ∈ IT (t) : |Φ̇Tj | = 0} , with mT elements

(2.20)

where IS is the set of all contact points, IC contains the constraints with vanishing dis-
tance with arbitrary relative velocity, IN describe the constraints fullfiling the necessary
conditions for continuous contact (vanishing distance at zero relative velocity in the nor-
mal direction) and IT are the possibly sticking contacts. Φj and Φ̇j are the relative
distances and velocities between the contacting bodies for the j-th contact and indices
N and T mark normal and tangential directions respectively. Since each contact event
change influences all other contact events in the multibody system, these sets depend on
time t. The transition between one state to another one are governed by complementaries
in normal and tangential directions defining the corresponding unilateral constrains [16].
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Due to the complication using the discrete contact modelling approach (timing in mul-
tiple contact using classical impact theory or computationally expensive quadratic pro-
gramming programming using unilateral constraints approach), the following approach
assuming contact force as the external force dependent on the local indentation between
the impacting bodies is usually used.

2.3.2 Continuous contact model

The continuous contact model is useful to overcome the problem with local deformation,
non-smoothness in contact variables and energy absorption that is complicated to be
described by the discrete contact models. The basic of the continuous model formulation
for contact dynamics is in an explicitly account of the deformation of the bodies during
impact (contact). In a large class of continuous models is defined by applying by defining
the normal contact force Fn as an explicit function of a local indentation δ as

Fn ≡ Fn(δ̇, δ). (2.21)

The dependence of force on indentation is a crucial relation which has to be known or
otherwise unrealistic situations might appear. In the following text, a summary of the
three existing contact force models are analysed.

Hertz’s model

Hertz’s model [3, 9] is non-linear and it does not include any damping. However, it is
limited only to an impact of elastic deformation. Hertz’s model contact problem can be
constructed as interaction of two rigid bodies via a non-linear spring along the line of
impact. The hypothesis is based on assumption, that the deformation is concentrated in
the vicinity of the contact point (area). The elastic wave motion is not relevant and the
total mass of each body is moving with the velocity of its centre of gravity. The impact
force is then defined as

Fn = kδn, (2.22)

where k and n are constant parameters depending on material and geometric properties
of bodies and can be calculated using elastostatic theory [1, 13]. Constant k represents
the stiffness parameter. For example, in case of two spheres impact, the value n = 3

2
and

k is varying with Poisson’s ratios, Young’s moduli and radii of the spheres as

k =
4

3(σi + σj)

[
RiRj

Ri +Rj

]
, (2.23)

where material parameters σi and σj are defined by
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σl =
1− ν2l
El

, l ∈ {i, j}, (2.24)

in which quantities νl and El are Possion’s ratio and Young’s modulus associated with
particular sphere, respectively.

Since the Hertz’s model does not take energy dissipation into account, the coefficient of
restitution is equal to one. Gillardi [3] discussed this model is suitable especially for low
impact speeds within hard materials. Elastic contact law of the Hertz’s model can be
upgraded by adding plastic deformation. This can be accomplished by using hysteresis
force law, which takes the form

Fn = Fn,max(
δ − δp

δmax − δp
)n (2.25)

where Fn,max and δmax are maximum normal force and maximum indentation during load-
ing phases of impact, respectively, and δp is permanent indentation. Note that maximum
values in the (2.25) is calculated in every instance of numerical solution, value δ is cal-
culated in each time step, but δp is an additional parameter, and it has to be defined
initially in particular contact model. Hysteresis model is not very common to use since
being large, heavy or not effective.

Spring-dashpot model

An alternative contact force model taking account energy loss during impact is a spring-
dashpot, or so called Kelvin-Voigt model [3, 9]. The impact is schematically represented
with a linear damper (dashpot) for dissipation of energy parallel with linear spring for
the elastic behaviour. The normal contact force is defined as

Fn = kδ + bδ̇ (2.26)

and an equivalent system to the model is schematically represent in Fig. 2.5.

Figure 2.5: Equivalent system [9]

Quantities b and k in Eg. 2.26 represent parameters depending on material and shape of
the contacting bodies. δ is indentation (or penetration) and δ̇ is relative normal contact
velocity. In some literature [3, 9] δ̇ is defined as a indentation velocity.



2.3 Contact force models 22

Three weaknesses of this model are pointed out:

• At the beginning of impact, contact force is discontinuous, because of the damping
term. During the real contact situation, both elastic and damping forces should be
initially equal ta zero and are increasing over the time.

• When the objects are separating, the indention tends to zero and hence their relative
velocity tends to be negative. The results is a negative normal force holding the
objects together, is shown in Fig. 2.6.

• The coefficient of restitution for this model does not depend on the impact velocity.
Note that velocity dependence of ε has to be developed experimentally.

Figure 2.6: Contact force history for the spring-dashpot model [3]

Even the spring-dashpot model is not physically realistic, it is used very often because
of its simplicity. It provides a reasonable method to capture energy dissipation effect
without explicitly considering plastic deformation issues.

Non-linear damping

Dealing with problems of the spring-dashpot model and retaining the advantages of the
Hertz’s model, another model involved energy dissipation effect was introduced by Hunt
and Crossley [7, 3, 9]. The non-linear damping term is considered and the term of the
impact force comes to

Fn = kδn + χδpδ̇q, (2.27)

where p, q and n are constants and it is common to set them p = n and q = 1. The
damping parameter χ is related to the coefficient of restitution, because it is associated
with energy dissipation phenomena, similarly with dashpot model.
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Based on the literature review and the physical effect, parameter χ is called the hysteresis
damping factor and is given by

χ =
3k(1− cr)

2δ̇(−)
, (2.28)

in which k represents the generalized stiffness parameter, cr is the coefficient of restitu-
tion and δ̇(−) is the initial contact velocity. Advantages of this particular model can be
described as follows:

• Damping coefficient depends on indentation value, which sound physically realistic.

• There is no discontinuities at initial contact region and separation; it begins and
finishes with correct value equal to zero.

Friction model

Coulomb’s (discrete) contact law [3] is frequently used to describe an effect of friction in
impact. Main disadvantages of the Coulomb’s law is the discontinuity of the friction force.
To sort this out and to capture effect due to friction interaction, alternative friction force
law has been established [3, 9]. The first improvement of the law is obtained by using
a non-local friction model where value of friction at one point depends on quantities at
numbers of its neighbourhoods. Another improvement is in applying non-linear model to
allow a continuous transition from sticking to sliding phases. The friction model is defined
as

F t = kfs, s(t) =


s(t0) +

∫ t

t0

vtdt, if |s| < smax

smax
vt
|vt|

, otherwise, smax = |µ|Fn
kf

(, )

(2.29)

where kf is friction stiffness, s is the vector of friction displacement, t0 is the start time
of the last sticking at the particular contact point, vt is the relative tangential velocity
and smax is the parameter of maximum allowable deflection. Very important aspect of
this model is the effective calculation of friction force to be a function of time.

Another model, but is is not common to present it as a friction model, is the Stronge’s
model [3]. This model is using concept of tangential friction force, in the way of the
Hertz’s model, thus the tangential force is defined as

Ft = ktδt (2.30)

where δt is tangential component of indentation at the contact point and kt is tangential
stiffness.
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Modern methods of friction model appear, coming with a large number of parameters,
which is necessary to solve the problem. It is not very straightforward to understand the
physical meaning of all the parameters.



Chapter 3

Method

3.1 Double pendulum model

3.1.1 Local and global coordinate systems

Let us consider an arbitrary body located in N-dimensional space. Position of the body
and all the points of the body are defined by coordinates Xi, i ∈ {1, 2...N}. This body
can move with a translational motion in the direction of coordinate axes and/or rotational
motion around these axes.

During the translational motion all the points on the body are moving in the same direc-
tion. Regarding this fact, it is possible to analyse the motion only with one point. It has
proved to be a useful choice to set a centre of gravity (later referred as COG) to become
this particular point.

During the rotational motion the body is rotating around an axis. Obviously there are not
only these simple motions, the body can move in highly complicated manner. However,
every real movement, no matter how complex it is, can be decomposed to a series of
independent simple motions (translations and rotations).

The final position of the body, which takes place after several simultaneous movements,
can be determined from the principle of the independence of movements, or also called
the principle of superposition of movements.

Local and global coordinate systems are defined, see Fig. 3.1. Whilst the global coordinate
system is time invariant and fixed to the frame, the local one is fixed to the body with
origin located at COG.

The general relation between the local and global coordinate systems at any point i on
the body is

rigl = rc + T riloc (3.1)
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Figure 3.1: Local and global coordinate systems

where rigl represents the global coordinates of point i, rc are the coordinates of COG, T
denotes transformation matrix between local and global systems and riloc are coordinates
of point i in the local coordinate system, see Fig. 3.1.

3.1.2 Spatial motion implementation

The double pendulum is assumed to be composed by two ellipsoids constrained together.
Both ellipsoids have major axes aij, mass mi and moments of inertia Iij, i ∈ {1, 2} and
j ∈ {1, 2, 3}. The global coordinate system X1 = [x1, y1, z1] is defined to be a Cartesian
coordinate system with an origin at frame fixed point of the first pendulum (joint) at
[0, 0, 0]T in the global coordinate system. The two bodies are jointed in one point with a
spherical kinematic joint as shown in Fig. 3.2.

Let us consider motion of double pendulum to be a motion of two independent bodies,
constrained with a mathematical constraint defined later. This assumption is highly im-
portant in the methods applied in the mathematical model, respectively in the derivation
of equations of motion.

Spherical joint

Any general joint has 6 degrees of freedom (further referred as DOF), namely three trans-
lations and three rotations. All of them can be potentially free or fixed. Spherical joint
is a type of primitive kinematic constraint with three rotational degree of freedom.

Schematic representation of the bodies i and j constrained together is shown in Fig. 3.3.
The point, where body i and j are joined is marked as P. Position of the P point can be

defined by the two vectors
→
SPi in local coordinates system (ξ1, η1, ζ1) of body i and

→
SPj in

coordinates system (ξ2, η2, ζ2) of body j.
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Figure 3.2: Double pendulum

Figure 3.3: Spherical joint
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Spherical motion can be considered by three independent rotations, namely precession
around the z axis represented with angle ψ, nutation around the ”new” x axis represented
with ν and rotation around the ”actual” z axis represented by angle ϕ.

The three independent spacial motions can be described by transformation matrices as

Tpre(ψ) =

 cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 , (3.2)

Tnut(ν) =

 1 0 0
0 cos(ν) − sin(ν)
0 sin(ν) cos(ν)

 , (3.3)

Trot(ϕ) =

 cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1

 . (3.4)

Regarding Eq. 3.1, the transformation formula in case of spherical movement can be
written using translation of centre of gravity and multiplication of precession, nutation
and rotation matrices. Thus general transformation of any point of body from local to
global coordinate system is described as

X1 = Xs + T pre(ψ) T nut(ν) T rot(ϕ) X2 (3.5)

where Ti, i ∈ {1, 2, 3} are transformation matrices of precession, nutation and rotation
respectively. Eq. 3.5 can be rewritten using only one transformation matrix

X1 = Xs + T 12 X2 (3.6)

where T 12 is a transformation matrix between the local coordinate body-fixed system 2
to the global coordinate system 1 and Xs represents coordinates of COG.

Transformation matrix T 12 is a three dimensional matrix generated by multiplying of
T pre, T nut and T rot, thus

T 12(ψ, ν, ϕ) =

 cos(ϕ) cos(ψ)− cos(ν) sin(ϕ) sin(ψ) − cos(ψ) sin(ϕ)− cos(ϕ) cos(ν) sin(ψ) sin(ν) sin(ψ)
cos(ϕ) sin(ψ) + cos(ν) cos(ψ) sin(ϕ) cos(ϕ) cos(ν) cos(ψ)− sin(ϕ) sin(ψ) − cos(ψ) sin(ν)

sin(ϕ) sin(ν) cos(ϕ) sin(ν) cos(ν)


(3.7)
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Double pendulum coordinates

Since the motion of double pendulum is considered to be a translation of centre of gravity
and spherical rotation around this point, the transformation defined above can be applied
in order to describe the system. Taking into account Eq. 3.6, position of any arbitrary
point at body 1 and 2 in global coordinates system can be define as

X1 = Xsi + T1i(ψj, νj, ϕj) Xi, where i ∈ {2, 3}. (3.8)

Thus:

• The first body global coordinates: i = 2

X1 = Xs2 + T12(ψ2, ν2, ϕ2) X2 (3.9)

• The second body global coordinates: i = 3

X1 = Xs3 + T13(ψ3, ν3, ϕ3),X3 (3.10)

where Xs2 represents the first body COG coordinates and X2 is the coordinates vector
of any particular point in the local coordinate system of the first body. Xs3 is the vector
of COG coordinates of the second body and X3 are coordinates of any arbitrary point
in the local coordinate system of the second body. Note that matrices T12 and T13 are
formally identical, the only difference is that T12 is a function of angles (ψ2, ν2, ϕ2) and
T13 is function of angles (ψ3, ν3, ϕ3). These variables are known as the Euler’s angles [14].

Finally, the vector of generalized coordinates of the system can be defined. Generalized
coordinates of the system with n DOF are qi where i ∈ {1, 2...m} and m ≥ n. In this
case, the generalized coordinates vector is

q = [xs2, ys2, zs2, ψ2, ν2, ϕ2, xs3, ys3, zs3, ψ3, ν3, ϕ3]
T .

3.1.3 Equation of motion

Equations of motion (later referred as EOM) are derived from the Lagrange’s equations
of a second kind, which incorporates the constraints directly by means of generalized
coordinates.

General formula for the Lagrange’s equation of second kind is

d

dt

∂L

∂q̇
− ∂L

∂q
= Q+

r∑
j=1

λj
∂Φj

∂q
, (3.11)
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where L = Ek − Ep is called Lagrangian, Q represents generalized forces, λ are the
Lagrange’s multipliers and Φj are the constraint equations.

Since Ek is not function of q̇i and Ep is only function of qi in the double pendulum system
(here i ∈ {1 . . . 12} and r = 6), Eq. 3.11 can be rewritten as

d

dt

∂Ek
∂q̇i
− ∂Ep

∂qi
= Qi +

6∑
j=1

λj
∂Φj

∂qi
(3.12)

where Ek and Ep are kinetic and potential energy, respectively.

Energy balance

Kinetic energy of the system following the König’s rule and the assumption of two inde-
pendent bodies expressed in global coordinates is

Ek =
1

2

∑
Ẋ

T

s M̃ iẊsi +
1

2

∑
ωT

i Ĩ iωi =
1

2

∑
q̇TMq̇. (3.13)

Potential energy of the system is

Ep =
2∑
l=1

mlgzsl. (3.14)

Derivatives of kinetic energy with respect to generalized velocities (derivation of general-
ized coordinates) are

∂Ek
∂q̇i

= Mq̇. (3.15)

Derivatives of Eq. 3.15 with respect to time place the form

d

dt

∂Ek
∂q̇i

= Mq̈, (3.16)

where q is generalized coordinates vector and M is a mass matrix
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M =



m1 0 0 0 0 0 0 0 0 0 0 0
0 m1 0 0 0 0 0 0 0 0 0 0
0 0 m1 0 0 0 0 0 0 0 0 0
0 0 0 I11 0 0 0 0 0 0 0 0
0 0 0 0 I12 0 0 0 0 0 0 0
0 0 0 0 0 I13 0 0 0 0 0 0
0 0 0 0 0 0 m2 0 0 0 0 0
0 0 0 0 0 0 0 m2 0 0 0 0
0 0 0 0 0 0 0 0 m2 0 0 0
0 0 0 0 0 0 0 0 0 I21 0 0
0 0 0 0 0 0 0 0 0 0 I22 0
0 0 0 0 0 0 0 0 0 0 0 I23



. (3.17)

Non-zero derivatives of potential energy with respect to generalized coordinates are

∂Ep
∂qi

= mig, i ∈ {3, 9}. (3.18)

Note that

∂Ep
∂qi

= 0 i ∈ {1, 2, 4, 5, 6, 7, 8, 10, 11, 12}. (3.19)

3.1.4 Kinematics constrains definition

Kinematic constrain equations defined in Eq. 3.12 are developed in this paragraph. The
set of kinematic constraints need to be expressed and added to the system.

Spherical joint fixation of the upper peak of the first body that concerns the zero
displacement of the point X2). By meaning of Eq. 3.6, the first constraint equation can
be written. The local coordinates of X2 are x2 = 0, y2 = 0 and z2 = −a13, hence the
vector is X2 = [0, 0,−a13]T and the constraint equation is

Φ1 = Xs2 + T 12

 0
0
−a13

 =

0
0
0

 . (3.20)

Link between the top (upper) peak of the second body and the bottom peak
of the first body that means the two points are coincident all over the time. These
points are [0, 0, a13]

T in the local coordinate system of first body, and [0, 0,−a23]T in the
local coordinate system of the second body.

Thus using equations 3.9 and 3.10), the first constraint equation is
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Xs2 + T 12

 0
0
a13

 = Xs3 + T 13

 0
0
−a23

 (3.21)

and thus second constrain equation is

Φ2 = Xs2 + T 12

 0
0
a13

−Xs3 −T13

 0
0
−a23

 =

0
0
0

 . (3.22)

Both constrain equations 3.21 and 3.22 together can be written in a compact matrix form
as

Φ =

[
Φ1

Φ2

]
=


Φ1

Φ2

Φ3

Φ4

Φ5

Φ6

 =


Xs2 + T 12

 0
0
−a13


Xs2 + T 12

 0
0
a13

−Xs3 − T 13

 0
0
−a23



 =


0
0
0
0
0
0

 . (3.23)

This generates six equations for the constrains

Φ(q(t)) =


xs2 − a13 sin(ν2) sin(ψ2)
ys2 + a13 cos(ψ2) sin(ν2)

zs2 − a13 cos(ν2)
xs2 − xs3 + a13 sin(ν2) sin(ψ2) + a23 sin(ν3) sin(ψ3)

ys2 − ys3 − a13 cos(ψ2) sin(ν2)− a23 cos(ψ + 3) sin(ν3)
zs2 − zs3 + a13 cos(ν2) + a23 cos(ν3)

 = 0. (3.24)

The constrained system hence has 6 degrees of freedom in total.

Second derivatives of constrain

Regarding the Lagrange’s equations of the second kind, to derive equations of motion,
the second derivatives of constrains Eq. 3.24 with respect of time need to be obtained and
added to system Eq. 3.12.

Vector Φ is a vector of six independent constraint equations, which are functions of
generalized coordinates and also function of time.

Thus, the first derivatives with respecting to time generate vector

dΦ

dt
≡ Φ̇ =

[
∂Φ

∂xs2
ẋs2 +

∂Φ

∂ys2
ẏs2 +

∂Φ

∂zs2
żs2 + ... ...+

∂Φ

∂ν3
ν̇3 +

∂Φ

∂ϕ3

ϕ̇3

]
(3.25)
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that can be simply written as

Φ̇ =
12∑
i=1

∂Φ

∂qi
q̇i. (3.26)

The second time derivatives then takes a form

dΦ̇

dt
≡ Φ̈ =

[
∂2Φ

∂x2s2
ẋ2s2 +

∂2Φ

∂xs2ys2
ẋs2ẏs2 + ... ...+

∂Φ

∂xs2
ẋs2 + ... ...+

∂Φ

∂ϕ3

ϕ̇3

]
, (3.27)

or

Φ̈ =
12∑
i=1

12∑
j=1

∂2Φ

∂qi∂qj
q̇iq̇j. (3.28)

Differential-algebraic equation

The EOM derived in the previous paragraph leads to the system of differential-algebraic
equation (further referred as DAE). An important quantity characterising DAE is their
differential index. It can be defined as a number, how many times the DAE need to be
differentiate to reach standard system ordinary differential equations. The higher value
of differential index corresponds with more complex and difficult DAE integration.

Eq. 3.12 together with constrain Eq. 3.28 constitute a mathematical model of the con-
strained multibody system. Formulating EOM using these constrained generalized coor-
dinates leads to the mathematical model in the form of the set of DAE in the form[

M ΦT

Φ 0

]
.

[
q̈
−λ

]
=

[
f(q, q̇, t)
γ(q, q̇, t)

]
(3.29)

where

Φ =


1 0 0 −a13 c(ψ2) s(ν2) −a13 c(ν2) s(ψ2) 0 0 0 0 0 0 0
0 1 0 −a13 s(ν2) s(ψ2) a13 c(ν2) c(ψ2) 0 0 0 0 0 0 0
0 0 1 0 a13 s(ν2) 0 0 0 0 0 0 0
1 0 0 a13 c(ψ2) s(ν2) a13 c(ν2) s(ψ2) 0 1 0 0 −a23 c(ψ3) s(ν3) −a23 c(ν3) s(ψ3) 0
0 1 0 a13 s(ν2) s(ψ2) −a13 c(ν2) c(ψ2) 0 0 1 0 −a23 s(ν3) s(ψ3) a23 c(ν3) c(ψ3) 0
0 0 1 0 −a13 s(ν2) 0 0 0 1 0 a23 s(ν3) 0

 ,

(3.30)
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f =



0
0

−m1 g
0
0
0
0
0

−m2 g
0
0
0



, (3.31)

Γ =



−a13 s(ν2) s(ψ2) ν̇22 + a13 c(ν2) c(ψ2) ν̇2 ψ̇2 2− a13 s(ν2) s(ψ2) ψ̇2
2

a13 c(ψ2) s(ν2) ν̇22 + a13 c(ν2) s(ψ2) ν̇2 dψ2 2 + a13 c(ψ2) s(ν2) ψ̇2
2

−a13 ν̇22 c(ν2)
a13 s(ν2) s(ψ2) ν̇22 − a13 c(ν2) c(ψ2) ν̇2 ψ̇2 2− a23 s(ν3) s(ψ3) ν̇23 + a23 c(ν3) c(ψ3) ν̇3 ψ̇3 2 + a13 s(ν2) s(ψ2) ψ̇2

2 − a23 s(ν3) s(ψ3) ψ̇2
3

−a13 c(ψ2) s(ν2) ν̇22 − a13 c(ν2) s(ψ2) ν̇2 ψ̇2 2 + a23 c(ψ3) s(ν3) ν̇23 + a23 c(ν3) s(ψ3) ν̇3 ψ̇3 2− a13 c(ψ2) s(ν2) ψ̇2
2 + a23 c(ψ3) s(ν3) ψ̇2

3
a13 ν̇22 c(ν2)− a23 ν̇23 c(ν3)


(3.32)

where s symbolized sin and c is cos, respectivelly.

The vector of unknown generalized accelerations (the second derivatives of generalized
coordinates with respect to time) is defined as

q̈ =



ẍs2

ÿs2

z̈s2
ψ̈2

ν̈2
ϕ̈2

ẍs3

ÿs3

z̈s3
ψ̈3

ν̈3
ϕ̈3



. (3.33)

The vector of the Lagrange’s multipliers, which also represents reaction forces is in form
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λ =


λ1
λ2
λ3
λ4
λ5
λ6

 . (3.34)

According to [6], Eq. 3.29 is DAE of index one. Another important classification of
differential equations is whether it is a stiff or a non-stiff problem, associated with eigen-
frequency distribution [6]. This fact causes difficulties during numerical integration, and
due to this special numerical solver are implemented.

3.1.5 Numerical solution

Eq. 3.29 represents a system of 18 dependent DAE. One principle to solve this system is
in eliminating the Lagrange’s multipliers and transforming the second order equations to
the system of the first order equations. The particular substitution is then

v = q̇ (3.35)

and

v̇ = q̈. (3.36)

To express accelerations q̈ and consequence application of numerical integration, the ap-
proach based on transformation of DAE into a underlying ODE by method so called
elimination of the Lagrange’s multipliers. To avoid difficulties with commutating La-
grange multipliers, the accelerations are expressed from Eq. 3.29, which represents two
vector equations, as

Mq̈ −ΦTλ = p (3.37)

and

Φq̈ = γ. (3.38)

Accelerations are expressed from Eq. 3.37 as

q̈ = M−1 (p+ φTλ
)

(3.39)

and substituted into Eq. 3.38 as
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φM−1 (p+ φTλ
)

= γ. (3.40)

After rearranging, the vector of the Lagrange’s multipliers can be expressed as

λ =
(
φM−1φT

)−1 (
γ − φM−1p

)
. (3.41)

When Eq. 3.41 is substituted into Eq. 3.37, vector λ can be eliminated from Eq. 3.37,
thus vector of generalized accelerations can be expressed in form

q̈ = M−1{p+ φT (φM−1φT )−1(γ − φM−1p)}. (3.42)

Since the expression for accelerations without using vector multipliers have been obtained,
the final system of matrix equation using the expressions and substitutions above can be
written as

˙[u
v

]
=

[
v
q̈

]
=

[
q̇

M−1{p+ φT (φM−1φT )−1(γ − φM−1p)}

]
. (3.43)

This first order system of DAE can be solved using various numerical software. MAT-
LAB [10] software is applied to figure out the proper numerical solution. Set of suitable
numerical ODE solvers are implemented in MATLAB, such as ODE15s, ODE23, ODE45
and many others. Availability of specific solvers can be discussed. Generally, the stiffness
or non-stiffness of particular differential equation is the main relevant factor for solver
choice.

Eq. 3.43 can be solved using standard techniques of numerical integration, however it has
some undesirable troubles. It is not numerically stable for a certain properties. Various
methods describing and solving bad stability were developed [6]. One method is called
the Baumgarte’s stabilization.

The constrain equation Φ̈ = 0 is modified as

Φ̈ + 2αΦ̇ + β2Φ = 0 (3.44)

and this is solved during numerical solution of Eq. 3.43. Constants α and β are chosen,
recommended values can be found in [6].

Vector γ(q, q̇, t) in Eq. 3.43 is replaced by the new one, namely

γ̄(q, q̇, t) = γ(q, q̇, t)− 2αΦ̇− β2Φ. (3.45)

This brings new formulation of the first order DAE, which is going to be numerically
solved as
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˙[u
v

]
=

[
v
q̈

]
=

[
q̇

M−1{p+ ΦT (ΦM−1φT )−1(γ(q, q̇, t)− 2αΦ̇− β2Φ−ΦM−1p)}

]
.

(3.46)

3.2 Contact calculation

The thesis concerns possible impacts between any ellipsoid of the double pendulum and a
plain. If the pendulum bodies get into a collision, the crucial question is to evaluate impact
performance of a contact force. Let us assume the recently used reference approaches for
contact calculation, namely the discrete and continuous contact force models.

The continuous contact force model is chosen due to the simplicity of implementation for
impact application where many bodies are tentatively in contact. So the force is a function
of local indentation and indentation velocity respectively. Indentation or penetration
between two bodies is here referred to δ. Fig. 3.4 depicts the interaction between two
balls and quantity δ is displayed.

Figure 3.4: Two balls collision

To capture an effect of contact force in case of interaction of bodies, penetration depth has
to be calculated. To identify whether the bodies are getting into a collision, the minimum
distance between them is calculated. As long as the distance is positive, the bodies are
disjointed. Change of the the sign indicates a collision and negative distance magnitude
is equal to the penetration δ. Here, the double pendulum contact problem encroaches to
two separated scenarios of particular body and a plain.

Several algorithms for minimum distance calculation were publicised [18, 21, 1, 4, 5, 2].
Recently most of public sources work with cycle computing the distance between set of
points on the surfaces. Other approaches remain on collision detection algorithm [8, 14].
However, these are not evaluate indentation in case of overlapping bodies.

The literature review in Chapter 2 presents many methods for minimum distance calcu-
lation. An efficient method how to compute distance between ellipsoid and plain is the
analytical one [19]. Due to the geometry simplicity of the double pendulum, this study is
focused on analytical solution of minimum distance problem. Basic idea lies in creating
a new plain, that is parallel to a given plain and touches the ellipsoid in just one point.
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Since this point is detected, distance between the point and the plain can be calculated,
using adequate equation of analytical geometry. As is shown in Fig. 3.5 there always exist
two such parallel plains.

Figure 3.5: Parallel plains

3.2.1 Minimum distance problem application

Let us show the solution in the contact problem between an ellipsoid and a plain. General
equation of an ellipsoid is given by a formula

x2

a2
+
y2

b2
+
z2

c2
= 1, (3.47)

where a, b and c are constants, which represent the length of semi-principal axes. Eq. 3.47
can be rearranged by set of substitution to the form

Ax2 +By2 + Cz2 +D = 0, (3.48)

where A = 1
a2

, B = 1
b2

, C = 1
c2

and D = −1. General equation of an arbitrary plain can
be defined as

kx+ ly +mz + n = 0. (3.49)

Equation 3.49 can be rearrange to be a function z = z(x, y) as

z(x, y) = − k
m
x− k

m
y − n

m
. (3.50)
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Any arbitrary plain can be defined in several ways. One of suitable possibilities is to
use one point and two vectors. To capture new plain being parallel with the initial one,
at least two gradient vectors of both plains have to be the same. When two gradient
vectors are developed, together with one point on ellipsoid, the required tangential plain
is identified. Hence the gradients ∂z

∂x
and ∂z

∂y
of the plain z = z(x, y) are being evaluated

as

∂z(x, y)

∂x
= − k

m
(3.51)

and

∂z(x, y)

∂y
= − l

m
. (3.52)

To get a tangency parallel plain, the partial derivatives of Eq. 3.48 with respect to variables
x and y are obtained as

∂

∂x
: 2Ax+ 2By

∂y

∂x︸︷︷︸
0

+2Cz
∂z

∂x︸︷︷︸
− k

m

= 0 (3.53)

and

∂

∂y
: 2Ax

∂x

∂y︸︷︷︸
0

+2By + 2Cz
∂z

∂y︸︷︷︸
− l

m

= 0. (3.54)

Since x and y are independent variables, mutual derivations are equal to zero. When
Eq. 3.51 and Eq. 3.52 are substituted into Eq. 3.53 and Eq. 3.54, together with general
equation of ellipsoid Eq. 3.48, the system of three equations for unknown variables x, y
and z is obtained as

2Ax− 2C
k

m
z = 0, (3.55)

2By − 2C
l

m
z = 0 (3.56)

and

Ax2 +By2 + Cz2 +D = 0. (3.57)

Solution of this system of equations provides two points C1 = [x10, y10, z10] and C2 =
[x20, y20, z20], which are mutual points of the body and the tangential plain, also the
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point of extrema distance (minimum and maximum) between the plain and the body, see
Fig 3.5.

Since coordinates of these points are known, it is very straightforward to calculate distance
between these points and the plain. The distance from point X0 = [x0, y0, z0] to plain
kx+ ly +mz + n = 0 is given by

di =
kxi0 + lyi0 +mzi0 + n√

k2 + l2 +m2
,where i ∈ {1, 2}. (3.58)

Eq. 3.58 gets two extrema distances between the ellipsoid and the plain, since minimum
distance is required obviously as

d = min(d1, d2). (3.59)

However, this elementary method is working only for ellipsoid, whose centre of gravity
is located in the origin of the coordinate system and the semi-axes are identical with
the coordinate axes. Here, in case of fixed plain and moving ellipsoid, Eq. 3.49 can be
expressed on global, frame fixed coordinate system, but the equation of ellipsoid in desired
form Eq 3.49 is evaluated on the local body fixed coordinate system.

Transformation

In this particular system, the plain is fixed, so it is time invariant and the location
of ellipsoid is changing during the time. Actual position of any point on ellipsoid is
defined with 6 independent coordinates [xs, ys, zs, ψ, ν, ϕ]T where xs, ys and zs are COG
coordinates and ψ, ν and ϕ are the Euler’s angles.

plain and ellipsoid equations in elementary form 3.48 and 3.49 must be expressed in the
same coordinate system, either local or global. As mentioned above, plain 3.49 is evaluate
in global coordinate system and equation of ellipsoid Eq. 3.47 is in the local body fixed
system. For the transformation, it is useful writing the plain and tha ellipsoid equations
in a matrix form using homogeneous coordinates. Thus plain equation is

k 0 0 0
0 l 0 0
0 0 m 0
0 0 0 n

 .

x
y
z
1

 = 0 (3.60)

or in compact matrix form

RX = 0 (3.61)

and the ellipsoid equation comes to
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[
x y z 1

] 
A 0 0 0
0 B 0 0
0 0 C 0
0 0 0 D

 .

x
y
z
1

 = 0 (3.62)

or in matrix form

XTAX = 0. (3.63)

The ellisposid takes spherical motion around COG described by tranformation matrix
T 12, see Eq. 3.6. Since centre of gravity is moving in time, transformation matrix P of
translation (represented by xs, ys and zs) is added. The matrix evaluated in homogeneous
coordinates

P =


1 0 0 xs
0 1 0 ys
0 0 1 zs
0 0 0 1

 (3.64)

where xs(t), ys(t) and zs(t) are coordinates of body COG that are functions of time.

Final matrix to transforming any point from local system 2 to global 1 is derived using
the rule for compound transformation

T = PT 12. (3.65)

Note, that transformation matrix from system 1 to 2 is

T̃ = T−1 = T−112 P
−1 = T 21P

−1. (3.66)

The very crucial phenomenon is how to transform those equations to be expressed in
the same coordinate system and obtain equations in such a form, which the methods of
distance calculation can be applied on.

There are two possibilities to assure both of the bodies in the same coordinate system:

• The first one is using matrix T to transform ellipsoid Eq 3.63 from the local coor-
dinate to the global one (where the plain is defined) as

XTT TATX = 0. (3.67)

• The second one is to use matrix T̃ to transform plain Eq. 3.61 from the global
coordinate system to the local one (where the ellipsoid is defined) as
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RT̃X = 0. (3.68)

The first option gives a scalar equation, but it is highly non-linear and it is not possible
to arrange that in a form Ãx2 + B̃y2 + C̃z2 + D̃ = 0, where Ã, B̃, C̃ and D̃ can be any
arbitrary matrices. So, this option is not possible for this purpose.

The second option provides vector equation of dimension 4. In order to evaluate the scalar
plain equation in the new coordinate (local body-fixed) system, all the rows of Eq. 3.68
need to be summarised. Obtained scalar equation of the plain can be written in the same
form as the original one as

k̃x+ l̃y + m̃z + ñ = 0 (3.69)

where k̃, l̃, m̃, ñ are constants defined by particular transformation,

k̃ = k c(ϕi) c(ψi)− l c(ψi) s(ϕi) +ms(νi) s(ψi)− l c(ϕi) c(νi) s(ψi)− k c(νi) s(ϕi) s(ψi) ,
(3.70)

l̃ = k c(ϕi) s(ψi)−mc(ψi) s(νi)− l s(ϕi) s(ψi) + l c(ϕi) c(νi) c(ψi) + k c(νi) c(ψi) s(ϕi) ,
(3.71)

m̃ = k c(ϕi) c(ψi)− l c(ψi) s(ϕi) +ms(νi) s(ψi)− l c(ϕi) c(νi) s(ψi)− k c(νi) s(ϕi) s(ψi)
(3.72)

and

ñ = d+ k xsi + l ysi +m zsi (3.73)

where c is for cosine and s is for sine.

Now both (plain and ellipsoid) equations are in one coordinate system (local body-fixed)
and the standard distance calculation method described above can be used. There is only
one difference in using general transformed parameters k̃, l̃, m̃ and ñ instead of k, resp.
l, m and n.

It does not make any problem that the distance is calculated in local coordinate sys-
tem. The applied transformations are only translations and rotations, which are kind of
affine transformations. Using affine transformation, the distance between two point is not
changing, so it is invariant to that particular transformation.

However, any vector is not invariant to that. When any vector is obtained in the local
coordinate system, for example location vector of the contact point, the external normal
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vector or the contact force vector has to be transformed using matrix T 12 to get that in
the desired form.

Equation of a transformed plain Eq. 3.69 together with original equation of ellipsoid 3.48
are satisfactory input to calculate the minimum distance. Solving system of equations,
two points of extrema distance C1 and C2 are evaluated. Next step is just using expression
Eq. 3.58 for distance calculation with the transformed coefficients,

di =
k̃xi0 + l̃yi0 + m̃zi0 + ñ√

k̃2 + l̃2 + m̃2
, i ∈ {1, 2}. (3.74)

Required distance between the body and the plain is obviously

d = min(d1, d2). (3.75)

3.2.2 Contact force

Several normal contact force models are at present used to identify encroaching force
due to impact. This study is focused on continuous models implementation, in which
impacting force is defined to be a function of penetration. Relative normal contact velocity
is thus

~Fn = ~Fn(δ, δ̇). (3.76)

Minimum distance problem was described above, as mentioned, negative magnitude of
distance indicated overlapping of bodies. Assuming references of some commercial soft-
ware, contact thickness parameter is introduced. When δ become less then constant hcont
normal force is being calculated and implemented to the system. Normal contact force
acts in negative direction of external normal vector of ellipsoid, see Fig 3.6.

General form of the external normal vector of an ellipsoid Ax2 +By2 + Cz2 +D = 0 is

~n = [A,B,C]T . (3.77)

External normal vector located at the contact point in local body coordinate system is
defined with

~ncEloc = ~n ~rcloc, (3.78)

where ~n is external normal vector defined above, ~rcloc are coordinates of contact point in
local coordinate system.

Since unitary vector of internal normal is required, vector ~ncEloc is normalized and multiplied
with (-1) to generated desired vector
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Figure 3.6: Acting normal contact force

~ncloc ≡ ~ncIloc = (−1)
~ncEloc
‖ ~ncEloc ‖

. (3.79)

Normal vector expressed in global coordinates is developed applying transformation be-
tween local and global coordinate system,

~ncgl = T 12 ~n
c
loc. (3.80)

Coordinates vector of contact point in global coord. system is evaluated using general
transformation relationship (translation and spherical rotation)

~rcgl = ~Xs + T12 ~r
c
loc. (3.81)

Calculation of relative normal contact velocity (indentation velocity) is not so straight-
forward. Some guidelines define this to be only a velocity of contact point in direction of
external normal. However, it does not sound physically relevant. To capture a pure effect
of penetration velocity Eq 3.58 is derivatived. Since computing of penetration is evalu-
ated in body fixed local coordinate system, coordinates of contact point are constants and
position of plain is changing with time. Thus x0, y0, z0 are constants and quantities k, l,
m, n are functions of time. Penetration velocity is so developed using this equation,

d

dt
δ = δ̇ =

d

dt

{
kx0 + ly0 +mz0 + n√

k2 + l2 +m2

}
≡ ḟ g − fġ

g2
, (3.82)

where

f = kx0 + ly0 +mz0 + n, (3.83)
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g =
√
k2 + l2 +m2, (3.84)

ḟ =
df

dt
= k̇x0 + l̇y0 + ṁz0 + ṅ, (3.85)

ġ =
dg

dt
=

1

2
(k2 + l2 +m2)−

1
2 (2kk̇ + 2ll̇ + 2mṁ), (3.86)

and quantities k̇, l̇, ṁ, are derivatives of Eqs. 3.70, 3.71 and 3.72, respectively.

Vector of contact force ~F
c

gl can be evaluated using entities above, regarding adequate
contact force model:

• Hertz
~F
c

gl = Fn~n
c
gl = kh δ

n ~ncgl (3.87)

• Spring dashpot
~F
c

gl = Fn~n
c
gl = (ksd δ + bsd δ̇)~n

c
gl (3.88)

• Non-linear
~F
c

gl = Fn~n
c
gl = (knl δ

n + bnl δ
nδ̇)~ncgl (3.89)

Acting force ~F
c

gl is then translated to the centre of gravity of the body and including a

moment ~M
c

gl cause by translation. Figure 3.7 shows two equivalent systems, first one
with contact force acting at contact point, and second system loaded with force acting in
COG and a moment.

(a) Original position of contact force (b) Translated force and a moment

Figure 3.7: Two equivalent systems

Moment is obviously calculated from

~M
c

gl = ~R× ~F
c

gl, (3.90)



3.2 Contact calculation 46

where vector ~R can be expressed using position vector of contact point ~rcgl and COG

coordinates ~Xs, regarding Fig 3.7

~R = ~rcgl − ~Xs. (3.91)

Force implementation

In case of contacting bodies right hand side of equation of motion Eq. 3.46 comes to
following form

f =



F c
gl e1

F c
gle2

−mg + F c
gle3

M cx
gl

M cy
gl

M cz
gl

 =



F cx
gl

F cy
gl

−mg + F cz
gl

M cx
gl

M cy
gl

M cz
gl

 (3.92)

For a case of disjoint bodies, F n = 0 and thus vector ~f comes to simply form of uncon-
strained model loaded only with a gravity.

f =


0
0
−mg

0
0
0

 . (3.93)

To sum up effect of penetration and contact force, respective, adding to equation of
motion, a flowchart is given.
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Figure 3.8: Flowchart of ODE solution



3.3 Contact parameters optimization 48

3.3 Contact parameters optimization

In previous part the main three continuous normal contact force models were presented.
Namely Herz’s model, spring-dashpot and non-linear damping model. All the three prin-
ciples define normal force to be function of relative normal deformation between the
contacting bodies δ and indentation velocity δ̇, respectively, and set of theoretical param-
eters.

Normal force model definitions:

• Hertz’s model

Fn = khδ
n (3.94)

• Spring-dashpot model

Fn = ksdδ + bsdδ̇ (3.95)

• Non-linear damping model

Fn = knlδ
n + bnlδ

pδ̇q (3.96)

However, all the parameters are only theoretical values approximating effect of real force
generated during impact. Definitions formulas, how to calculate particular parameters,
were derived, but only for special case [9]. Recently, the common published one deals
with contact of two spheres in 2D space. Quantity ki representing stiffness parameter and
bi representing damping coefficient, respectively are functions of material and geometric
properties of contacting bodies. In case of 2D spheres impact, k is defined by formula

k =
4

3(σi + σj)

[
RiRj

Ri +Rj

] 1
2

, (3.97)

in which the parameters σi and σj are given by formula

σs =
1− ν2s
Es

, where s={i,j} (3.98)

Where quantities Es and νs are Young’s modulus and a Poisson’s ratios associated with
material of each spheres, respectively.

In general case, for example 3D, eccentric contact etc., it is not possible to derive desired
expressions. Since all force models should approximate a real case, experimental results
are used and compared with simulations to carry out appropriate values of parameters ki
and bi, respectively. By varying the theoretical quantities, the most corresponding results
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of simulation to an original experiment can be achieved. This mathematical method is
called optimization, for example gradient based optimization. Main principle is shown in
the flowchart

Figure 3.9: Flowchart of optimization

Numerical optimization is highly complicated mathematical process and it is not the
purpose of this work to described that, so it is not being discussed.

This particular scenario is a problem of multi-parameters optimization, together with
one objective function. Namely stiffness and damping parameters are active values and
difference between experimental and calculated results is an objective function, which is
desirable to be minimised.

Public sources provide not very wide set of a suitable experiments. However, [9] publicised
elementary application suitable for validation. The example of application considered here
is bouncing ball in 2D, which is one of the simplest mechanical contact system. However,
this is not an experimental result. The article [9] contains only an application simulation
example results. Nevertheless, simulation that had been already verified, can also render
appropriate data to validate a new model.

Figure 3.10 shows an elastic ball with an initial height equals to 1.0 m, mass of 1 kg,
moment of inertia equals to 0.1 kg.m2 and radius equals to 0.1 m. The ball is releases
from initial position under action only of gravity g equals to 9.81 m.s−2. Ball is falling
down until it collides with a rigid and stationary ground. When the ball collides a contact
takes place and ball rebounds, producing jump, which height is depending on parameters
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Figure 3.10: Bouncing ball example [9]

of the normal force. The quantity which is shown is position of centre of gravity of the
ball in the time, thus namely the y coordinate.

Figure 3.11: Ball position [9]

Software optiSlang, version optiSlang 3.2.0 is a suitable program to apply required opti-
mization principle. It is developed to cooperate with numerous of software to reach results
that capture minimization of an objective function. In this case MATLAB software cal-
culates motion of a ball and optiSlang is controlling a variation of input parameters k
and b, respectively. An output from MATLAB is a difference between simulation and
experiment. This function comes to be objective function for optiSlang.

Obj = (simulation− experiment)2. (3.99)

Cause the experimental results are set of discrete values, points difference was calculated

Obj(i) = (simulation(i)− experiment(i))2i ∈ {1, 2, ......., Tmax} (3.100)
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Since optiSlang can not work with objective function to be a proper function, it is working
only with single value. Sum of differences needs to be done.

Obj ≡ Obj(i) =
N∑
i=0

(simulation(i)− experiment(i))2. (3.101)

where N represents number of experimental curve points. Square root is used to avoid
zeroing of values with opposite sign. This could be ensure only by using absolute value,
but it can cause non-smoothness in solution. Hence an output from MATLAB programme
is one single value representing difference between curves of experiment and simulation.
This number is then input for optiSlang,in which is desirable to be minimised.

All the normal contact models Eq. 3.94, 3.95, 3.96 were put-upon optimization process to
reach appropriate values of stiffness and damping quantities.

3.3.1 Bouncing ball theory

Bouncing ball is classical elementary contact system. It contains one free body (ball) and
a rigid frame (ground). Purpose of this study is to built a suitable model, which can
be compared with appropriate results, to validate particular contact models. In previous
section EOM of double pendulum was derived using Lagrange’s equation principle. Later
on, some external forces, caused by local indentation were added to the system. Free
bouncing sphere (ball) with radius equals to r is only a special case of pendulum movement,
namely pendulum with semi-axis ai = r, for i ∈ {1, 2, 3}. When this body is not subjected
to any constraints, it comes to be a free body movement.

Due to this assumption, double pendulum EOM can be modified to capture free bouncing
ball EOM. However, this can makes a model slightly unclear. In order to avoid this
uncertainties, new EOM is derived using the same principle used previous.

Equation of motion of free ball

Principle of developing equation of motion of free body movement is similar with double
pendulum motion. However, there are no constraints in the system. Lagrange’s equation
of a first kind is applied to obtain EOM.

General formula of Lagrange’s equation is

d

dt

∂Ek
∂q̇i
− ∂Ep

∂qi
= 0, i ∈ {1.....6} (3.102)

Kinetic energy of the system is then

Ek =
1

2

∑
q̇TMq̇ (3.103)
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,

where q is vector of generalized coordinates, namely:

q = [xs, ys, zs, ψ, ν, ϕ]T .

Potential energy of the system is

Ep = −mgq3 = −mgzs. (3.104)

Derivatives of kinetic energy with respect to general velocities (derivatives of coordinates)
comes to a form, that is recently derivatives with respect to time

d

dt

∂Ek
∂q̇i

= Mq̈, (3.105)

where M is a mass matrix.

Derivatives of potential energy with respect to general coordinates

∂Ep
∂qi

= 0, for i ∈ {1, 2, 4, 5, 6}, (3.106)

and

∂Ep
∂qi

= −mg, for i = 3. (3.107)

Thus, the equation of motion comes to a form

Mq̈ = f , (3.108)

where q̈ denotes a general acceleration vector and f is a vector generalized force.

Equation 3.108 can be written components form
m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 I1 0 0
0 0 0 0 I2 0
0 0 0 0 0 I3




q̈1
q̈2
q̈3
q̈4
q̈5
q̈6

 =


Fx
Fy
Fz
Mx

My

Mz

 , (3.109)

or
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m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 I1 0 0
0 0 0 0 I2 0
0 0 0 0 0 I3




ẍs
ÿs
z̈s
ψ̈
ν̈
ϕ̈

 =


0
0
−mg

0
0
0

 (3.110)

Equation 3.110 describes free, unconstrained body system. To demonstrate bouncing ball
with a contact implementation, external normal force need to be add in right hand side
(later referred as RHS) of the model, as was discussed above. All the three main force
interpretations are introduced.

Phenomena of contact force calculation is based on computing penetration (δ) between
body and plain. In every time step, minimum distance between body is being computed.
In case of δ < hcont, which indicates a collision, normal force is calculated and added to
system, assuming particular model.

3.3.2 IF problem

In this section problem of discontinuities caused by IF condition presented in Fig 3.8 is
described and solved. Precept of IF condition seems to be very simple, with no trouble.
However, this brings irregularities in numerical integration.

If there is no penetration (δ > 0, δ > hcont, respectively), system Eq 3.118 is subjected
only to a gravitation, thus vector of external forces is

f =


0
0
−mg

0
0
0

 . (3.111)

If δ < hcont that indicates the impact of body and ground, normal contact force is
calculated and added to the RHS of system. Let assumed first contact occur in time
t = Tc. It signifies some value (non-zero )of contact force at this time, but force equals to
zero at t < Tc. Thus the force diagram is discontinuous and non-smooth, see fig 3.12.

Whatever small value of time step is set, it always generates a step change of force, from
zero to a non-zero value. Due to this fact, it causes discontinuities in ODE solution, re-
spectively in process of numerical integration. Functions ODE implemented in MATLAB
software are used to evaluate a solution. When the IF approach is used, the solution is
usually found. The crucial question is calculation time and a stability of numerical inte-
gration. To avoid this effect, if condition is replaced by special form of a Heaviside step
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Figure 3.12: Contact force discontinues

function. Classical Heaviside function, usually marked as H, is discontinuous function
that value is zero for negative argument and equals to one for positive argument. For a
smooth approximation of H function, some analytical functions are known [22].

In this particular example a classical approximation needs to be modified to catch the
proper IF condition problem.

• If condition:

IF : δ < hcont

where δ represents distance between bodies.

• Modified H(δ) function:

H(δ) = lim
k→∞

1

2
+

1

π
arctan(−k(δ − hcon)) (3.112)

Application of Heaviside step function into a contact force model, the necessity of using
IF condition is reduced. Contact force is then calculated in every time step following
particular force definition including Heaviside function.
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• Hertz’s model

Fn = khδ
nH(δ) (3.113)

• Spring-dashpot model

Fn = [ksdδ + bsdδ̇] H(δ) (3.114)

• Non-linear damping model

Fn = [knlδ
n + bnlδ

pδ̇q] H(δ) (3.115)

3.3.3 Numerical optimization

Free ball motion acting a contact with rigid ground system has then equation of motion
in form 

m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 I1 0 0
0 0 0 0 I2 0
0 0 0 0 0 I3




ẍs
ÿs
z̈s
ψ̈
ν̈
ϕ̈

 =


Fne1

Fne2

Fne3 −mg
M23

M13

M12

 . (3.116)

In which Fn is acting force regarding particular contact model and ~M ij, i, j ∈ {1, 2, 3} is

generated moment equals to ~M = ~R× ~Fn and ~ei represent bases of the space.

Eq. 3.116 is write in matrix form

M q̈ = f (3.117)

Equations 3.116 and 3.117, represent system of second-order differential equation (ODE).
Principle of solution such equations was described. It can be transformed to a system,
which is possible to solved in a numerical way

˙[u
v

]
=

[
v
q̈

]
=

[
q̇

M−1f

]
. (3.118)

MATLAB software version R2011b under Ms Windows platform on single processor Core
Duo T2400 computer with frequency of 1.83 GHz a 2 MB L2 cache, is being used to
numerically solve example of free ball motion. Based on a theory [6], Eq. 3.118 symbolize
so called stiff differential equation problem. MATLAB has implemented several numerical
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solver suitable for the stiff problems. However, it is not very straightforward to select a
best one. In order to evaluate stable results and minimize calculation time, four stiff
numerical solver ODE are applied on the same system. Simulation of bouncing ball
example at 1 sec. and 5 sec. duration time are worked out, respectively.

Computation time [s]
Solver 1 sec. simulation 5 sec. simulation

ODE23t 169 1820
ODE23tb 278 2675
ODE15s 166 1382
ODE23s 1592 20 045

Table 3.1: Calculation time of identical simulation with different solvers

Table 3.1 results in acknowledgement of the type of solvers which are the most suitable
. Four solvers were applied onto identical system and as can be seen computational time
differs. One can observe, that ODE23s is definitely not suitable solver for this particular
stiff differential equation. On the other hand, ODE23t and ODE15s appear to be a good
choice. In this computation ODE15s solver was implemented for numerical solution.



Chapter 4

Results and discussion

Aim of this part is to present and discuss achieved results. At the beginning, motion
of double pendulum system is going to be validated. For this purpose, experiment and
published simulation of an arm motion is used and compared with calculated results. In
the next, bouncing ball example is presented. This application contains numerical opti-
mization principle in order to identify particular values of contact parameters for all three
models. Thus results of bouncing ball motion using Hertz, spring-dashpot and nonlinear
damping model are displayed. The contact force generated during the impact of this
example is shown and compared with results of initial experiment. Suitable applications
of this model in biomechanics are reported. At the first, example of the double pen-
dulum contacting a plain, which can represent impact of arm with a structure. Second
biomechanics application is a leg form example getting into collision with plain.

4.1 Free double pendulum motion

In part 3.1 equation of motion of double pendulum with no collision was evaluated. The
following set of figures displays sequence of double pendulum motion. First body has
mass m1 = 1kg, moments of inertia I11 = 2, I12 = 3, I13 = 1 and semiaxes a11 = a12 =
1 and a13 = 2. Second body of double pendulum has mass m2 = 1kg, moments of inertia
I21 = 2, I22 = 3, I23 = 1 and semiaxes a21 = a22 = 1 and a23 = 2. The simulation starts
with horizontal position of both bodies with initial velocities equal to zero. Thus only
gravitation is loading the system. Position in time t ∈ {0, 0.5, 1, 1.5, 2, 2.5} is displayed.
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Figure 4.1: Position of double pendulum
at t=0 sec

Figure 4.2: Position of double pendulum
at t=0.5 sec

Figure 4.3: Position of double pendulum
at t=1sec

Figure 4.4: Position of double pendulum
at t=1.5 sec

Figure 4.5: Position of double pendulum
at t=2 sec

Figure 4.6: Position of double pendulum
at t=2.5 sec
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4.2 Arm gravity motion

Double pendulum system can be used in biomechanical fields to approximate various
segments of a human body, such as arm and leg. Valdmanová in [20] established a 2D
model of an arm based on multibody approach. This model consists of three elliptical
bodies constrained together. These bodies represent the main part of a human arm,
namely the upper arm, the forearm and the hand. Later on, model was simplified into
a two bodies system only, since the motion between forearm and hand can be neglected.
Geometric properties of two bodies model were transformed to catch the behaviour of
the system influenced by a hand. Valdmanová assumed all the bodies with uneven mass
distribution, thus the COG does not lay on the centre of ellipse. This effect is not
considered in this work. Valdmanová compared in her work simulation with result of an
experiment. Joints between bodies are modelled to be joints with an internal stiffness.
Thus the bodies load with moments representing thickness of a shoulder and of an elbow,
respectively. Geometric properties of the bodies are set of from [20] and are displayed in
table 4.1.

Parameter Units Upper Arm Forearm
Moments of inertia Iψ = Iν = Iϕ [Kg.m2] 0.0126 0.0105
Length of semi-axes a1 = a2 [m] 0.044 0.0314
Length of semi-axis a3 [m] 0.1574 0.3345
Mass m [Kg] 1.9807 2.5853

Table 4.1: Geometric parameters of the bodies

Passive bending moments of joints are defined by curves based on Robbinse [17], see
figures 4.7, 4.8.

Figure 4.7: Passive bend-
ing moment of a shoulder

Figure 4.8: Passive bend-
ing moment of an elbow

Figure 4.9: Passive bend-
ing moment of a wrist

Due to the effect of passive moments, exerting on the bodies, right hand side of equation
of motion comes to a formula
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f =



0
0

−m1g
−Q1(ψ2) +Q2(ψ2)
−Q1(ν2) +Q2(ν2)
−Q1(ϕ2) +Q2(ϕ2)

0
0

−m2g
−Q2(ψ3) +Q3(ψ3)
−Q2(ν3) +Q3(ν3)
−Q2(ϕ3) +Q3(ϕ3)]



, (4.1)

where Q1, Q2 and Q3 represent passive bending moments of shoulder, elbow and wrist,
respectively.

Initial position of arm corresponding with an experiment is based on anthropometric data,
namely a driver’s position of holding the steering wheel. Initial condition of the arm is
shown in fig 4.10.

Figure 4.10: Initial position of arm

In which angles ϕ1 = −45◦ and ϕ2 = 23◦.

Results

First figure shows the motion of elbow of the right upper leg, see Fig 4.11. Where black
solid curve represents the motion of the elbow in 3D double pendulum simulation, yellow
dash-dot curve represents 2D simulation from [20] and red points represent motion during
experiment [20].

Second graph, see Fig 4.12, shows the motion of a wrist. Curves and colors are the same
with the previous figure.
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Figure 4.11: Comparison of trajectories of an elbow

Double pendulum system was compared with experiment and also with model based on
2D multibody approach. These systems represent free motion of right arm. In order to
validate this particular model, comparison with experiment is highly desirable. Previous
figures show that the motion of real arm is similar with simulated motion. Although the
trajectory of the wrist slightly differs from the experiment and also from Valdmanova’s
simulation, it proves equivalence of systems. Valdmanová assumed the bodies with uneven
mass distribution, but it was proved, that this assumption does not affect the results. To
sum up results of this part, double pendulum system is validated to be appropriate system,
representing a real human segment. Due to this detection, it can be applied in numerous
applications.
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Figure 4.12: Comparison of trajectories of a wrist

4.3 Numerical optimization

In section 3.3 application of various solvers for numerical integration implemented in
MATLAB software was described to solve equation of motion. Software optiSlang controls
variation of input quantities, namely the contact parameters k and b, respectively, to reach
the most corresponding results of simulation to an original experiment results. Principle
of mathematics optimization was applied on all three normal contact force models.

4.3.1 Hertz’s model

Since Hertz’s model does not take energy dissipation effect into account, it can not reach
a desired result. Whatever value of contact parameter kh is set, the jump with the height
equal to initial position is produced. By varying with kh only an amount of penetration
is changing. Figure 4.13 shows result of simulation with kh equals to 1e5 compared with
original experimental result.
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Figure 4.13: Result of bouncing ball example regarding Hertz’s model for kh = 10000

4.3.2 Spring-dashpot model

Spring-dashpot force model represents an example with linear spring in conjunction with
linear damper. It refers to an elastic force and energy dissipation effects. Constants ksd
and bsd represent imaginary spring stiffness and imaginary damping coefficient, respec-
tively. Process of numerical optimization performed in optiSlang software varied with
initial parameters ksd, bsd and calculated 722 simulations and the best one is displayed in
Fig 4.14.

Value of the parameters of the best design are approximately equal to:

Parameter Optimized value
ksd 3.303e+7
bsd 2.157e+4

Table 4.2: Parameters of best design for SD model
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Figure 4.14: Result of bouncing ball example regarding Spring dashpot model

4.3.3 Non-linear model

Contact force model with non-linear damping element considers energy dissipation effect
similar as with spring-dashpot model. This model dealt with the problems of discontinu-
ities of contact force caused by damping term, that occur in the previous model. However,
application of this contact force model may appear slightly unstable and ill-conditioned.
Process of numerical optimization found an extrema after a few simulations. The ob-
tained result does not correspond with an initial experiment as satisfactory as that of a
spring-dashpot model simulation, see Fig 4.15. Several settings in optiSlang software were
performed, varying in initial values and in parameters of optimization. Best results were
achieved with those of equal to values shown in table 4.3. Results obtained in numerical
optimization are displayed in Fig 4.15.

Parameter Optimized value
knl 3.009e+7
bnl 3.000e+4

Table 4.3: Parameters of best design for NL model
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Figure 4.15: Result of bouncing ball example regarding non-linear damping model

4.3.4 Summary of optimization

Summarizing the knowledge and results obtained in process of numerical optimization of
contact force parameters are reported in this part.

• Hertz’s model performs an elementary model suitable for first approximation of an
impact. Since it does not take energy dissipation phenomena into account, it is not
applicable for all configurations. In case of a fully elastic impact, where coefficient
of restitution approaching to one, this model can provide satisfactory results. Main
advantages of Hertz model is resting upon its well-conditionality and simplicity.

• Spring-dashpot model includes damping coefficient to be a function of coefficient of
restitution Cr. It refers to a more realistic situation, since it is not limited by elastic
impact. Varying the parameters Cr between 0 and 1, phenomena between a fully
plastic and a fully elastic impact are captured. Based on calculations, the spring-
dashpot model provides results, most corresponding with an experiment. Thanks
to this fact is applied in further calculations.

• Non-linear damping force model also works with dissipation of energy, but the con-
ditioning of calculation can be discussed. One can observe that the curves of ex-
periment and numerical simulation differ significantly, compared to spring-dashpot
model. Calculation time of every single simulation in a process of optimization
alters. This indicates an unstable problem.
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4.4 Contact force

Very crucial question of impact is generated force. In generally, contact force represents a
force with short duration time and with large amplitude. Maximum value of the contact
force is highly important knowledge in evaluating of risk and injury of the bodies. As
consequence of application in biomechanical examples, this might help in prediction of an
injury of a human. However, there are no rupture criteria that can evaluate amount of
deformation or injury as a function of the force. Nevertheless the knowledge of generated
contact force can help in numerous fields.

Contact force diagram of bouncing ball example is presented in [9]. Here, this initial
example force diagram is compared with the simulation. As consequence of previous
results, the spring-dashpot model was applied. Both the force curves are displayed in
Fig 4.16.

Figure 4.16: Contact force versus time

One can observe that both the curves have similar behaviour and also the maximum
values are comparable. The maximum force and the deviation are shown in the table 4.4.

Simulation Experiment Absolute deviation Relative deviation
FMax 4.032e5 [N] 3.496e5 ]N] 0.536e5 [N] 13.29 [%]

Table 4.4: Maximum values of contact force
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4.5 Double pendulum contacting a plain

In previous section double pendulum system was described and validated to be a suitable
approximation of a part of human body, namely the arm. Purpose of this part is to
evaluate results of the system including a contact with general plain. Although this can
be applied for example in approximation of an arm or a leg undergoing into an impact
with a vehicle, here it is presented only to demonstrate a behaviour of the system. Further
calculations may practise and validate double pendulum system in comparison with an
experiment.

The presented system has parameters shown in table 4.5.

Parameter Units Body 1 Body 2
Moments of inertia Iψ = Iν = Iϕ [Kg.m2] 1 1
Length of semi-axes a1 = a2 [m] 1 1
Length of semi-axis a3 [m] 2 2
Mass m [Kg] 1 1

Table 4.5: Geometric parameters of the bodies

Results

Motion of double pendulum that gets into a contact with plain is displayed in t∈ [0, 1.25].
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Figure 4.17: Position of double pendu-
lum contacting a plain at t=0 sec

Figure 4.18: Position of double pendu-
lum contacting a plain at t=0.25 sec

Figure 4.19: Position of double pendu-
lum contacting a plain at t=0.5 sec

Figure 4.20: Position of double pendu-
lum contacting a plain at t=0.75 sec

Figure 4.21: Position of double pendu-
lum contacting a plain at t=1 sec

Figure 4.22: Position of double pendu-
lum contacting a plain at t=1.25 sec
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4.6 Legform impactor

Miyazaki in his work [11] presents development of a legform impactor in pedestrians safety
testing. It considers steel shaft connected to metal plates to represent the femur and the
tibia. It evaluates leg fracture risk based knee ligaments rupture risk based on knee
bending angle and shear displacement. As a result, it can be used to help assess injury
based on deformation by estimating the risk of tibia fracture from the bending moment
of the tibia shaft and the risk of knee ligament rupture from the elongation of the wires.

System of two bodies constrained together can be gently applied in such a model of leg
impactor. It can not fully approximate behaviour of a human leg and legform impactor,
respectively. However, this can provide a first and elementary knowledge of after-impact
motion. Geometry of the car can be improve to produces such a motion, that occurs
a minimal risk of pedestrian’s injury. Based on anthropometric data, kinematics joint
between these two bodies is modelled to be a spherical joint with an internal stiffness.
Thus the bodies load with a moment representing thickness of a knee, similarly with
upper leg example. Passive bending moment curve of an elbow is used to approximate
knee passive bending moment. Since elbow joint and knee are anatomically similar, this
assumption should not bring any uncertainties. Zhou describes a leg impactor in his
work [24]. Assuming a reference the overall geometric properties, it was determined that
the optimal size of knee joint is a cylinder with a maximum diameter equal to 70mm.
The human knee joint is like a spherical joint, in which all the three axes meet at the
same point. However, the spherical joint might have great disadvantages compared to
non-spherical ones. To realize 4-DOF joint, one can use 4 single joints, 2 double joints,
1 triple joint and 1 single joint or 1 quadruple joint. Based on previous research, Zhou
realised knee joint structure consisting 1 double joint and 2 single joints, or two double
joints, within appropriate internal stiffness, see Fig 4.23.

Figure 4.23: Experimental leg impactor [24]

Geometrical parameters of leg impactor based on [11] are defined in the table 4.23.

Where moments of inertia are calculated as moment of a cylinders adequate to [23].
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Parameter Units Femur Tibia
Length [mm] 428 493
Diameter [mm] 70 70
Mass m [Kg] 8 4.8
Moments of inertia Iψ = Iν = Iϕ [Kg.m2] 0.033 0.0257

Table 4.6: Geometric parameters of leg impactor

Here, two ellipsoids jointed together approximate behaviour and after-impact motion of
legform impactor. This work considers only contact with a plain, thus it is not comparable
with experiment, in which impactor contacts a front part of the car. Experiment assumes
the impactor exposure only with a gravity and moving in direction against car with initial
velocity equal to 40 Km/h. These initial conditions are respecting in the simulation.

Results

Motion of two constrained ellipsoids that gets into a contact with plain is displayed in
t∈ [0, 0.4] sec.
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Figure 4.24: Position of leg
impactor at t=0 sec

Figure 4.25: Position of leg
impactor at t=0.05 sec

Figure 4.26: Position of leg
impactor at t=0.1 sec

Figure 4.27: Position of leg
impactor at t=0.15 sec

Figure 4.28: Position of leg
impactor at t=0.2 sec

Figure 4.29: Position of leg
impactor at t=0.25 sec

Figure 4.30: Position of leg
impactor at t=0.3 sec

Figure 4.31: Position of leg
impactor at t=0.35 sec

Figure 4.32: Position of leg
impactor at t=0.4 sec
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Conclusion

Contact mechanics starts to be a very crucial phenomena in a various of engineering
studies. Biomechanics contact problems, such as pedestrians accident, car crash, sports
and impact injuries motivate engineers to develop and improve systems, that bring lower
amount of risk and of injury. Anyone crossing the roads, driving a car or playing any
sport is exposures to a biomechanics research as consequence of a possible impact.

Virtual human body modelling plays significant role of impact biomechanics research. Var-
ious of approaches in biomechanical modelling are currently developed. Model contains
rigid bodies linked to open, or close, kinematics chain is based of multibody approach.
Articulated rigid body system can provide a satisfactory model for the first approxima-
tion of a human behaviour. As consequence of simplicity of the model, rigid constrained
approach can evaluate global long time behaviour of human in very short time. Detailed
deformable models of human body can evaluate precise information about behaviour, de-
formations and injuries. These are limited with computation technologies. In many cases,
multibody approach might identifies an adequate and sufficient information. Application
of rigid body contact scenario deals with some crucial aspects. At the beginning, the
selection of a suitable contact force model. Presently the continuous contact force models
play significant role in various of applications. Idea of continuous contact model is that
contact force is dependent on the amount of penetration between bodies and on the pene-
tration velocity, respectively. Calculation of penetration can be very straight forward, for
example distance between two spheres or highly complicated in case of irregular bodies.
Various of analytical and numerical methods for distance calculation have been reported
in literature overview. The very crucial aspect of continuous contact force model is evalu-
ating of sufficient contact parameters. By varying the parameters, the most corresponding
results of simulation to an original experiment can be achieved. Principle of numerical
optimization can be applied to find such parameters. Multibody model can be loaded
with contact force on each body independently. Mathematical constrains between bodies
capture an effect of the bodies affecting one to each other.

The purpose of this thesis was to evaluate and test algorithm for system of a double
pendulum getting into a contact with general plain. This work firstly presented literature
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overview of contact detection algorithms and of contact force models. Later on, equation
of motion of double pendulum according to multibody principle was derived. Problem
in evaluation of contact force parameters was sorted out using numerical optimization
principle applied on bouncing ball example. Three contact force models were investigated,
namely the Hertz model, the spring-dashpot model and the nonlinear damping model. The
optimized values of contact parameters together with graphical evaluations were presented
and discussed. Assuming a reference of biomechanics research, the double pendulum
system might approximate various segments of a human body. The applications of the
arm and of the legfrom impactor based on multibody approach were verified here..

All the knowledge acquired during studies on this thesis can be easy applied in further
researches. Contact detection algorithm can be modified and used in different bodies
examples. Advantages and disadvantages of particular contact force models were pointed
out and suitable applications of these models are discussed. It was proved that all the
three models are a certain level of approximation of a real system and with particular
contact parameters can be used in further applications.
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