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Abstract

This diploma thesis focuses on the electro-mechanical coupling in the porous structure of the bone.
The cortical bone tissue is modeled as a double-porous medium decomposed into the solid matrix
and the fluid saturated canals. In the first part, the study of purely mechanical behavior is performed
on the poroelastic model. The method of unfolding homogenization is applied to upscale the mi-
croscopic model of the fluid-solid interaction under a static loading. Obtained homogenized co-
efficients describe material properties of the poroelastic matrix containing fluid-filled pores whose
geometry is described at the mesoscopic level. The second-level upscaling provides homogenized
poroelastic coefficients relevant to the macroscopic scale. Furthermore, we study the dependence
of these coefficients on geometrical parameters which relate to the microscopic and macroscopic
scales. In the second part of this thesis, the electro-mechanical coupling in a porous structure with
only one level of porosity is discussed, resulting into the model of electro-osmosis in the porous
structure. On this model, the unfolding method is applied and the parameter study of dependency
of effective coefficients on porosity change is performed. The macroscopic problem is solved on a
test body.

Key words: Electro-osmosis, porous medium, poroelasticity, homogenization, unfolding method

This work has been elaborated with the support of project SGS-2013-026 and IGA, NT-13326.

Abstrakt

Diplomová práce se zabývá elektro-mechanickou vazbou v porézní struktuře kosti. Tkáň kor-
tikální kosti je modelována jako medium s dvojí porozitou skládající se z pevné matrice a tekutinou
prosycených kanálů. V první části této práce se zabýváme čistě mechanickým chováním modelu
poroelasticity. Pro stanovení homogenizovaných koeficientů popisujících mesoskopickou úroveň
aplikujeme homogenizační metodu unfoldingu na staticky zatíženou mikroskopickou úroveň. Opě-
tovným aplikováním stejné homogenizační metody na mezoskopickou úroveň popsanou efektivními
koeficienty z předešlého kroku je možno získat koeficienty popisující vlastnosti homogenizovaného
materiálu na makroskopické úrovni. Dále je provedena parametrická studie závislosti efektivních
koeficientů na změně geometrie popisující mikroscopickou strukturu kortikální kosti. Ve druhé
části je diskutován vliv elektro-mechanické vazby v porézní struktuře s jedním stupněm porozity.
Je zaveden mikroskopický model popisující elektro-osmotické jevy v porézním materiálu. Aplikací
metody unfoldingu na tento model lze získat efektivní koeficienty odpovídající homogenizovanému
materiálu na makroskopické úrovni. Je provedena parametrická studie vlivu změn v porozitě na
hodnoty efektivních koeficientů. V závěru práce je řešena testovací makroskopická úloha.

Klíčová slova: Electro-osmóza, porézní medium, poroelasticita, homogenizace, metoda unfoldingu

Tato práce byla podpořena projektem SGS-2013-026 a z části také projektem IGA, NT-13326.
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1 Introduction

Motivation

In the modern society we daily come in touch with a whole scale of various porous materials. The
knowledge about porous structures is widely used in geoscience, industry, material sciences and last
but not least in medicine. In recent years, this type of structure is used especially in medicine and
biology, because there is no biological material, which is not a porous medium. The same applies
for the cortical bone, where the pores filled with bone fluid can be found on multiple scales. The
pores can be found on such small scales, that their characteristic size is close to the molecular level
and thus not only pressure gradients and concentration gradients, but electrical gradients as well
are closely linked to the fluid flow, ion flow and deformations. Thus, all of those phenomena have a
part in the determination of material properties of the bone. The knowledge of these properties can
serve as a base for the development of new biomaterials, for better understanding of the processes
in the bone tissue such as remodeling, or as a material for further research not only in bioscience
and medicine but also in other fields of interest.

Related works

This diploma thesis is focused on electro-mechanical coupling in a porous structure. The first model
of poroelastic medium was introduced by Biot in a series of papers published between 1935 and
1957. The poroelasticity in a porous medium is the main objective of recent works [25], [26], [27],
[20]. The authors of articles [4], [18] and [5] focus on the mathematical method of homogenization.
Articles [15], [16], [14] refer to the electro-mechanical coupling in porous structure.

Objective

The aim of this diploma thesis is to learn about a material with a hierarchical porous structure, such
as the cortical bone tissue, and introduce an approximative model of its poroelastic behavior. We
explain the method of unfolding homogenization on two scale levels resulting into material coeffi-
cients relevant to the homogenized material. Further, we discus the electro-mechanical coupling in
the porous structure and the phenomena of electro-osmosis. On this basis we introduce the homog-
enization of electro-osmosis in the structure with one porosity level. We implement both models of
homogenization in the SfePy software and perform a study of the dependence of material properties
on the change of geometric parameters.

Structure of the thesis

This diploma thesis is composed of six sections. The first section is this introduction itself. In
the second section named Biological description, we introduce the bone functions and structure on
various scale levels, from the structure of the whole bone to its microscopic level. The work than
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continues with a brief description of a porous material and a bone porosity on different levels in
section Bone porosity.

The fourth section, Homogenization of cortical bone poroelasticity, is one of two more com-
prehensive sections. On its beginning, we introduce some assumptions, which are necessary for
the derivation of the mathematical model introduced further. Then we explain the main principles
and tools of homogenization methods and finally derive the homogenized mathematical model of a
double-porous medium poroelasticity. Further we describe the mechanical and geometry parame-
ters of the model obtained on the basis of the literature survey. In the end of this section we perform
a numerical simulation and a parameter study of elastic parameters porosity dependence.

The section named Electro diffusion in porous structure of the cortical bone tissue begins with
an explanation of the electro-osmosis phenomena and a discussion about the electro-mechanical
coupling in a porous structure. Then we focus on the derivation of the mathematical model of
electro-osmosis. Further, we introduce mathematical properties and a geometry describing our
model. In the final part of this section we introduce the numerical solution of the macroscopic
model and recovery on the local model. In the Conclusion, we summarize the results of this thesis
and the directions where it is possible to extend this theme.
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2 Biological description

This study is focused on a biomechanical problem description. Because of the complexity of our
problem, we find it more suitable to describe the biology of the body parts connected to it before
presenting the mathematical system.

2.1 Bone

About 206 bones can be found in the human body, but some authors mention even 233 bones. The
individual bones are mutually connected by joints and joint capsules, which provide mobility of the
whole bone system known as the skeleton. This section is focused on the main functions, types,
macroscopic and microscopic structures of the bone tissue.

2.1.1 Function

The bone system has very important functions in the human body, which can be divided into the
following three categories.

∙ Mechanical

– Protection of internal organs, such as brain, lungs or heart

– Providing the support of the human body against the gravitation force, thus allowing the
upright posture

– Together with skeletal muscles, tendons, ligaments and joints providing the movement
of individual body parts or the whole body in a three dimensional space

∙ Synthetic

– Production of blood cells is provided by bone marrow, located in the medullary cavity
of long bones and interstices of the trabecular bone.

∙ Metabolic

– Storing important minerals such as calcium or phosphor

– Storing the body fat

– Removing foreign elements from the blood and storing them in order to detoxicate the
organism
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2.1.2 Determination of the morphological types of bones

Considering the variety of bone sizes and shapes, we can determine the following morphological
types of bones

∙ Long bones - Femur, Fibula, Tibia, Ulna, ...

∙ Short bones - Bones of Carpus, bones of Talus, ...

∙ Flat bones -Scapula, Sternum, ...

∙ Sesamoid bones - Patella, ...

The long bones are composed of two epiphyses at each end of the bone, and of the diaphysis
in the middle. The surface of the long bone body is made of a thick shell of cortical bone, which is
getting thiner at the epiphyses. Behind the cortical bone the epiphysis is filled with the trabecular
bone which contains the red bone marrow. The interior part of diaphysis is called the medullary
cavity and contains yellow or gray bone marrow in the adulthood.

In comparison with the long bones, the short, flat and sesamoid bones cannot be decomposed
into the epiphysis and diaphysis. The body of the short bones consists of a cortical bone shell,
which is thicker than the long bone shell, and the trabecular bone with higher density of trabeculae.

The cortical bone shell of the flat bones has a characteristically variable thickness. Behind
the shell is a low density trabecular bone filled with red bone marrow which produces blood cells
even in the old age.

The morphology of bones depends on the genetic predispositions but also changes during life
by the mechanical loading.

2.1.3 Inner bone structure

From the terminological point of view, the bone is not a tissue but an organ. The bone tissue is made
of bone cells and extracellular matrix and we distinguish its two forms: trabecular (or cancellous)
bone and cortical bone.

Trabecular bone is located in the epiphysis of the long bone and in the inner parts of short and
flat bones. The structure is made of trabaculae creating a network which usually contains the bone
marrow. The density, number and direction of the trabeculae differ highly according to location,
genetic predisposition, and loading. It is commonly known that the architecture of the trabeculae
changes during life in order to adapt to mechanical loading.

In comparison with the trabecular bone, the cortical bone is lacking trabecular architecture.
Higher density provides stronger structure which is necessary for preserving the shape of the bone
shell. The microstructure of the cortical bone is explained in more detail in the section below.
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(a) Haversian system (b) Canalicular-lacunar network

Figure 1: Cortical bone structure , source http://en.wikipedia.org/wiki/Osteon

2.1.4 Cortical bone structure

The cortical bone is a strictly hierarchical system with complicated structure on different scale
levels. From the macroscopic point of view, the cortical bone tissue is made of a system of approx-
imately cylindrical structures, each with a radius of roughly 100 − 150µm, [32]. These structures
are known as osteons and are hollow; in the center of each osteon is the so-called Haversian canal,
which contains blood vessels or nerves and some space is occupied by bone fluid. The walls of
the Haversian canal are covered with bone cells and behind this bone cell layer, there are entrances
to multiple small tunnels [32]. These tunnels are called canaliculi and they connect the Haversian
canal to lacunae and lacunae to other lacunae.

The lacunae are approximately of ellipsoidal shape and each of them contains one bone-
creating cell, osteocyte. Canaliculi and lacunae create one system of mutually connected network
filled with bone fluid.

2.2 Bone fluid

The small cavities in the bone structure are not void. Instead they are filled with the so-called bone
fluid. By this name we label two types of fluid. The first is so-called serum, which is the fluid in the
space outside the blood vessels filling osteonal canals. The second type is extracellular fluid filling
the space in lacunae and canaliculi, [6]. We refer to both of these fluids as a bone fluid here.

The bone fluid has some important roles in the bone structure. The fluid in the lacunar-
canalicular system is the coupling medium through which the mechanical forces are translated
into mechanobiological, biochemical, mechanochemical and electromechanical phenomena at the
cellular level.
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3 Bone porosity

From the biological description in the section above is clear, that there is a high number of cavities,
pores and canals on various scales of the bone structure. This gives us an option to think about the
bone tissue as a porous material.

3.1 Porous material

In general, a porous material is a heterogeneous material whose heterogeneity is caused by the
existence of cavities or pores in its solid phase matrix. The main parameter of a porous material
is called porosity, with its value in interval < 0, 1 > and is defined as volume fraction of pores in
volume V of the whole body of porous material in the space,

Vpore

V
= φ. (1)

The space of pores is usually not empty, instead it is fully or partially saturated by a fluid
(gas or liquid). In this fluid phase, the numerous mechanical or electro-chemical processes, such as
fluid flow or diffusion, can take effect. This is the reason why we cannot see the porous material
as homogeneous or even continuous material. Instead, in order to effectively work with the porous
medium, homogenization procedures are widely used.

3.2 Cortical bone tissue as a material with two levels of porosity

In the previous chapter, we introduced the porous material and the reason why we can use this type
of material for the modeling of a cortical bone tissue. In most cases, the porous materials have just
one level of porosity, but there are some materials with more porosity levels.

If we look closer on the structure of the cortical bone tissue, we can see the different types of
porosity. There are pores which are visible just by a naked eye but for other pores we have to look
through a microscope. We say that the porosity is on different scale levels, see Fig.2.

In literature, [1], [21], [32], there can be found three porosity levels which are the most
important in the bone structure:

∙ Vascular porosity - the space in the Haversian canal is included

∙ Lacunar-canalicular porosity - all the space in the lacunae and canaliculi is included

∙ Collagen-apatite porosity - porosity associated with the space between collagen and the
crystallites of the mineral apatite

In this thesis, we want to study the material properties of a single bone osteon. Thus, we
neglect the vascular porosity (or osteonal porosity), because the diameter of the Haversian canal is
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too large to consider it as a pore. We neglect the collagen-apatite porosity but we focus only on the
lacunar-canalicular porosity considering the bone matrix to be homogeneous on the lower level.

Unlike in other studies, [1], [21], we split the lacunar-canalicular porosity into two levels:

∙ Microscopic level - the porosity caused by canaliculi only

∙ Mesoscopic level - the porosity caused by lacunae only

Further in the text, the microscopic level will be denoted as α−level and mesoscopic as β −
level. The porosities are denoted by φα and φβ with the subscript corresponding to the level.

For the material with two porosity scales, the resulting porosity φγ is influenced by both level
porosities φα and φβ as follows

φγ = φα + φβ − φαφβ. (2)

We work with these three porosities later. Finally, we introduce the macroscopic level, which
represents the level of a single bone osteon and whose properties are in the center of our attention.

Figure 2: Different scale levels of the cortical bone structure
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4 Homogenization of cortical bone poroelasticity

4.1 Assumptions

First of all, before even talking about homogenization method we have to state a set of assumptions
which will be used for simplifying the problem and derivation of the mathematical model.

4.1.1 Periodic material

Figure 3: Illustration of a periodic
structure, source:
http://www.sciencedirect.com/science/

article/pii/S0266353806000844

Biological materials, such as a cortical bone tissue, are known
to be highly heterogeneous with aperiodical structure and can
not be precisely described. Although, we assume that there is
some periodically repeated substructure, by which the whole
material can be described. For better imagination see Fig.3.
Note, that this assumption is very simplifying, but it is neces-
sary for further modeling.

We assume that on the microstructure, the cortical bone
tissue consists of cubic cells, each with the same structure and
length of side L. The parameter L will be called the charac-
teristic dimension (or length) further in the text.

4.1.2 Matrix as a linear elastic material

As was mentioned in the section above, the biomaterials are
known for their non-linear behavior. Thus, when modeling
such a material, the non-linear (mainly viscoelastic) models with the assumption of large deforma-
tions are widely used. Although, in our study, we assume only small deformations of the cortical
bone matrix and thus we can describe this material by a constitutive relation of linear elasticity.

Considering the assumption above, the strain in the matrix is described by the Cauchy’s strain
tensor

ei j =
1
2

(︃
∂ui

∂x j
+
∂u j

∂xi

)︃
, (3)

where u(x) is a displacement. Further we assume the stress to be a linear function of the strain, in
other words the Hook’s law in the form

σi j = Di jklei j, (4)

where σi j are components of the stress tensor σ and Di jkl are components of the fourth-order stiff-
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ness tensor defined by
Di jkl = µ(δikδ jl + δilδ jk) + λδi jδkl. (5)

In the previous formula, the symbols µ, λ stand for Lamme’s coefficients and δi j is the Kronecker’s
symbol. The stiffness tensor ID can also be described by the Young’s modulus E and the Poisson’s
ratio ν, when the relations between the couple E, ν and the Lamme’s coefficients µ, λ are as follows

λ =
Eν

(1 + ν)(1 − 2ν)
, µ =

E
2(1 + ν)

. (6)

Note that the stiffness tensor ID has the following symmetry

Di jkl = D jikl = Dkli j. (7)

The inverse tensor to the stiffness tensor is called the compliance tensor C

C = ID−1. (8)

4.1.3 Assumption of the cortical bone tissue as an orthotropic material

We have already stated, that the cortical bone tissue is a heterogeneous anisothropic material. How-
ever, for simplicity, we can assume the material to be orthotropic. Let us bring back to mind that
orthothropic materials have three orthogonal planes of symmetry. Thus, it can be shown that a void
notation of the stiffness tensor is

ID =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D11 D12 D13 0 0 0
D12 D22 D23 0 0 0
D13 D23 D33 0 0 0
0 0 0 D44 0 0
0 0 0 0 D55 0
0 0 0 0 0 D66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

and the void notation of the C

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E1

−
ν21
E2
−
ν31
E3

0 0 0
−
ν12
E1

1
E2

−
ν32
E3

0 0 0
−
ν13
E1
−
ν23
E2

1
E3

0 0 0
0 0 0 1

G12
0 0

0 0 0 0 1
G23

0
0 0 0 0 0 1

G31

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

, where E1, E2, E3 are Young’s moduli in directions 1, 2, 3. νi j represents the Poisson’s ratio for the
strain in direction j while loaded in direction i. G12,G23,G31 are shear moduli in 1-2, 2-3 a 3-1.
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The void notation of both C and ID tensors is symmetric, thus from C can be seen that

νi j

Ei
=
ν ji

E j
. (11)

Thus, the orthotropic material can be described by 12 material constants, which are E1, E2, E3,
νi j,G12,G23,G31.

4.1.4 Bone fluid as a Newtonian compressible fluid

In [25], the bone fluid is considered as a compressible Newtonian fluid. In this section, we explain
what is the main difference between compressible and incompressible fluids.

The compressible fluid is the one in which the fluid density changes when subjected to high-
pressure. The change of density in gases is additionally complicated by changes in temperature,
[13], but in our case those are not considered. This is different from the incompressible fluid, but
the main difference is in the way the forces are transmitted through the fluid.

The force applied to the incompressible fluid leads to its immediate flow. On the contrary,
the same force applied to the compressible fluid does not cause the flow immediately. First, it leads
to compression of the fluid near the place where the force was applied and this effect is gradually
spread onto the whole fluid medium. When the fluid cannot be compressed anymore, the pressure
finally causes it to flow.

The characteristic of the compressible fluid is called compressibility γ and it is defined as a
measure of the relative volume change in response to the change of pressure,

γ = −
1
V

dV
dp

. (12)

In our study, the fluid serves mainly as a medium for the pressure transfer, thus we don’t have
to define any equations describing the fluid flow.

4.1.5 Assumptions summary

Considering the previous assumptions, we model the cortical bone tissue as a deformable porous
medium saturated by a fluid. The matrix is considered as an orthotropic linear elastic material with
a periodic structure. Such materials are often called linearly poroelastic. The fluid is approximated
as a compressible Newtonian.

Further we assume the steady state only with time independent loading induced for example
by a deformation of other part of the tissue. Thus we can imagine that as a simple case of loading
the bone while carrying some weight.
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4.2 General principles of homogenization method

In this section, we present a mathematical model for cortical bone tissue poroelasticity by applying
the method of homogenization. Note that all assumptions from the previous section will be consid-
ered. First we introduce some general principles, which come to use further in the creation of the
mathematical model.

4.2.1 Definition of geometrical configuration of the problem

Let us consider a poroelastic body, which is represented by the domain Ω in N−dimensional space.
We consider the domain Ω ∈ IRN open bounded with boundary ∂Ω, [20], [25], [26]. The domain Ω

is described by the coordinate system 0, x1, x2, ..., xN , where N is the dimension of the problem.

In the domain Ω, two conjunctive subdomains are distinguishable; The domain Ωε
m represents

the space occupied by the solid matrix and the domain Ωε
c represents the canals. The interface

between those two subdomains will be referred to as Γεmc.

In what follows, we use two subscripts that refer to different material components of the bone
tissue: matrix (m) and canal (c). Th superscript ε refers to the scale and is explained in the following
section.

4.2.2 Scale parameter ε

We consider a body with characteristic dimension Lmacro. The material of the body can be described
by a periodically repeated structure with characteristic dimension Lmicro. Let us define small dimen-
sionless parameter ε, 0 < ε(l)1 as a ratio

ε =
Lmicro

Lmacro
. (13)

The parameter ε is called the scale parameter and represents the smallest zoom, by which the
microstructure becomes visible from the macroscopic point of view.

4.2.3 Types of porosity

Let us consider a poroelastic body with pores saturated by a fluid, which is in our case the com-
pressible Newtonian. We consider the steady state of this body, neglecting all inertial forces, even
the effect of gravitation acceleration. We apply the static loading on the body; This causes the rise
of pressure p in the fluid, which has effect also on the interior of the matrix. In this place it is
necessary to distinguish two types of porosity, which affect the pressure distribution in the fluid.
Note that in both cases the continual open bounded matrix subdomain Ωε

m ⊂ Ω is considered.
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∙ The pores, or in our case canals, are mutually connected creating one network, so that the
subdomain of canals, Ωε

m ⊂ Ω, is a continual open bounded domain, such that

Ω = Ωε
m ∪Ωε

c ∪ Γεmc, Ωε
c = Ωε ∖ Ω̄ε

m, Γεmc = Ω̄ε
m ∩ Ω̄ε

c, (14)

where by ¯ we denote the set closure. In this case, the pressure p in the fluid is evenly dis-
tributed and is characterized only by one scalar value, [20], [25], [26].

∙ The second case is, when there are some pores which are separated from the connected ones.
The fluid is trapped in these pores and thus the pressure cannot be distributed in all fluid parts
evenly like in the previous case. Instead, the pressure can have a different value in each point
x and so it is characterized by a scalar field p(x).

Figure 4: Decomposition of domain Ω, source [20]

In our study, only the first case with connected porosity is considered. Because of the as-
sumption of double-porous medium, the similar behavior is observed also between the different
scale levels. The pores on different scale levels can be also mutually connected or disconnected.
We consider the connected porosities, thus, the fluid pressure in the whole fluid is represented just
by one scalar value.

Further, we need to define the outer boundary, ∂extΩ
ε
c ⊂ ∂Ω and ∂extΩ

ε
m ⊂ ∂Ω, [20], [25], [26],

such that

∂extΩ
ε
m = ∂Ωε

m ∖ Γmc = ∂Ωε
m ∩ ∂Ω, (15)

∂extΩ
ε
c = ∂Ωε

c ∖ Γmc = ∂Ωε
c ∩ ∂Ω. (16)

By the symbol ∂extΩ
ε
m we denote the inner boundary of the matrix and ∂extΩ

ε
m the inner bound-

ary of canals. In other words, the ∂extΩ
ε
m represents the exit of the canal into the outer surface of

the porous body Ω, [20].

Illustration of Ω decomposition can be seen on the Fig.4.
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4.2.4 Representative periodic cell

We consider the body Ω on the macroscopic scale with coordinate system in the N-dimensional
space 0, x1, x2, ..., xN . Thanks to the assumption of the periodic material, the body Ω is on the
microscale represented by periodically repeated cell Y with coordinate system 0̂, y1, y2, ..., yN and

Y =

N∏︁
i=1

(0, ŷi) (17)

The cell Y is called the representative periodic cell (RPC) and has the shape of an N-dimensional
block with the length of side ŷi, [20].

Similarly to the domain Ω, the RPC Y can be divided into two subdomains Ym and Yc with
interface Γmc, such that

Y = Ym ∪ Yc ∪ Γmc, Yc = Y ∖ Ȳm, Γmc = Ȳm ∩ Ȳc. (18)

Table 1: Decomposition of
RPC Y , source [20]

The outer boundary of RPC Y is also defined similarly to
the domain Ω,

∂extYm = ∂Ym ∖ Γmc = ∂Ym ∩ ∂Y, (19)
∂extYc = ∂Yc ∖ Γmc = ∂Yc ∩ ∂Y. (20)

As was mentioned above, the RPC Y creates a characteristic
sub-unit. By periodical repeating of Y we can obtain the
whole domain Ω.

The shape and dimension of the RPC Y is naturally subjected to the microstructure of the
porous medium. But at this moment we don’t know the particular microstructure, so just for sim-
plicity, we can assume the Y with a unit side length, i.e. ŷi = 1, i = 1, 2, 3, and so

Y = {y; y ∈ (0, 1)N}. (21)

This represents RPC Y as the unit square in IR2 or the cubic cell in IR3. Such imagination of Y has
a measure (in IR3 volume of Y) |Y | = 1.
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Finally, the definition of Ym and Yc allows us to introduce the porosity φ in the form

φ =
|Yc|

|Y |
. (22)

4.2.5 Relation between the macroscopic and the microscopic level

The relation between the macroscopic domain Ω and the microscopic domain represented by Y is,
according to [20] and [4], as follows

Ω = int
⋃︁

k∈IKΩ

Ȳε(ξ), (23)

where by Ȳε(ξ) we denote the closure of the domain Yε, which is defined as projection of Y di-
minished by scale ε. The domain IKΩ ⊂ ZZ is defined as set of integer multi-indices satisfying the
following

Yε(ξ) = ξ + εY, ξi = k(i)εŷi (24)

where ξi is the macroscopic coordination of the bottom left corner of RPC Yi with position ki in the
periodical grid, [k1, k2, ..., ki, ..., kN], [20].

The coordinates can be split into "coarse" and "fine" parts of the position, for illustration see
Fig. 5. For a finite ε > 0:

x = ε
[︂ x
ε

]︂
y

+ ε
{︂ x
ε

}︂
y

= ξ + εy, (25)

where
y =

{︂ x
ε

}︂
y
∈ Y, ξ = ε

[︂ x
ε

]︂
y
, (26)

[18], [20], [26].

Figure 5: Lattice periodic structure of body Ω. Coordinates split into "coarse" and "fine", source
[23]
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4.2.6 Asymptotic analysis in homogenization

Let us put the poroelastic problem aside for the moment and consider the problem on the hetero-
geneous domain with a periodic structure in general. Such problem can be multi-scale but in the
following text we consider just a two-scale model with microscopic and macroscopic level struc-
ture. The behavior of this model is influenced by the scale parameter ε. We search for a way to
simplify this two-scale model and also to project its microscopic structure onto its behavior on the
macroscopic scale.

A suitable method is an asymptotic analysis of the system. The main principle of this method
is that we let the parameter ε "vanish" from the system of the partial differential equations de-
scribing the problem, in limit ε → 0. This results into a new limit PDE system describing the
homogenized macroscopic model with homogenized coefficients, which describe the influence of
heterogeneities in micro-scale onto macroscopic behavior.

The following example is used for a better imagination of the homogenization method, see
Fig. 6. We have the porous microstructure with a simple geometry of the pores. The parameter
ε defines the ratio between the diameters of macro- and microstructure. When we diminish the
ε, the heterogeneities are getting less and less visible and then for ε → 0 the material appears to
be without heterogeneities. We obtain the homogenized or quasi-homogeneous material, but its
mechanical properties differ from the ones of the heterogeneous scelet of the porous medium. The
material coefficients of the heterogeneous scelet are components of fourth-order stiffness tensor ID
while the homogenized material is described by a symmetric tensor of effective stiffness denoted
by A.

Figure 6: Main principle of homogenization method, source [20]

It may seem that the homogenized model cannot refer to any real material, because the rela-
tions obtained by asymptotic analysis are for ε → 0 while the real models are for structures with
finite size of period εY, ε → ε0 > 0. But note that the more heterogeneous material the smaller
is the parameter ε0 and the better the limit relations for ε → 0 describe the real model. With this
in mind, we can introduce a homogenization method used for the derivation of the homogenized
model.

This section was written according to the information in [20].

4.2.7 Unfolding operator

In order to obtain the homogenized coefficients of cortical bone tissue, a couple of methods are
widely used. For example in [7], the method Mori-Tanaka was used, while [9] uses the Eshelby’s
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homogenization method. But those methods do not work with the system of PDE but only with di-
rect addition and averaging of stiffness tensors. Our aim is to follow the homogenization procedure
published in [25], where the unfolding method was used. In what follows, we define the unfolding
operator and its basic properties.

We consider that the domain Ω is obtained from periodic microstructure generated by RPC
Y, which is defined in sections 4.2.4 and 4.2.5, with relations between coordinates Eq.(25),(26). By
virtue of the coordinate decomposition into "coarse" and "fine" parts, any function ψ = ψ(x) can
be unfolded into a function of x and y, [26]. The unfolding operator can be defined (because of
specific domain restriction Eq.(25)) as follows

𝒯ε(ψ(x)) = ψ̃(ξ(x), y(x)) = ψ(ξ(x) + εy), (27)

where ξ(x) and y(x) are associated with the position x ∈ Ω.

The unfolding operator 𝒯ε(ψ) has the following three important properties: For all functions
ψ and χ:

(i) 𝒯ε(ψ(x)χ(x)) = 𝒯ε(ψ(x))𝒯ε(χ(x)), (28)

(ii)
∫︁
Ω

ψ(x)dx =

∫︁
Ω

1
|Y |

∫︁
Y

𝒯ε(ψ)(x, y)dxdy =∼

∫︁
Ω×Y

𝒯ε(ψ)(x, y), (29)

(iii) 𝒯ε(∇xψ(x)) =
1
ε
∇y(𝒯ε(ψ)(x, y)), (30)

where the symbols ∇x and ∇y denote gradient operators with respect to x and y, respectively. In
order to simplify the following relations, we introduce the abbreviation

1
|Y |

∫︁
Ya

=∼

∫︁
and

1
|Y|

∫︁
Ω×Y

=∼

∫︁
Ω×Y

. (31)

The unfolding operator also transforms the integration domain Ω to the Ω × Y allowing us
to use weak convergence in a functional Sobolev space W(Ω,Y) that possesses enough regularity
for the functions defined in Ω × Y . The unfolding operator represents the main tool of unfolding
homogenization method (UFM).

4.3 Homogenization of poroelasticity

The homogenization of poroelasticity of the cortical bone tissue is presented in this section. Note
that we repeat the homogenization procedure in order to obtain the homogenized model proposed
in [25]. The general principles from the previous section are used, but because of the assumption
of two level poroelasticity, we have to lightly modify them. In the following text, we use two
superscripts: α for microscopic (or α−) level and β for mesoscopic (β−) level. First, we focus on
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the microscopic scale problem. Thus, the α− level is described by coordination of the micro- and
β− level of the macroscopic level in the previous section.

4.4 Mathematical model on the microscopic level

Let us consider the domain Ωα ⊂ IR3, which represents the microscopic scale. Similarly to the
section above, the domain Ωα ⊂ R is decomposed into the (solid) matrix Ωα,ε

m and canals Ωα,ε
c as

follows:
Ωα = Ωα,ε

m ∪Ωα,ε
c ∪ Γα,ε, Ωα,ε

c = Ωα,ε ∖ Ω̄α,ε
m , Γα,ε = Ω̄α,ε

m ∩ Ω̄α,ε
c . (32)

and with the outer boundaries ∂extΩ
α,ε
c ⊂ ∂Ωα and ∂extΩ

α,ε
m ⊂ ∂Ωα, such that

∂extΩ
α,ε
m = ∂Ωα,ε

m ∖ Γmc = ∂Ωα,ε
m ∩ ∂Ωα, , (33)

∂extΩ
α,ε
c = ∂Ωα,ε

c ∖ Γmc = ∂Ωα,ε
c ∩ ∂Ωα. (34)

In what follows, we will use the same notation as in [25] to prevent confusion. By symbols ∇
and ∇· the gradient and divergence operators, respectively. The scalar product is denoted by "." and
the symbol ":" between tensors of any order denotes their double contraction. The superscript s in
the gradient operator ∇s denotes its symmetric part. Above and throughout the text, the superscript ε

refers to the scale-dependence, where the scale parameter ε describes the ration of the characteristic
sizes of the micro- and mesoscopic level,

ε =
Lα
Lβ
. (35)

We find it appropriate to discus the functional dependency of the elastic tensor D on the scale
parameter ε in this place. According to the assumption of the material periodicity, the functional
dependence on y is periodical in Y. To this property we usually refer as Y-periodicity. In heteroge-
neous RPC Y, the elastic tensor D is a function of y and thus it is also Y-periodic. But in contrast, we
want to obtain the homogeneous material on the mesoscopic scale, thus the elasticity tensor com-
ponents are independent on the mesoscopic system of coordinates x. Therefore, the components of
the elasticity tensor are

Di jkl = Di jkl(y). (36)

However, according to the Eq.26, y(x) =
{︀ x
ε

}︀
y, thus,

Dε
i jkl(x) = Di jkl(

x
ε

)︀
. (37)

The superscript ε stands for ε Y-periodicity of D in the system of coordinates x, thus depending
indirectly on x, [18].

Now let us introduce the microscopic scale problem of poroelasticity considering all assump-
tions given in the section above. The linear poroelastic body in three dimensional space, represented
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by the domain Ωα ⊂ IR3, is statically loaded by volume-force field fα,ε in Ωα,ε
m and surface-force

field gα,ε on ∂extΩ
α,ε
m . The loading of the body causes deformation of the matrix, which results to

the extension of pores. The fluid in the pores is a compressible Newtonian, thus the pore extension
is a little compressed while creating the pressure on the canal-matrix interface Γmc and some fluid
leaks from Ωα,ε

c into the outer space through ∂extΩ
α,ε
c .

Using the tensor notation of Eq.(3) and (4), the linear poroelasticity problem is described by
the following equilibrium equation

−∇(Dα,ε∇S uα,ε) = fα,ε, in Ωα,ε
m , (38)

with boundary conditions

nm.Dα,ε∇S uα,ε = gα,ε, on ∂extΩ
α,ε
m , (39)

nm.Dα,ε∇S uα,ε = − p̄α,ε, on Γα,ε (40)

,where uα,ε is the displacement of the solid matrix and p̄α,ε is the fluid pressure. This system
of equations is completed by the balance of the fluid mass defined as follows∫︁

∂Ω
α,ε
c

ũα,ε.ncdS x + γα p̄α,ε|Ωα,ε
c | = −Jα,ε, (41)

which means that the fluid volume −Jα,ε injected from outside through ∂extΩ
α,ε
c into Ωα,ε

c is
balanced by the increase of the pore volume and by the fluid compression resulting in an increased
pressure −p̄α,ε, [25]. By˜we denote a matrix-to-canal extension. The symbols nm and nc denote the
outer unit normal vectors of the boundaries ∂Ωα,ε

m and ∂Ωα,ε
c , respectively.

Note that the solvability condition yields∫︁
∂extΩ

α,ε
m

gα,εdS x +

∫︁
Ω
α,ε
m

fα,εdVx = 0, (42)

where dS x and dVx stand for the differential elements of the surface and volume respectively.

The weak formulation of the problem given by the system Eq.(38)-(41) is more suitable for
further application. First, we have to define the space of the test variables, which comply to the
boundary conditions of the problem Eq.(38)-(41). We denote the Sobolev space of vector function
as H1. Now we can introduce the test variable v ∈ H1

Now we rewrite the system Eq.(38)-(41) in the terms of weak formulation by "multiplicating"
by the testing function v and applying per-partes integration. Through this, we obtain the following
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weak formulation problem: find (uα,ε, p̄α,ε) ∈ H1(Ωα,ε
m ) × IR such that∫︁

Ω
α,ε
m

(IDα,ε
∇suα,ε) : ∇sv dVx + p̄α,ε

∫︁
Γ
α,ε
m

nm.v dSx =

=

∫︁
∂extΩ

α,ε
m

gα,ε − v dSx +

∫︁
fα,ε.v dVx, ∀v ∈ H1(Ωα,ε

m ), (43)

∫︁
∂Ω

α,ε
c

ũα,ε.ncdS x + γα p̄α,ε|Ωα,ε
c | = −Jα,ε. (44)

4.4.1 Limit problem

Let us consider the problem on Ωα defined by the system of PDE Eq.(38)-Eq.(41). The domain Ωα

is obtained from a periodic microstructure generated by RPC Yα with the decomposition similar to
4.2.4

Yα = Yα
m ∪ Yα

c ∪ Γαmc, Yα
c = Yα ∖ Ȳα

m, Γαmc = Ȳα
m ∩ Ȳα

c . (45)

and with the outer boundary,

∂extYα
m = ∂Yα

m ∖ Γαmc = ∂Yα
m ∩ ∂Yα, (46)

∂extYα
c = ∂Yα

c ∖ Γαmc = ∂Yα
c ∩ ∂Yα. (47)

.

The canal part Yα
c generates a set obtained by the ε-periodicity as

Ωα,ε
c = ε(Y

α

c + kiŷbi) ∩Ωα, k ∈ ZZ3 (48)

where ZZ is a set of integers. Thus, the matrix part can be expressed as Ωα,ε
m = Ωα ∖Ω

α,ε

c .

We consider the material coefficients piecewise-continuous in the domain Ωα, with inconti-
nuities on Γmcα, thus we may introduce its following decomposition

Dα,ε
i jkl(x) = χα,εm (x)Dm,α,ε

i jkl (x) + χα,εc (x)Dc,α,ε
i jkl (x), (49)

where the symbol χα,εd for d = m, c denotes the characteristic function of the domain Ωα,ε
d . The

values of parameters Dd,α,ε
i jkl are defined with respect to material points in microstructure, thus they

are independent on the parameter ε.

Now we apply the unfolding operation Eq.(25), which associates uniquely any x ∈ Ωα to any
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y ∈ Yα, on the Eq.(49), thus we obtain

Dα,ε
i jkl(x) =

{︃
Dm,α,ε

i jkl (y) iff y ∈ Yα
m

Dc,α,ε
i jkl (y) iff y ∈ Yα

c
(50)

In what follows, we use a weak formulation of the problem given by Eq.(43) and (44).

When using the UFM, we first compute the a priory estimate of solution, which is uniform
and depends on ε. Then we use standard theorem, see [4], which gives the limit equations. These
equations represent the macroscopic, unoscillation part and the fluctuation part, which provide the
gradient correction of the limit "macroscopic" solution, [26]. In other words, we decompose any
function into its "macroscopic" and "microscopic parts", which should capture the fluctuations.
Note, that in this context the term "microscopic" refers to the scale that we want to upscale, while
"macroscopic" is the scale one level higher. According to [26], we shall consider the following
recovery sequences associated with uα,ε

uR,ε(x) = uε0(x,
x
ε

) + εuε1(x,
x
ε

) (51)

where uε0(x, .) and uε1(x, .) ∈ W#(Yα), which is a space of Y-periodic functions.

Now, we apply the unfolding operator 𝒯ε(ψ) on uR,ε(x) which gives us

𝒯ε

(︁
uR,ε(x)

)︁
= uε0(ξ + εy, y) + εuε1(ξ + εy, y). (52)

Moreover, the unfolding operator allows us to use weak convergence, thus the following conver-
gences are taken in account

uε0 ⇀ ūε0(x) weakly in W(Yα,Ωα), (53)
𝒯ε

(︀
uε0

)︀
⇀ uε0(x, y) weakly in W(Yα,Ωα), (54)

𝒯ε
(︀
uε1

)︀
⇀ uε1(x, y) weakly in W(Yα,Ωα). (55)

The ūε0(x) is the mean value of uε0(x) given by

1
|Yα|

∫︁
Yα

uε0(x, y)dxdy. (56)

Very important point in the homogenization is the match between "micro-" and "macroscale".
The direct link is inherited from gradients of the fluctuating functions. We introduce the unfolding
of the gradient of uR,ε using Eq.(30) and (52)
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𝒯ε

(︁
∇uR,ε

)︁
=

1
ε
∇y

[︀
uε0(ξ + εy, y) + εuε1(ξ + εy, y)

]︀
=

= ∇xuε0(x, y) +
1
ε
∇yuε0(x, y) + ε∇xuε1(x, y) + ∇yuε1(x, y). (57)

Further, we may evaluate the limits of the following integral forms, for any suitable test
function ψ we consider the case of minor fluctuation—gradient correction:∫︁

Ωα

∇uR,ε(x)ψ(x,
x
ε

) =∼

∫︁
Ωα×Yα

𝒯ε

(︁
∇uR,ε

)︁
(x, y)ψ(x, y)→∼

∫︁
Ωα×Yα

(∇xu0 + ∇yu1)ψ, (58)

and ∇yu0 = 0, i.e.ū0(x) = u0(x). This condition is necessary to prevent blow up due 1/ε→ ∞.

This case will characterize the displacement and related deformations. The test function ψ
can be chosen quite general but with respect to ε in a suitable norm. This can be the most simply
accomplished by considering the test function vε with the same decomposition as uR,ε, Eq.(51):

vε(x) = vε0(x) + εvε1(y), (59)

Now we can substitute the displacement and the test function in the system Eq.(43)-(44)
by their previously introduced decomposition given by Eq.(51) and (59) and then we apply the
unfolding operator on it, thus we obtain

∫︁
Ωα

(IDα,ε(y)∇suR,ε) : ∇svε =∼

∫︁
Ωα×Yαm

(IDα,ε(y)𝒯ε
(︁
∇suR,ε

)︁
) : 𝒯ε(∇svε) =

=∼

∫︁
Ωα×Yαm

(IDα,ε(y)∇xuε0 + ∇yuε1 + ε∇xuε1) : (∇xvε0 + ∇yvε1 + ε∇xvε1), (60)

With the use of relation (58) we can evaluate the limit of unfolded bilinear form from weak
formulation of equilibrium Eq.(43) as follows

∼

∫︁
Ωα×Yαm

(IDα
∇xu0 + ∇yu1) : (∇xv0 + ∇yv1) (61)

Now we have to deal with the second term in the Eq.(43). Because this term is interface
integral, we cannot just simply use the same approach like for integrals over the domain. Instead
we introduce the lemmas taken from [27] which deal with interface integral convergence as follows:
Lemma 1. Let φαs and φα be the surface and the volume fractions of the fluid phase, respectively,
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then ∫︁
Γε

v.nm dSx →

∫︁
∂Ω

φαs v0.n dSx −

∫︁
Ω

φαdivxv0 +

∫︁
Ω

∼

∫︁
ΓY

v1.nm dSy. (62)

If φα = φαs on ∂Ω (and in sense oh φαs extended into Ω)∫︁
Γε

vε.nm dSx →

∫︁
Ω

v0.∂xφ
α +

∫︁
Ω

∼

∫︁
ΓY

v1.nm dSy. (63)

The proof of this Lemma can be found in [27].

Further, let us assume the weak convergence of pressure p̄α,ε and flow Jα,ε as

p̄α,ε → p̄α, (64)
Jα,ε → Jα. (65)

and the convergence of external forces as

χεmfα,ε ⇀ (1 − φαs )fα = f̂
α
, (66)

where by the symbol φα we denote the porosity on microscopic level as volume fraction |Yαc |
|Yα | and

fα ∈ H1(Ωα) is a local averaged volume force applied on the matrix. Further, we assume the
existence of a surface force gα with convergence∫︁

∂extΩ
α,ε
m

gα,ε.v dSx →

∫︁
∂Ωα

(1 − φαs )gα.v dSx =

∫︁
∂Ωα

ĝα.v dSx, (67)

for any test function v ∈ H1. By φαs we denote the exterior surface porosity, which we can choose
φαs = φα for statistically distributed pores, [25].

Finally, by applying the Lemma.1 on the interface integrals in the weak formulation of the
problem Eq.(43) and (44) and using the unfolded bilinear form Eq.(61) and the convergences above
Eq.(64)-(67), we can introduce the following limit weak two-scale formulation: Find (uα,uα1 ) ∈
H1(Ωα) × L2(Ωα; H1

#(Yα)) and p̄α ∈ IR satisfying
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∼

∫︁
Ωα×Yαm

(IDα
∇xu0 + ∇yu1) : (∇xv0 + ∇yv1) − p̄α

∫︁
Ωα

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝φαdivv0− ∼

∫︁
γαY

v1.nm dSy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =

=

∫︁
Ωα

f̂
α
.v0 +

∫︁
∂Ωα

gα( p̄α).v0 dSx,

∫︁
Ωα

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝φαdivuα− ∼
∫︁
γαY

u1.nm dSy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + p̄αγαφα|Ωα| = −Jα. (68)

4.4.2 Local problem

The local problem is relevant to the micro-scale and describes the deformation of the matrix in the
entire Yα, where the only effect of the fluid compartment is expressed by pressure p̄. We choose
the test function such that v1(x, y) = w(y)θ(x) . 0, all other test function components vanish. With
the use of the limit of the weak two-scale formulation Eq.(68), we obtain the following equation,
which is satisfied by u1 ∈ H1

#(Y)

∼

∫︁
Yα

IDα
∇y(u1 +Πi j∂x

jui) : (∇yw) − p̄α ∼
∫︁
ΓαY

nm.w = 0, (69)

where Πi j are the so-called transformation vectors Πi j = (Πi j
k ), i, j, k = 1, 2, 3, which can transform

the macroscopic deformation u0(x) from Ωα into the coordinate system of RPC Yα, as follows

Π
i j
k = y jδik. (70)

4.4.3 Homogenized coefficients

The effective coefficients, which we need to introduce the homogenized model, depend on some
non-stationary effects induced by the deformation in the microstructure. They can be obtained by
using a set of corrector basis functions. These functions can express the local displacement u1(x, y)
using the linear combination of all the macroscopic quantities involved in the local problem. Thus,
we introduce the corrector basis functionsωi j(y) andωP(y) such that the local displacement u1(x, y)
can be expressed as

u1(x, y) = ωi j(y)∂ jui(x) − ωP(y) p̄, (71)

where p̄ is the constant fluid pressure in Ωα,[20],[25].

Now, we can evaluate the corrector basis functions as a solution of the following problems,
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[20],[25]: Find ωi j ∈ H1
#(Yα) and ωP ∈ H1

#(Yα) satisfying

am
y (ωi j +Πi j, v) = 0, i, j = 1, , 3 , (72)

am
y (ωP, v) =∼

∫︁
Γm

v.nmdS y, (73)

where am
y is the abbreviation of the bilinear form defined as follows:

am
y (w, v) =∼

∫︁
Ym

(ID∇S
y w) : ∇S

y v . (74)

4.4.4 Homogenized model

With the knowledge of the corrector basis functions ωi j and ωP, we can introduce the set of ho-
mogenized coefficients, which describe the material properties on the mesoscopic level, as follows

Ai jkl = am
y (ωi j +Πi j,ωkl +Πkl), (75)

Bi j = − ∼

∫︁
Ym

divyω
i j, (76)

M = am
y (ωP,ωP), (77)

where both the tensors A and B are symmetric, i.e. A = (Ai jkl) satisfies Ai jkl = Akli j = A jikl and
IB = (Bi j) satisfies Bi j = B ji. It can be shown, [25], that M > 0. The tensor A is the effective tensor
of the drained scelet. Further we introduce

B̂ = B + φI, M̂ = M + φγ, (78)

where B̂ is the tensor of the Biot coefficients and M̂ is the effective Biot modulus of compressibility,
which expresses the complete compressibility of the fluid and the matrix deformed by the fluid
pressure, [20], [25], [5].

4.4.5 Model of poroelasticity on the mesoscopic level

Using the assumption above, the mesoscopic problem can be obtained from the system Eq.(43) and
(44) by homogenization in the form: find the displacement u ∈ V(Ω) and the fluid pressure p̄ ∈ R
which satisfy the following equations:∫︁

Ω

(A∇S
x u − p̄B̂) : ∇S

x v =

∫︁
Ω

(1 − φ)f.v +

∫︁
∂Ω

ḡ.vdS x ∀v ∈ V(Ω) (79)

27



∫︁
Ω

B̂∇S
x u + p̄(M + φ̄γ)|Ω| = −J, B̂ := B + φI (80)

where V(Ω) is the space of kinematically admissible displacements. The J is the limit of the total
flux Jα,ε, ḡ := (1 − φs)g + φs(−p̄)n is the mean surface traction and φ̄ is the mean porosity given by
φ̄ = |Ω|−1

∫︀
Ω
φ.

4.5 Homogenization on the mesoscopic level

In the previous text we introduced the unfolding method for obtaining the effective coefficients
which refer to the mesoscopic porosity level. Because of the assumption of double porous material,
we are just halfway to evaluate the effective coefficients related to macroscopic scale. In what fol-
lows, we use the homogenized coefficients Aα, B̂α and Mα obtained by upscaling from microscopic
to mesoscopic level and with them describe the behavior on mesoscopic scale. In other words,
the mesoscopic level became "microscopic",from the homogenization method point of view, and
by upscaling we want to obtain effective coefficients on the macroscopic level. But first, let us
consider the domain Ωβ at the mesoscopic level decomposed similarly to α − level into the matrix
Ω
β,ε
m , which is formed by the porous medium associated with the upscaled microstructure if the

α−level, and "canals" Ω
β,ε
c , which are filled with fluid and connected with pores of the α−level. The

decomposition is as follows

Ωβ = Ωβ,ε
m ∪Ωβ,ε

c ∪ Γβ,ε, Ωβ,ε
c = Ωβ,ε ∖ Ω̄β,ε

m , Γβ,ε = Ω̄β,ε
m ∩ Ω̄β,ε

c . (81)

where, Γβ,ε refers to the interface between the subdomains. The outer boundaries of Ωβ are split
into ∂extΩ

β,ε
c ⊂ ∂Ωβ and ∂extΩ

β,ε
m ⊂ ∂Ωβ, such that

∂extΩ
β,ε
m = ∂Ωβ,ε

m ∖ Γβ,εmc = ∂Ωβ,ε
m ∩ ∂Ωβ, (82)

∂extΩ
β,ε
c = ∂Ωβ,ε

c ∖ Γβ,εmc = ∂Ωβ,ε
c ∩ ∂Ωβ. (83)

It should be noted that in our case the "canal" is represented by ellipsoidal lacuna so the name
"canal" remains just for preserving the subscript c.

As was previously mentioned, we consider the pores between α− and β− level mutually
connected. In this case, the pressure p̄ is evenly distributed through the fluid on both levels and can
be characterized only by one scalar value.

In what follows, the coefficients related to upscaling from α−level are labeled by superscript
α. We consider loading by the volume-force field f̂

α
= (1 − φα)fα acting on the matrix and mean

surface traction ḡ on ∂extΩ
β,ε
m . The pores Ω

β,ε
c are drained out through ∂extΩ

β,ε
c . The total outflow

from Ωβ is denoted as Jβ,ε and it incorporates also the flux from α−level pores and from the β−level
pores, [25]. Thus, we may introduce the problem description on the mesoscopic level using Eq.(79)
and Eq.(79) with the addition of the flux from β− level pores. The displacement uβ,ε ∈ H1(Ωβ,ε

m )
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and the pressure p̄ε ∈ satisfy the equation∫︁
Ω
β,ε
m

(Aα∇S uβ,ε − p̄εB̂α) : ∇S v + p̄ε
∫︁

Γβ,ε

v.nmdS x =

∫︁
∂extΩ

β,ε
m

ḡα.vdS x +

∫︁
Ω
β,ε
m

f̂α.v, ∀v ∈ V(Ωβ,ε
m ) (84)

and the volume conservation∫︁
Ω
β,ε
m

(B̂α : ∇S uβ,ε +

∫︁
∂Ω

β,ε
c

ũβ,ε.ncdS x + p̄ε
[︀
(Mα) + γφ̄α|Ωβ,ε

m | + γ|Ωβ,ε
c |

]︀
= −Jβ,ε, (85)

where ũβ,ε is the displacement extension to canals Ω
β,ε
c .

4.5.1 Limit problem

In what follows, we pass from the problem described on Ωβ to the limit problem by the unfolding
method. The approach is analogical to the α − level.

The heterogeneities at the mesoscopic beta-level are represented by the RPC with an analo-
gous decomposition as in the previous level

Yβ = Yβ
m ∪ Yβ

c ∪ Γβmc, Yβ
c = Yβ ∖ Ȳβ

m, Γβmc = Ȳβ
m ∩ Ȳβ

c . (86)

and with the outer boundary,

∂extYβ
m = ∂Yβ

m ∖ Γβmc = ∂Yβ
m ∩ ∂Yβ, (87)

∂extYβ
c = ∂Yβ

c ∖ Γβmc = ∂Yβ
c ∩ ∂Yβ. (88)

.

In analogy to the problem on α−level, we introduce the recovery sequences uR,ε in the form
given by the equation 51 and the testing functions vε with similar decomposition but both now
associated with displacement the on β−level uβ,ε. We consider the same convergences of uR,ε, vε
and their gradient when applying the unfolding operator like for the α−level homogenization. By
substituting uR,ε, vε in the Eq.(84) and (85) and applying the unfolding operator, we can pass to the
the limit model on the β−level by ε→ 0. Note that we deal with the interface integral with the help
of Lemma 1. Now, we can introduce the limit two-scale problem in the form
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∼

∫︁
Ωβ×Yβm

(∇S
x v0 + ∇S

y v1) :
(︁
Aα(∇S

x uβ + ∇S
y u1,β) − p̄B̂α)︁

− p̄
∫︁
Ωβ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝φβdivxv0− ∼

∫︁
Γ
β
Y

v1 · nm dSy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =

=

∫︁
∂Ωβ

gαβ p̄ · v0 dSx +

∫︁
Ωβ

(1 − φβ)f̂
α
· v0 ,

∼

∫︁
Ωβ×Yβm

B̂α
: (∇S

x uβ + ∇S
y u1,β) +

∫︁
Ωβ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝φβdivxuβ− ∼
∫︁
Γ
β
Y

u1,β · nm dSy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + p̄|Ωβ|[M̂α(1 − φβ) + γφβ] =

= −Jβ ,

(89)

for all v0 ∈ H1(Ωβ), v1 ∈ L2(Ωβ; H1
#(Yβ

m)), where (n is the unit outward normal on ∂Ωβ)

gβ(p) = (1 − φβS )g − pnφβS . (90)

4.5.2 Local problem

The local problem is relevant on the domain Yβ and can be derived by a similar procedure as was
used on the α−level. We chose test function v1(x, y) = w(y)θ(x), all other components vanish. By
using the transform vectorΠi j ,the local problem is written as follows: Find u1,β ∈ H1

#(Yβ) satisfying

∼
∫︀

Yβm

[︁
∇S

y w :
(︁
Aα∇s

y(Π
i j∂x

jui + u1,β) − p̄B̂α)︁]︁
+p̄ ∼

∫︀
Γ
β
Y

w · nm dSy = 0 (91)

4.5.3 Homogenized problem

The "vanishing" of ε leads to equations involving effective poroelastic properties of the β−level,
which can be evaluated using the characteristic responses (or corrector functions) ωi j

β and ωP
β . The

corrector functions of the β−level can be found as a solution of the following problem: Find ωi j
β ∈

H1
#(Yβ

m) and ωP
β ∈ H1

#(Yβ
m) satisfying∫︁

Yβm

[︀
Aα∇S

y (ωi j
β +Πi j)

]︀
: ∇S

y v = 0, (92)
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∫︁
Yβm

[︀
Aα∇S

yω
P
β

]︀
: ∇S

y v = −

∫︁
Yβm

B̂α : ∇S
y v +

∫︁
Γ
β
Y

v.nmdS y, (93)

for all v ∈ H1
#(Yβ

m).

While the solutions ωi j
β express fluctuations with respect to the unit strain of the macroscopic

scale, the ωP
β interpret the local response with respect to the unit pressure, [25].

Using the corrector functions, we can evaluate the effective poroelasticity properties given by
the following coefficients

Aβ
i jkl =∼

∫︁
Yβm

[︀
Aα∇S

y (ωkl
β +Πkl)

]︀
: ∇S

y v(ωi j
β +Πi j) (94)

Bβ
i j =∼

∫︁
Yβm

B̂α : ∇S
y v(ωi j

β +Πi j)− ∼
∫︁
Yβm

divyω
i j
β (95)

Mβ =∼

∫︁
Yβm

[︀
Aα∇S

y (ωp
β)
]︀

: ∇S
y v(ωp

β) (96)

The response of the homogenized medium at the macroscopic scale is described by the dis-
placement u and by the pressure p̄ satisfying

∫︁
Ωβ

(Aβ∇S
x u − p̄B̂β) : ∇S

x v =

∫︁
Ωβ

(1 − φβ)fα.v +

∫︁
∂Ωβ

ḡβ.vdS x ∀V(Ω) (97)∫︁
Ωβ

B̂β∇S
x u + p̄M̂β|Ωβ| = −Jβ, (98)

for all v ∈ H1(Ωβ), where ḡβ := (1 − φβ)ḡα + φβ(−p̄)n is the mean surface stress and φ̄β is the mean
β−level porosity. Further, we introduce

B̂β := Bβ + φβI, M̂β := Mβ + γφ̄β + (Mα + γφ̄α)(1 − φ̄β) . (99)

With this, we have a complete set of equations for obtaining the poroelastic properties of one
single osteon in cortical bone tissue. The effective coefficients can be used for further applications
and can be also associated with the Biot poroelasticity model, from which the increase of fluid
content Jβ can be computed.
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4.6 Relevance to the Biot poroelasticity model

The model describing behavior of the poroelastic material was firstly introduced by Belgian-American
physicist Maurice Anthony Biot (1905 - 1985). His name was used for the effective poroelastic co-
efficients derived in the previous text, because those are relevant to his poroelastic model. In this
place, we would like to discuss the relationship between our model and the Biot model. Biot for-
mulated the poroelastic model in the following form

σ = IDe f f e − αp, (100)

ζ = α : e +
1
µ

(p − p0), (101)

where σ = (σi j) is the total stress, p is the fluid pressure, p0 = 0 is the reference pressure, e = (ei j)
is the strain tensor and ζ is the fluid content per unit volume increase, which is in our model
represented by J. After comparing the macroscopic problem formulation Eq.(97) and (98) with the
Biot model Eq.(100) and (101), we noticed the following relationships between coefficients (note
that we no more use the superscript β)

IDe f f = A, α = B̂,
1
µ

= M̂. (102)

Thus, the Biot model with our effective coefficients transform into notation

σ = Ae − B̂p, (103)
ζ = B̂ : e + M̂(p − p0). (104)

It is evident, that instead of the weak formulation of the macroscopic problem Eq.(97) and
(98), it can be convenient to use the analogical Biot model for the computation of the matrix defor-
mation e and the fluid pressure p. Those two can be found as the solution of the inverse relationship
to the Eq.(103) and (104)

e = Cσ + Sζ, (105)
p = −S : σ + Kζ, (106)

where C is the fourth-order compliance tensor of the bulk material observed in an undrained load-
ing, S is the Skempton tensor and K−1S : σ expresses the fluid content increase for drained loading.
Between the coefficients of Eq.(103), (104) and Eq.(105),(106) there are the following relations

C = M̂IDA−1, (107)
S = IDA−1 : B̂, (108)

K =
1
M̂

(1 − B̂ : IDA−1 : B̂), (109)
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Figure 7: The two-level heterogeneous structure: α-level is formed by a single connected porosity
Yα

c ; the α matrix Ym is formed by the solid. At the β-level, the homogenized structure of the α-level
forms the β material situated in the matrix Ym, source [5]

where ID =
[︁
M̂I + A−1(B̂ ⊗ B̂)

]︁−1
is symmetric tensor, thus the compliance tensor C is also sym-

metric.

In this section, the information stated in [25] was used.

4.7 Homogenization process summary

In the previous text a model based on two-level homogenization with a periodic structure ansatz
applied at each level was proposed, to obtain the material properties of the bone osteon matrix. Let
us summarize the homogenization process on two levels.

∙ α−level - upscaling from the canalicular porosity level to obtain the material model describ-
ing effective behavior relevant at the β-level of heterogeneity. The bone matrix is constituted
by a solid perforated by canaliculi.

∙ β−level - upscaling from the lacunar-canalicular porosity level to obtain the material model
describing the effective behavior at the level of osteons. The heterogeneous structure is
formed by the poroelastic matrix with connected porosity (the canaliculi) drained in the el-
lipsoidal fractures representing lacunae.

The decomposition of the whole material is illustrated by Fig. 7.

4.8 Model parameters

In following sections we focus on determination of the main parameters which are necessary for
evaluating the model of two-scale homogenization defined in the previous section. We also in-
troduce the literature research of relevant geometric and material parameters and in the end we
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introduce the geometry suitable to the cortical bone modeling. In what follows we preserve the
manuscripts α and β referring to the microscopic and mesoscopic structure, respectively.

4.8.1 Mechanical properties

In our study, the cortical bone tissue is considered to be a poroelastic medium with two porosity
scales. In the previous section we explained the upscaling process from micro- to mesoscale and
from mesoscale to macroscale, in order to obtain the effective coefficients which describe the ma-
terial on the macroscale. However, for this upscaling process, we have to know the material prop-
erties on the lowest scale represented by the α−level. When we look at the problem formulated
on the microscopic scale level given by Eq.(43) and (44), we see that the material of the α−level
matrix represented by domain Ωα,ε

m is characterized by the stiffness tensor IDα,ε. We assume the
isotropic material on the α−level, thus the stiffness tensor is given by the Young’s modulus E and
the Poisson’s ration ν, see Eq.(5) and (6). On the other hand, the fluid is considered a compressible
Newtonian, thus it is characterized by α−level fluid compression γα defined by Eq.(12). Thus, we
may say that the material properties for the matrix and for the fluid, which we need to prescribe to
the poroelasticity model,are E, ν and γ.

In the following text we search through the literature for the material properties suitable to
our model.

4.8.2 Literature survey of cortical bone material parameters

For further use, we need to specify the elastic material constants of the matrix on micro-level, i.e.
the level of canalicular porosity. Thus, we introduce a short literature research of papers focused
on the cortical bone and the material coefficients determination.

The material parameters of the cortical bone tissue are the objective of many studies with a
wide range of methods used for their determination. First we have to look into the [21], where a
similar literature research was made. According to [21], through literature can be found Young’s
moduli of the cortical bone material in range from 1 to 20 GPa depending on the method or spec-
imen size and orientation, but there is not clearly stated the estimate of the Poisson’s ratio. The
results of the survey from [21] are summarized in Tab.2, where the secondary references are listed.

Reference type of loading E (GPa)
Ascenzi et al.(1967) tension 12
Ascenzi et al.(1968) Compression 6
Ascenzi et al.(1990) bending 2
Ascenzi et al.(1994) torsion 20

Table 2: Summarization of literature survey of single osteon material properties, [21]
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In [30] is used nanoindentation and acoustic measurement for the estimation of elastic prop-
erties of the cortical bone tissue. For the acoustic measurement were used the following values of
the Poisson’s ratio, ν12 = 0.376, ν21 = 0.422, ν13 = 0.222, ν31 = 0.371, ν23 = 0.235, ν32 = 0.35. For
the nanoindentation was estimated the Poisson’s ration ν = 0.3. Results of both methods are shown
in Tab.3.

Direction E (GPa) (acoustic) E (GPa) (nanoindentation)
transverse 14.91 ± 0.52 16.58 ± 0.32

longitudinal 20.55 ± 0.21 23.45 ± 0.21
average 17.73 ± 0.22 20.02 ± 0.27

Table 3: Estimation of Young’s moduli using acoustic method and nanoindentation, [30]

Drained elastic constant (GPa,-) Drained elastic constant (GPa,-)
for isotropic matrix

Ed
1 15.7 18.2

Ed
2 18.0 18.0

Ed
3 21.7 18.2

νd
12 0.330 0.306
νd

13 0.239 0.300
νd

21 0.379 0.301
νd

23 0.348 0.302
νd

31 0.330 0.300
νd

32 0.298 0.306

Table 4: Drained elastic constant at the canaliculi porosity level, [32]

In [32] the elastic constants (drained and undrained) were calculated for the canalicular poros-
ity level, when canaliculi are aligned in longitudinal, radial and circumferential direction. In Tab.4
are shown the average values from those three directions.

4.9 Geometric parameters

For our model, the most crucial geometric parameters are the dimensions and directions of canali-
culi and lacunae, which influence the α− and β− level porosity, respectively. But there are other
parameters such as the number of canaliculi in each direction or the distance between lacunae,
which are also important for describing the geometry representing the microstructure of our model.
In this section we introduce the main geometric parameters of our model and focus on the literature
survey for estimating their values.
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4.9.1 Lacunae

First, we focus on the lacunae, which are relevant to the β−level structure of our model. The lacunae
are approximately ellipsoids containing one osteocyte, [32]. We can define the shape of lacunae as
a triaxial ellipsoid with the Cartesian equation for a general ellipsoid(︃

x
a0

)︃2

+

(︃
y
b0

)︃2

+

(︃
z
c0

)︃2

= 1, (110)

where the lacunar semi-axes a0, b0, c0 determine the size of lacunae.

In [1] are the semi-axes determined approximately a0 = 10µm, b0 = 25µm, c0 = 5µm.

In [8] over 10.000 osteocyte lacunae were measured by micro-CT. By this method was deter-
mined the mean long axis length as 8.96µm and the mean volume 290µm. If we consider the two
shortest axes having the same length, we can calculate all semi-axes from the equation of ellipsoidal
volume.

One of the most recent work, [3], presents a micro-CT study of lacunar morphology and
density in human femur. In this study were measured and determined the values for lacunar volume,
canal diameter, and also the parameters defining shape of lacunar ellipsoid, eigenvalue (EV) of axis
of ellipsoid, elongation, equancy and flatness. Note that the lengths of semi-axes equal to the square
root of the corresponding eigenvalues. The measured values are shown in Tab.5.

Region average lacunar EV1 EV2 EV3
volume (µm3)

AP 389 ± 40 16.75 ± 1.21 3.87 ± 0.26 1.70 ± 0.14
ML 408 ± 53 14.13 ± 1.37 4.46 ± 0.59 1.78 ± 0.14

Table 5: Morphological parameters of osteocyte lacuna, AP - combined anterior + posterior, ML -
combined medial + lateral

In [31] are measured the parameters of a single osteocyte in adult mouse fibulae and calvarie,
which are shown in Tab.6. Note, that morphological parameters of lacunae can be approximated by
parameters of osteocyte.

Length(µm) Width(µm) Height(µm) Ratio l:w:h
Fibula 28.74 ± 4.67 7.60 ± 1.15 5.03 ± 0.90 5.9:1.5:1

Calvaria 13.22 ± 1.47 8.07 ± 0.51 6.56 ± 0.64 2.1:1.3:1

Table 6: Morphological parameters of a single osteocyte in adult mouse fibulae and calvaria,[31]

For our purpose, the most relevant and proper seems to be the semi-axes length estimation
from [1].

The size of lacunae is a crucial parameter for the determination of the β−level porosity, but
so is the density of lacunae in the cortical bone tissue. The density of lacunae can be characterized
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by the distance from one lacunae to another. In [1], the center-to-center length L between lacunae
was determined for the human cortical bone as 43µm.

Measuring the length from lacunae to the nearest lacunae by micro-CT presented in [8] gave
the result 21.8µm.

4.9.2 Canaliculi

Let us focus on the geometric parameters determining the size and direction of canaliculi. As was
previously stated, canaliculi are small tunnels that connect the osteonal canal to lacunae a lacunae
to other lacunae. Thus, we imagine them as cylindrical cavities in a matrix. According to [32]
the diameter of the canaliculi can differ from 200nm to 400nm. In [1] was specified the radius
of canaliculi in the range of 80 − 710nm with an average radius of 129.5nm using experimental
measurement, while in [33] the radius was estimated in range of 40 − 355nm with average value
of 259 ± 129nm. The diameter of the canaliculi of the cortical bone in lamellar region was in [29]
stated as 553 ± 33nm.

Now we have the information about the diameter of one canaliculi, but we do not know
anything about their number. One lacunae is connected with others and with the osteonal canal by a
high number of canaliculi, which differs in each direction. To determine this number, we followed
the approach from [1]. This approach used the surface area method, where from the number of
canaliculi per lacunae N.Ca and the planar projection of lacunae the number of canaliculi in each
direction is computed. This approach will be mentioned later. Note, that the number of canaliculi
in each direction depends through the lacunar planar projection on the size of lacunae, i.e. on
the semi-axes a0, b0, c0. For this approach, it is also vital to determine the number of canaliculi per
lacunae N.Ca. This number was also computed in [1] for six species using two different approaches,
the slicing method and the surface method. For the human bone, the low estimate was determined
using the slicing method as 18 and high estimate as 116 canaliculi per lacunae. With the surface
method, the number of canaliculi was estimated as 41.

4.10 Geometry for the model

With the knowledge of the cortical bone microstructure and from the literature survey made in the
previous section, we have all tools we need to introduce the geometries representing the RPC on
both levels. First, we introduce the geometry on β−level, which proves to be more effective to
describe the geometry on the lower level. For both geometry creation and meshing was used the
software GMSH. In the case of our model, when the periodic structure is considered, the generated
mesh must also be periodic.
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(a) α−level geometry (b) β−level geometry

Figure 8: Geometry used for two-scale homogenization

4.10.1 Geometry representing the β−level

The β−level geometry should represent lacunae in a matrix characterized by elastic properties ob-
tained by the homogenization on the lower level. The periodicity of the structure is described by
representative cubic cell Yβ. For the length of the cubic side we use the characteristic length Lβµm
as stated in [1]. The lacunae is represented by an ellipsoid, placed in the center of the cube, given by
Eq.(110) with semi-axes a0, b0, c0, which determine the size of the lacunae. We choose the length
of semi-axes from [1]. Our choice of values for all the parameters is based on the literature survey
and can be found in Tab.7. The resulting geometry can be seen on Fig.8b. Now we can focus on
the lower level.

4.10.2 Geometry representing the α−level

The periodicity on this level is also represented by a cubic cell Yα with a characteristic length
Lα = 43µm. The porosity is caused by canaliculi whose number differs in X, Y and Z directions.
Instead modeling each small canaliculi, we approximate them by three bigger canals with square
cross-sectional area corresponding to sum of cross-sectional areas of all the canaliculi in the given
direction. For this approximation we need to determine the number of canaliculi in each direction.
As was mentioned in text above, we followed the approach from [1]. Using the number of canaliculi
per lacuna N.Ca, projected surface areas for the osteocyte lacunar ellipsoid in the X-Z, X-Y and
Y-Z planes PS Axz, PS Axy, PS Ayz and their sum TPS A, we can determine the number of canaliculi in
X, Y and Z direction nx, ny, nz,. On the alpha level we have to calculate the number of canaliculi in
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each direction from Eq.(111).

ni =
PS A jk

2TPS A
N.Ca, i, j, k = x, y, z. (111)

From the Eq.(111) it is clear, that the size of lacunae determined by semi-axes a0, b0, c0 is
necessary for the determination of the number of canaliculi in each direction. The chosen values of
all of the introduced geometry parameters are listed in Tab.7. The resulting geometry can bee seen
on Fig.8a.

Symbol Parameter Unit Value for α−level Value for β−level
L characteristic length of RPC µm 4.3 43
rx diameter of canaliculi in x-direction µm 0.6 -
ry diameter of canaliculi in y-direction µm 0.6 -
rz diameter of canaliculi in z-direction µm 0.6 -
a0 semi-axis of ellipsoid in x-direction µm - 2.5
b0 semi-axis of ellipsoid in y-direction µm - 12.5
c0 semi-axis of ellipsoid in z-direction µm - 5.0

N.Ca number of canaliculi per lacunae - 106 -

Table 7: Geometry parameters for α−level and β−level

4.10.3 Geometry representing macroscopic level

The macroscopic level should represent one single bone osteon. As was stated in section 2.1.4, the
osteon is approximately cylindrical structure with a hollow canal in its center. The radius of its
cylindrical body is roughly 100 − 150µm, [32]. The radius of the osteonal canal is approximately
20µm, [6]. Note that these values are highly approximate because of large differences between the
dimensions of each osteon. The resulting geometry used for the macroscopic model is pictured on
the Fig. 9.

4.11 Numerical results

In this section we introduce the numerical results of effective poroelastic properties obtained by the
two-scale homogenization. The mathematical model introduced in the previous chapter was imple-
mented in the software SfePy. For the better understanding of influence of porosity, we performed
the parameter study of the implemented model.
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Figure 9: Geometry on the macroscopic level, diameter 2 cm, height 2 cm

4.11.1 Problem implementation

We implemented the two-scale homogenization problem in the software SfePy developed on the
Department of Mechanics, Faculty of applied sciences, University of West Bohemia. SfePy is based
on the finite elements method and represents a strong tool for solving the systems of PDE and also
for homogenization. Thus, it is ideal software for solving the previously defined mathematical
model. For more detailed informations about this software development and documentation we
recommend visiting the site http://sfepy.org.

4.11.2 Problem on the α−level

In this section we focus on the microscopic scale homogenization in order to obtain the effective co-
efficients relevant to the mesoscopic scale. Thus, we solve the following homogenization problem
in three dimensional space.

The microstructure is represented by RPC Yα with geometry defined in the previous section,
see Fig.8a. On this level, we consider the matrix as an isotropic material. Let us remind, that by
periodically repeating the RPC Yα, the matrix of the mesoscopic level should be generated. Each
face of cell should touch the side of its neighbor without a gap and each cell should be exactly
the same as the other. Thus, the values of the corrector functions ωp and ωi j are the same in the
opposite faces of the cube; we need to prescribe them the periodical boundary conditions. Further,
we consider the case, where the correctors are zero in the RPC Yα corners. By this, we completed
the boundary condition.

First, in order to obtain the effective coefficient, we have to compute the corrector functions
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Figure 10: Boundary conditions for the homogenization problems on microscopic and mesoscopic
level

ωp and ωi j satisfying the Eq.(72), with the boundary conditions

ωd(A) = ωd(B), (112)
ωd(C) = 0̄, d = p, i j (113)

where A and B represent the opposing faces and C the corners of the cubic RPC Yα, see Fig.10.
The transformation vector is obtained from the dimension of Yα geometry.

With the knowledge of the corrector functions, the homogenized coefficient are obtained by
solving Eq.(75)-(78). Those coefficients refer to the mesoscopic level properties and are used for
upscaling to the macroscopic level.

4.11.3 Problem on the β−level

We use the β−level geometry for describing the RPC Yβ; the geometry can be seen on Fig.8b. For
this level we need to compute new corrector functions from Eq.(92),(93). Note, that the symbolsωp

and ωi j now refer to the correctors on β−level. These equations should be completed by boundary
conditions.

Similarly to the previous level, we consider the matrix of the macroscopic level to be gener-
ated by periodically repeated Yβ. Thus, the boundary conditions are also similar, given by Eq.(112)
and (112), with the same reasoning as in the previous level. For this level, we use the effective
coefficient obtained by α−level upscaling. After we solve the corrector functions problem, we can
evaluate the effective coefficients from Eq.(94)-(96).

4.11.4 Identification of material parameters

In this section we introduce the homogenized coefficients obtained by two-level homogenization.
We solve the problem described in the text above. The input arguments of our model are Young’s
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modulus Eα, Poisson’s ration να and fluid compressibility γα, which represent the material (matrix
and fluid) properties on α−level. Our choice of their value is based on the literature survey and can
be found in Tab.8.

Parameter Symbol Value Unit
Young’s modulus Eα 18.0 GPa

Poisson’s ratio να 0.3 -
Fluid compressibility γα 0.9 GPa−1

Table 8: Input parameters of model

With the assumption of an isotropic matrix on α−level we can obtain the stiffness tensor from
Young’s modulus and Poisson’s ratio. This tensor is necessary for the bilinear form defined by
Eq.(74) and thus also for effective coefficients evaluation.

4.11.5 Effective coefficients

When performing the homogenization of the previously introduced problem, we obtain the effective
stiffness tensor, Biot coefficient and Biot modulus relevant to macroscopic scale

ID =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.676 · 101 6.312 · 100 5.602 · 100 1.929 · 10−4 −1.119 · 10−4 −1.641 · 10−4

6.312 · 100 1.680 · 101 5.600 · 100 1.792 · 10−4 −1.543 · 10−4 1.077 · 10−5

5.602 · 100 5.600 · 100 1.545 · 101 1.929 · 10−5 −4.613 · 10−4 1.944 · 10−5

1.929 · 10−4 1.790 · 10−4 1.915 · 10−5 5.291 · 100 2.169 · 10−6 −7.841 · 10−5

−1.122 · 10−4 −1.748 · 10−4 −4.799 · 10−4 2.307 · 10−6 4.463 · 100 1.825 · 10−4

−1.641 · 10−4 9.343 · 10−6 1.816 · 10−5 −7.839 · 10−5 1.839 · 10−4 4.463 · 100

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
B =

[︁
1.0904 · 100, 1.0907 · 100, 1.1301 · 100,−1.3408 · 10−5,−5.2842 · 10−6, 1.0126 · 10−7

]︁
M = 1.5382 · 10−4

From the form of the stiffness tensor, we can tell that the cortical bone tissue can be really
describe by the orthotropic material. From the orthotropic material assumption we know, that
from such stiffness tensor, the effective Young’s modulus Emacro

i , Poisson’s ration νmacro
i j and shear

modulus Gmacro
i , i, j = 1, 2, 3, can be evaluated. In Tab.9, the computed effective material constant

relevant to mesoscopic and macroscopic level can be found together with porosity on both, α− and
β−level.
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φα φβ Parameter Value on α Value on β Unit
0.127572 0.00563524 E1 15.1464 13.4926 GPa

E2 12.9624 13.5258 GPa
E3 12.9624 12.7349 GPa
ν12 0.292738 0.289905 -
ν13 0.292738 0.257480 -
ν21 0.250527 0.290617 -
ν23 0.239264 0.257090 -
ν31 0.250527 0.243021 -
ν32 0.239264 0.242058 -
G1 5.10269 5.29164 GPa
G2 5.10269 4.46326 GPa
G3 4.01636 4.46301 GPa

Table 9: Effective material constant relevant to mesoscopic and macroscopic level

4.11.6 Parameter study

From the numerical results of effective material constant, we can see, that the isotropic material of
the α−level matrix changes by upscaling to an orthotropic material. The main parameter, which has
influence on the upscaling is the porosity of the medium, which is computed as a volume fraction
of pores in the whole geometry volume. Thus, the porosity can rise or decrease depending on the
change of parameters defining pores geometry.

(a) rx=600nm (b) rx=800nm (c) rx=1000nm (d) rx=1200nm

Figure 11: Illustration of structure orientation

In what follows, we perform a parameter study; the porosity on α−level is changed by in-
creasing the x-direction canaliculi diameter rx. The y-direction and z-direction are kept constant,
thus the structure on the alpha−level is getting oriented in x-axis direction. Logically, this causes a
change of the poroelastic properties on the macroscopic level. We study the dependency of Young’s
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Figure 12: Dependency of Young’s modulus and Poisson’s ratio on the porosity φγ

modulus and Poisson ration on φγ porosity, where φγ depends on both level porosities see Eq.(2).
It can bee seen that using the isotropic material considered at the microscopic level, an orthotropic
material has been obtained on the macroscopic level, whose anisotropy increases with the change
of porosity. The results of effective Young’s modulus and Poisson’s ration dependency on change
of φγ porosity caused by varying rx between 600 − 1200 nm are shown in Fig.12.

Looking on the Fig.12, we notice that for the first geometry with the smallest value of porosity
φγ the E3 value is higher than E1, E2 but as porosity rises, E3 is becoming smaller than the other
two. This can be the effect of changing the cross-section area of the x-direction canal, which also
changes the porosity in the other two directions. While the other canals have much smaller cross-
section area, the change of porosity caused by the x-direction canal influences them highly. As the
measure of anisotropy, we choose the ratio between the components of stiffness tensor C33/C11, see
Fig.13.

4.11.7 Macroscopic problem solution

In this section, the effective coefficients computed by the two-level homogenization are used for
solving the macroscopic problem defined by Eqs.(97) and (98). The macroscopic problem was also
implemented in FE software SfePy. The macroscopic geometry is represented by a single osteon
with z coordinate z ∈< 0, l >, l = 0.02, see Fig. 9. For the macroscopic solution we apply zero
force and add boundary conditions in

u(x, y, 0) = 0,
uz(x, y, l) = 10−4 (114)
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Figure 13: The change of material anisotropy due to the rise of the porosity φγ

(a) (b)

Figure 14: Distribution of Cauchy’s strain on deformed body

(a) (b)

Figure 15: Distribution of Cauchy’s stress on deformed body
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The distribution of Cauchy’s strain on the deformed body is visualized in Fig.14, where the
undeformed body is represented by the black wireframe. The distribution of Cauchy’s stress can be
found on the Fig.14. Let us say that the maximum values of Cauchy’s stress and strain are placed
on the expected parts of the deformed body. The scalar value of the pressure for this problem is
computed as p = 291.9880792071Pa.

Further, we compare the effect of porosity on the deformation of the macroscopic body. We
showed that with the rise of porosity the stiffness of the material decreases. while taking effective
coefficient computed for the x-oriented α−level geometries, Fig.12, we solve the macroscopic body
deformation, while considering the boundary condition

u(x, y, 0) = 0

Under applying the traction force g = [0, 0,−5]GPa on the plane z = l we can compute the defor-
mation of the macroscopic body with result shown in Fig.16. As was expected, the material with
smaller porosity is stiffer and deforms much less then the one with larger pores.

(a) φγ = 0.10 (b) φγ = 0.15 (c) φγ = 0.25 (d) φγ = 0.35

Figure 16: Deformation of the bodies with effective coefficients computed using α-level geometries
with different cross-sections area. Note that the result i was computed with α-level geometry i
visualized on the Fig.12, where i = a, b, c, d
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5 Electro diffusion in porous structure of the cortical bone
tissue

In the previous chapter, we focused mainly on the solid part of the cortical bone tissue structure
and its mechanical properties. The response of the poroelastic body on loading was displacement
and pressure in the fluid, while we neglected the electrochemical interaction in the two phases:
solid and fluid. Thus, in this text we discuss the role of the fluid part in the bone tissue and the
process of electro diffusion between the fluid and the solid matrix and explain the coupling with
mechanical variables such as displacement. First, we introduce the main principles, which are
necessary for understanding the problem. Later, the mathematical model of electro-diffusion in the
porous structure of the cortical bone tissue will be introduced and then, by upscaling, the effective
coefficients relevant to the macro-scale will be computed. Note that the notations in this chapter
can differ from the previous text, thus in order to prevent confusion we recommend to look into the
list of used variables.

5.1 Ionized fluid

In this section, we pay more attention to the fluid part. For the purpose of our model we imagine
the bone fluid as a salt-water suspense. In the fluid part there are two types of ions with opposite
polarization: the cations Na+ and anions Cl−.

We consider the fluid to be incompressible Newtonian, which seems to be in conflict with the
assumption of compressibility from the poroelastic model where the compressible fluid assumption
was reasonable because it allowed us to focus on the poroelastic problem as a steady state without
the need of solving the fluid transport. On the other hand, while focusing on the fluid part, the
assumption of the incompressibility leads to divw f = 0, where W f is fluid velocity. This assumption
proves to be useful for derivation of the relation for convection-diffusion.

5.2 Material with one level of porosity

We consider the matrix to be a porous material with one level of porosity in contrary to the as-
sumption of double-porous medium from the previous text. We focus on the porosity caused by
canalicular network. Further, we consider that the matrix and also the solid-fluid interface present
the negative charge, because of fatty acids and adsorbed species, [15], [14]. Under loading the
bone matrix produces a small electrical charge, thus we consider the material with piezo-electrical
behavior. All these characteristics of the matrix and their effects on the model will be discussed
later.

47



5.3 Electro-mechanical relationship in porous media

We already presented the macroscopic model of poroelasticity, in which the mechanical loading
leads to deformation of the porous medium. We consider the negatively charged surface of the
pores, which are filled with the solution with electrolytes Na+ and Cl−. The negative potential
is compensated by the adsorption of the cations on the surface forming the inner compact layer,
known as the double layer.

The deformation of the solid medium affects also the fluid phase filling pores by causing it to
flow. The ions in the fluid represent small charges and their movement through the net of pores leads
to macroscopically observed electrokinetic phenomena called the streaming current. Moreover, to
conserve charge, the movement of the charged ions generates the streaming electric potential, see
[14].

The deformation of the porous matrix can affect the ion movement and distribution also in
another way. The bone matrix is known for its piezoelectric behavior. Thus, when subjected to
loading resulting in deformation, the matrix produces an electric charge, [16], which of course
influences the ion movement and distribution. When the ions are in the electric field, the attraction /

repulsion start to take effect. Thus, the ions start to move while pulling the fluid with them causing
the electro-osmotic flow opposing the pressure gradient flow, [14].

In the following text, we focus on the electro-osmosis in the porous piezoelectric medium.

5.4 Potential distribution on the surface

We consider a solid body with a flat surface with its normal vector oriented into the fluid. In this
fluid, ions with both ± electrical charges are randomly distributed. The permitivity of the solid part
is denoted εM = ∞ and the permitivity of the fluid εF has its bulk value. It is commonly known that
ions with opposite signs of electrical charge are attracted to each other. On the other hand, the ions
with the same sign of electrical charge are mutually repelled. This physical phenomenon leads to
the following idea of ion distribution in the fluid near the solid surface.

We consider that the electric potential φ̂S of the solid part is evenly distributed and stays
constant. Near the interface between the fluid and the solid, the ionic attraction starts to take effect.
The ions of the solid phase are strongly attached to its crystal lattice and cannot move as freely
as ions of the fluid phase, thus the fluid ions are the ones changing places. The ions have finite
size and thus cannot get closer to the solid surface than to a certain distance d, [10]. This leads to
the creation of an area without charge in the fluid phase near the solid surface. According to [10],
permitivity of this zone differs from the bulk value of εF in the rest of the fluid and can be a function
of position.

Behind this charge-free zone, the ions with charge opposite to the solid ions start to accu-
mulate. As the distance from the solid surface rises, the attraction between the opposing ions is
getting weaker. This effect is illustrated by the Fig.17. The potential at the solid surface is φ̂M and
we consider it to be the same as the potential of the solid φ̂S . The distribution of the potential in the
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Figure 17: Illustration of double layer, source [17]

fluid can be determined by the Poisson equation

divεE = π, (115)

where, π is the local volume density of the charge. The electric charge E can be express as

E = −gradφ̂, (116)

and than the Eq.(115) is transformed into

div(εgradφ̂) = −π. (117)

Now we focus on the region x > d. The permitivity ε is constant, thus Eq.(5.4) can be written
as

divgradφ̂ = ∇2φ̂ = −π
1
ε
. (118)

In what follows, we focus on determining the volume charge density ρ. In the region x > d,
the ions are influenced by the local electrostatic potential. Thus, if the solid surface is charged, the
ion concentration is characterized by Boltzmann equation

Qi = Q0
i exp

(︃
−

wi

kBT

)︃
, (119)

where Qi is the concentration of ions of type i, the Q0
i is the bulk concentration of the ions of type
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Figure 18: Potential distribution near the flat surface, source [10]

i, T is the fluid temperature, kB is the Boltzmann constant and by wi we denote the work done by
transporting ion i from the bulk solution φ̂F into the point in the double layer, where the potential
is φ̂, [10].

Further, let us assume that the work is done just by moving ion in response to the electrical
field. Such work is called electric work and can be described by

wi = zie(φ̂ − φ̂F) = zieψ, (120)

where zi represents the valency of ions, which can be positive or negative (±) and e is the ion charge.
By ψ we denote the potential difference (φ̂ − φ̂F). The volume charge density is defined as

π =
∑︁

i

Qizie. (121)

Finally, using Eq.(118)-(121), while assuming φ̂F constant, we obtain the Poisson-Boltzmann
equation

∇2ψ = −
1
ε

∑︁
i

Q0
i zieexp

(︃
−zieψ
kBT

)︃
. (122)

By solving this equation (see for example [10]), it can be shown, that the potential distribution
of φ̂F in the region x > d is as in the Fig.18. This equation can be also used to derive the variable
characterizing the electro-osmosis, which is introduced in the section below.

5.5 Debye length

In the following text we introduce the variable characterizing the electro-osmosis, the so called
Debye length λD. We use the Poisson-Boltzmann equation defined by Eq.(122) in the previous
section. We consider the case, when the electrical energy is smaller in comparison to thermal
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energy, (|zieψ| < |kBT |). Thus, it is possible to expand the exponential while neglecting all but the
first two terms in Eq.(122) and obtain

∇2ψ = −
1
ε

⎡⎢⎢⎢⎢⎢⎣∑︁
i

Q0
i zie −

∑︁
i

Q0
i z2

i e2ψ

kBT

⎤⎥⎥⎥⎥⎥⎦ . (123)

The first sum must be equal to zero to preserve electro-neutrality in the bulk solution,[10],
thus

∇2ψ =
∑︁

i

Q0
i z2

i e2ψ

εkBT
=

(︃
1
λD

)︃
ψ, (124)

where λD is the constant with the dimension of length, so-called Debye length. By expressing
the Boltzmann constant in the form kB = R/NA, where NA = 6.022141179 × 1023mol−1 is the
Avogadro constant and R = 8.314472 J mol−1K−1 is the constant of ideal gas, and using the relation
for Faraday constant F = eNA, the Eq.(124) for Debye length is written as

λD =

√︃∑︁
i

εRT
Q0

i z2
i F2 . (125)

The Debye length is the measurement of extent of the double layer.

5.6 Microscopic problem description

Let us consider the medium occupying the domain Ω which is decomposed, similarly to the poroe-
lastic problem, into the solid and fluid part denoted as Ωs and Ω f , respectively. The interface
between the fluid and the solid part is denoted by Γ and is defined as follows

Γ = ∂Ωs ∩ ∂Ω f . (126)

Further, the following abbreviations are used

Γs = Γ ∩ ∂Ωs, (127)
Γ f = Γ ∩ ∂Ω f . (128)

Let us define the normal unit vector n outward with regard to the bounding domain in general.
Note that ns = −n f onΓ. Due to that, for any vector function a with traces ason∂Ωs and a f on∂Ω f ,
the following expressions hold

n. [a]Γ = n f .
[︁
a f − as

]︁
Γ

= ns.
[︁
as − a f

]︁
Γ
. (129)
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5.6.1 Electrostatics

In what follows, we denote the pair of molar concentrations of cations and anions by Q+ and Q−,
respectively. Further, let us denote the electric field and the electric potential by E and Φ. In
classical electrostatics, the relation between E and Φ is defined by Poisson equation Eq.(115) and
then (116) result into (117). Applying the Poisson equation on the fluid part Ω f and the solid part
Ωs, we obtain the following relations, see [22],

−∇ · εs∇Φ = π̂s + ∇ · CG : e(u) in Ωs, (130)
−∇ · ε f∇Φ = π f in Ω f , (131)

where εd and πd, d = f , s is the permitivity and the volume electric charge in the solid or the fluid.
The permitivity εd, d = f , s is defined as αdε0, where αd is the relative permitivity and ε0 is the
permitivity of the void space.

The electric charge in the solid part can be produced by the piezoelectric effect. Thus on
the right side of Eq.(130) is added the piezoelectric term, where e(u) is the deformation of the
solid matrix and CG = Gi jk is the piezoelectric coupling. More detailed information about the
piezo-electricity effect in the cortical bone structure can be found in [16]. We consider that the
piezo-electric term produces charge πG and thus the total charge of the solid is

πs = π̂s + πG, (132)

Using Faraday constant F and the valence of ion particles z+ = 1, z− = −1, the volume electric
charge in the fluid π f can be expressed, by the definition, as the product between the molar charge
and the difference of concentration of cations and anions,[14],[22],[15]

π f = F(z+Q+ − z−Q−). (133)

By substituting Eq.(132) into (130) and Eq.(133) into (131) we obtain

−∇ · αsε0∇Φ = πs in Ωs, (134)
−∇ · α f ε0∇Φ = F(z+Q+ − z−Q−) in Ω f . (135)

5.6.2 Boundary conditions for the electrostatic problem

We assume, that the medium is insulated from the outer space, thus there is zero boundary condition

n.ε∇Φ = 0 in ∂Ω. (136)

The reasoning for another boundary condition is presented below.

We consider that there is a surface charge % on the solid-fluid interface. This charge is con-
sidered to be distributed in a thin infinite layer of thickness d. According to [22], the transmission
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condition can be derived by solving the following one-dimension Dirichlet problem

−∂x(ε̄∂xφ̂) = π̄ + ρδ(x) x ∈] − d/2,+d/2[, (137)
φ̂(−d/2) = φ̂−, (138)
φ̂(+d/2) = φ̂+, (139)

where ε̄ is the constant permitivity, π̄ is the constant volume charge and ρδ(x) is the charge distribu-
tion at x = 0. By integrating Eq.(137), we obtain the following expression of the so-called "jump"[︁
φ̂
]︁+

−
= φ̂+ − φ̂−,

ε̄
[︁
φ̂
]︁+

−
= ε̄∂xφ̂(−d/2)d + π̄

d2

2
+ ρ

d
2
, (140)

see [22].

Further, we assume the continuity of electric displacements, thus the term ε̄∂xφ̂(−d/2) can be
rewritten as ε−φ̂− and than the Eq.(140) transforms into

ε̄[φ̂]+
− = ε−∂xφ̂

−d + π̄
d2

2
+ ρ

d
2
. (141)

In our case the thin layer surrounding the solid-fluid interface Γ determined by the transver-
sal direction unit vector ns is generally oriented. According to that, Eq.(141) for one-dimension
problem transforms into three-dimensional space

ε̄

d
[Φ] f

s = ns · ∇Φ|s +
%

2
, (142)

where we denote % = π̄d + ρ.

Taking ns = −n f , we can determinate two boundary conditions

ns · ε∇Φ|s = −
ε̄Γ

dΓ

[Φ]Γ −
%

2
, (143)

n f · ε∇Φ| f = −
ε̄Γ

dΓ

[Φ]Γ +
%

2
, (144)

where [Φ]Γ = Φ|s − Φ| f .

5.6.3 Movement of the ions

In this section, the relations for the convection-diffusion transport of ionic particles in an incom-
pressible fluid are derived. We assume the restriction on isothermic processes only (T =const.).
Further we denote the water-ions diffusion coefficients for cations and anions by ID+ and ID−, re-
spectively. According to [14], two convection-diffusion equations (where superscript "+" refers to
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the variables belonging to cations and "-" to anions) governing ion transport are

∂Q+

∂t
+ ∇ · (Q+w f ) − ∇ ·

(︃
ID+Q+

RT
∇µ+

)︃
= 0, (145)

∂Q−

∂t
+ ∇ · (Q−w f ) − ∇ ·

(︃
ID−Q−

RT
∇µ−

)︃
= 0. (146)

In what follows, we use a shorter notation for the relations with the same form but referring to ions
with opposite charge

∂Q±

∂t
+ ∇ · (Q±w f ) − ∇ ·

(︃
ID±Q±

RT
∇µ±

)︃
= 0, (147)

where µ± are the molar electrochemical potentials of cations and anions, which can be approximated
as follows (see [14])

µ± = ±z±FΦ + RT log Q±. (148)

Now we introduce the dimensionless potential Φ̂ = z±FΦ/RT and by applying the ∇ operator on
the Eq.(148) we obtain

1
RT
∇µ± =

∇Q±

Q±
± ∇Φ̂. (149)

Further, using Eq.(149), we obtain the Nerst-Planck equation, which, for the incompressible
fluid, is defined as follows

∂tQ± + w f · ∇Q± − ∇ · ID± ·
(︃
∇Q± ±

z±F
RT

Q±∇Φ

)︃
= 0 in Ω f . (150)

5.6.4 Boundary conditions for the problem of convection-diffusion

Note, that the Nerst-Planck Eq.(150) describes the mass balance describing the movement of the ion
particles in the fluid medium. Since there is no mass transfer across the interface Γ, the boundary
condition is

n · ID± ·
(︃
∇Q± ±

z±F
RT

Q±∇Φ

)︃
= 0 on Γ. (151)

Further, we have to preserve the electro-neutrality. This is enabled by the assumption of
existence of a fluid-impermeable membrane on the outer surface ∂Ω f ∖ Γ. On this membrane is
n · w f = 0. Let the ion concentration on this membrane be Q±0 such that the electro-neutrality is
preserved

z+Q+
0 − z−Q−0 = 0. (152)

Thus, the last boundary condition is

Q± = Q±0 on ∂Ω f ∖ Γ (153)
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5.6.5 Dimensionless problem formulation

We shall consider the following problem: for given πs, % and w f find solutions (Φ,Q+,Q−) satisfy-
ing Eq.(130), (131), (136), (143), (144), (150), (151) and (153). In what follows, we transform this
problem into its dimensionless form.

Let us introduce the dimensionless quantities ϕ = Φ/Φ̄, q± = Q±/Q̄. Further, we choose
z̄Q̄ = z+Q+ according to the neutrality state of the solution concentrations.

Let us divide Eq.(134) by Φ̄

−∇ · αsε0∇
Φ

Φ̄
=
πs

Φ̄
in Ωs (154)

The permitivity ε0 is constant, thus we can divide the whole equation by it. Upon introducing
π̃s = πs/Φ̄ε0 we can write the dimensionless form of Eq.(134)

−∇ · αs∇ϕ = π̃s in Ωs. (155)

Further, we substitute Q± in the Eq.(135) and than divide by ε0φ̄

−∇α f ε0∇
Φ

Φ̄
=

F
ε0Φ̄

(z+q+Q̄ − z−q−Q̄). (156)

We consider z̄ = z+ = z− and φ̄ = RT
Fz̄ . The Eq.(156) transform into

−∇α f∇ϕ =
Q̄(z̄F)2

ε0RT
(q+ − q−). (157)

Let us return to the definition of Debye length with the definition given by Eq.(125). For the case,
where there are two types of ions (±) with valence z̄ = z+ = z− and both with concentration Q̄, the
Eq.(125) yields

λD =

√︃
ε0RT

2Q̄(z̄F)2
. (158)

Using Eq.(158) we can rewrite Eq.(157) into the dimensionless form

−∇ · α f∇ϕ −
1

2λ2
D

(q+ − q−) = 0 in Ω f . (159)

We divide the boundary conditions Eqs.(136), (143) and (144) by Φ̄ε0 and considering n = ns =

−n f we obtain their dimensionless form

n · α∇ϕ = 0 on ∂Ω , (160)
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n · α∇ϕ|s = −
αΓ

dΓ

[︀
ϕ
]︀
Γ −

%̃

2
on Γs , (161)

−n · α∇ϕ| f =
αΓ

dΓ

[︀
ϕ
]︀
Γ −

%̃

2
on Γ f , (162)

where %̃ =
%

Φ̄ε0
.

Now we focus on the dimensionless formulation of the convect-diffusion of ion equation
(150) with boundary conditions (151) and (153). We substitute Φ = ϕΦ̄ into Eq.(150) and (151)
and then all three equations divide by Q̄. Upon these operations, the dimensionless form of Eq.(150)
and their boundary conditions (151) and (153) is

∂tq± + w f · ∇q± − ∇ · ID± ·
(︀
∇q± ± βq±∇ϕ

)︀
= 0 in Ω f , (163)

ID± ·
(︀
∇q± ± βq±∇ϕ

)︀
= 0 on Γ , (164)

q± = q̄± on ∂Ω , (165)

where β = Φ̄zF/(RT ) and q̄± = Q±/Q̄, i.e. q̄+ = q̄− = 1 due to the electro-neutrality on ∂Ω f ∖ Γ,
[22].

For the record, the dimensionless microscopic problem formulation is given by Eqs.(155) and
(159)-(165) as

−∇ · αs∇ϕ = π̃s in Ωs ,

−∇ · α f∇ϕ −
1

2λ2
D

(q+ − q−) = 0 in Ω f ,

n · α∇ϕ = 0 on ∂Ω ,

n · α∇ϕ|s = −
αΓ

dΓ

[︀
ϕ
]︀
Γ −

%̃

2
on Γs ,

−n · α∇ϕ| f =
αΓ

dΓ

[︀
ϕ
]︀
Γ −

%̃

2
on Γ f ,

∂tq± + w f · ∇q± − ∇ · ID± ·
(︀
∇q± ± βq±∇ϕ

)︀
= 0 in Ω f ,

n · ID± ·
(︀
∇q± ± βq±∇ϕ

)︀
= 0 on Γ ,

q± = q̄± on ∂Ω , (166)

5.7 Weak problem formulation

In order to perform the unfolding homogenization method, it is more suitable to work with the weak
problem formulation then with the PDE system (166). The transformation of the system (166) into
its weak formulation is our main goal in the following text. At first we need to define the spaces of
admissible and test functions ψ, θ+, θ−, subjected to the boundary conditions of the problem (166),
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as

H̃1(Ωs) = {ψ ∈ H1(Ω) ,
∫︁

Ωs

ψ = 0} ,

H̃1(Ωs,Ω f ) = L2(Ωs ∪Ω f ) ∩ H̃1(Ωs) ∩ H1(Ω f ) ,

H1
±(Ω f ) = {θ± = (θ+, θ−) ∈ [H1(Ω f )]2 , θ± = 0 on ∂Ω f ∖ Γ} ,

(167)

where H1(Ω) is the Sobolev space of scalar functions and L2(Ω) is the space of square-integrable
functions.

First we introduce the general relation published in [12], which can be used for the derivation
of the weak formulation for one dimension problem on x =< 0, 1 > and its boundary conditions.
The problem is defined as

−(m(x)u′)′ + n(x)u = f (x),
α0u(0) − β0m(0)u′(0) = g0,
α1u(1) − β1m(1)u′(1) = g1.

(168)

The weak formulation of the general one-dimension problem can be written as

1∫︁
0

[︀
m(x)u′(x)v′(x) + n(x)u(x)v(x)

]︀
dx +

α0

β0
u(0)v(0) +

α1

β1
u(1)v(1) =

=

1∫︁
0

f (x)v(x)dx +
g0

β0
v(0) +

g1

β1
v(1). (169)

We can imagine, that for the three-dimension problem the integrals are over the three-dimension
domain and the terms obtained by the boundary conditions are integrated over the boundary (or
interface), where they are defined.

Due to the electro neutrality on ∂Ωs ∖ Γ, i.e. the boundary condition q± = 1, we can introduce
ϑ± = q±−1 ∈ H1

±(Ω f ). By ∆±ϑ
± = 1/2(q+−q−) we denote the difference of the ion concentrations.

By using the formula (169) we can rewrite system Eq.(166) to a weak form: find couple (ϕ, ϑ±) ∈
H̃1(Ωs,Ω f ) × H1

±(Ω f ) such that∫︁
Ωs

αs∇φ · ∇ψ +

∫︁
Ω f

α f∇φ · ∇ψ +

∫︁
Γ

αΓ

dΓ

[︀
φ
]︀
Γ

[︀
ψ
]︀
Γ − λ

−2
d

∫︁
Ω f

∆±ϑ
±ψ =

=

∫︁
Ωs

π̃sψ +

∫︁
Γ

%̃
1
2

(ψ|s + ψ| f ) ∀ψ ∈ H̃1(Ωs,Ω f ), (170)
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∫︁
Ω f

∂tϑ
±θ± +

∫︁
Ω f

w f · ∇ϑ
+θ+ +

∫︁
Ω f

w f · ∇ϑ
−θ− +

∫︁
Ω f

(ID+
· ∇ϑ+) · ∇θ+ +

∫︁
Ω f

(ID− · ∇ϑ−) · ∇θ− +

∫︁
Ω f

β∇φ · (ϑ+ID+
· ∇θ+ − ϑ−ID− · ∇θ−) +

∫︁
Ω f

β∇φ · (ID+
· ∇θ+ − ID− · ∇θ−) = 0 ∀θ± ∈ H1

±(Ω f ) (171)

The equations of the weak formulation are quite long, so in order to simplify the mathematical
notations we introduce the following functional forms

aΩ(φ, ψ) =

∫︁
Ωs

αs∇φ · ∇ψ +

∫︁
Ω f

α f∇ · φ∇ψ (172)

dΩ f (q
±, θ±) =

∫︁
Ω f

[︀
(ID+
· ∇q+) · ∇θ+ + (ID− · ∇q−) · ∇θ−

]︀
(173)

cΩ f (w,∇q±, θ±) =

∫︁
Ω f

(θ+w · ∇q+ + θ−w · ∇q−) (174)

bΩ f (q
±, φ, θ±) =

∫︁
Ω f

β∇φ · (q+ID+
· ∇θ+ − q−ID− · ∇θ−) (175)

⟨φ, ψ⟩Ωs =

∫︁
Ωs

φψ (176)

⟨q±θ±⟩Ω f =

∫︁
Ω f

(q+θ+ + q−θ−). (177)

(178)

Using the functional forms defined above, the weak formulation given by Eq.(170) - (171)
transforms into

aΩ(φ, ψ) + ⟨
αΓ

dΓ

[φ]Γ, [ψ]Γ⟩Γ − λ
−2
d ⟨∆±ϑ

±, ψ⟩Ω f =

= ⟨π̃s, ψ⟩Ωs − ⟨%̃,
1
2

(ψ|s + ψ| f )⟩Γ ∀ψ ∈ H̃1(Ωs,Ω f ), (179)

⟨∂tϑ
±, θ±⟩Ω f + cΩ f (w f ,∇ϑ

±, θ±) + dΩ f (ϑ
±, θ±) + bΩ f (1, φ, θ

±)bΩ f (ϑ
±, φ, θ±) +

+ = 0 ∀θ± ∈ H1
±(Ω f ). (180)
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5.7.1 Linearized problem

In what follows we introduce some assumptions to linearize the problem above, [22]. We shall
consider some scaling of the parameters which control the electric field in the thin (double) layer
on Γε.

The charge distribution in the whole domain Ω must be bounded, i.e. the L1(Γε)-norm of %̃
must also be bounded

||%̃ε||L1(Γε) =

∫︁
Ω

1
ε|Y |

∫︁
ΓY

|%̃ε| ≤ C. (181)

Therefore, we consider the so-called moderate charges as %̃ε = ε%̄.

Further, we may consider the double-permitivity of the double-layer and introduce αε
Γ

= ε2ᾱΓ.

Keeping a constant ratio between the size of the microstructure 1ε and the double-layer thick-
ness results in dε

Γ
= εd̄. Thus, we introduce ᾱ = ᾱΓ/d̄, so that

εᾱ =
ε2ᾱΓ

εd̄
. (182)

With those simplifications, the weak form for the linearized problem is: find couple (φ, ϑ±) ∈
H̃1(Ωs,Ω f ) × H1

±(Ω f ) such that

aΩ(ϕ, ψ) + ε⟨αΓ

[︀
ϕ
]︀
Γ,

[︀
ψ
]︀
Γ⟩Γ − λ

−2
d ⟨∆±ϑ

±, ψ⟩Ω f =

= ⟨π̃s, ψ⟩Ωs + ⟨ε%̃,
1
2

(ψ|s + ψ| f )⟩Γ ∀ψ ∈ H̃1(Ωs,Ω f ), (183)

⟨∂tϑ
±, θ±⟩Ω f + cΩ f (w f ,∇ϑ

±, θ±) + dΩ f (ϑ
±, θ±) +

+ bΩ f (1, ϕ, θ
±) + bΩ f (ϑ

±, ϕ, θ±) = 0 ∀θ± ∈ H1
±(Ω f ) (184)

where c± is given ionic concentration, c± ∈ L∞(0,T ; L∞(Ω f )), and w f is a given convection
velocity,w f ∈ L∞(0,T ; L∞(Ω f )). Further, we assume "moderate jumps" so that dΓ = εd̄ and in-
troduce ᾱ = αΓ/d̄.

5.7.2 Limit model

In the following text, we briefly introduce the steps leading to the limit model. Note that this
approach follows the one introduced for the model of poroelasticity.

Let us consider the domain Ω generated by periodically repeating the RPC Y , which is de-
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Figure 19: RPC Y decomposition, source [20]

composed into fluid and solid parts similarly to Ω decomposition

Y = Ys ∪ Y f ∪ ΓY , Y f = Y ∖ Ȳ f , ΓY = Ȳs ∩ Ȳ f . (185)

and with the boundary,
ΓY = ∂Ys ∩ ∂Y f . (186)

The scale parameter between the dimension of the macroscopic domain Ω and RPC Y is
denoted by ε. The fluid part Y f generates a set obtained by the ε-periodicity as

Ω f = ε(Y f + kiŷbi) ∩Ω, k ∈ ZZ3 (187)

where ZZ is a set of integers. The matrix part can be expressed as Ωs = Ω ∖Ω f .

In order to obtain the limit model we use the unfolding method, whose main tool is the
unfolding operator 𝒯ε(Ω) which is described in the section 4.2.7. We introduce the decomposition
of the potential ϕε and concentrations ϑ±,ε into its "macroscopic" and "microscopic" parts, which
should capture the fluctuations, as follows

ϕε(x) = ϕε,0(x,
x
ε

) + εϕ1,ε(x,
x
ε

) (188)

ϑ±ε(x) = ϑ±0(x,
x
ε

) + εϑ±1(x,
x
ε

). (189)

Upon applying the unfolding operator, the potential and concentration decompositions and their
gradients converge to the following limits

60



𝒯ε
(︀
ϑ±ε

)︀
→ ϑ0± s. in L∞(0,T ; L2(Ω × Y f )) ,

𝒯ε
(︀
∇ϑ±ε

)︀
⇀ ∇xϑ

0± + ∇yϑ
1± w. in L2(0,T ; L2(Ω × Y f )) ,

𝒯ε(ϕε)→ ϕ0
f s. in L2(0,T ; L2(Ω × Y f )) ,

𝒯ε(∇ϕε) ⇀ ∇xϕ
0
f + ∇yϕ

1
f w. in L2(0,T ; L2(Ω × Y f )) ,

𝒯ε(ϕε)→ ϕ0
s s. in L2(0,T ; L2(Ω × Ys)) ,

𝒯ε(∇ϕε) ⇀ ∇xϕ
0
s + ∇yϕ

1
s w. in L2(0,T ; L2(Ω × Ys)) ,

(190)

Further, we consider the similar decomposition of the test function ψε and θ±ε also with the
similar convergence upon applying the unfolding operator. By substituting ϕε, ϑ±,ε, ψε and θ±ε into
Eq.(183) and (184) and performing the unfolding, the system transforms into its limit form

∼

∫︁
Ω×Y f

α f

(︁
∇xϕ

0
f + ∇yϕ

1
f

)︁
·
(︁
∇xψ

0
f + ∇yψ

1
f

)︁
+ ∼

∫︁
Ω×Ys

αs

(︁
∇xϕ

0
s + ∇yϕ

1
s

)︁
·
(︁
∇xψ

0
s + ∇yψ

1
s

)︁

+ ∼

∫︁
Ω×ΓY

ᾱ(ϕ0
f − ϕ

0
s)(ψ

0
f − ψ

0
s)ρ̄ dSy −

1
λ2

D

∼

∫︁
Ω×Y f

ψ0
f (ϑ

0+ − ϑ0−) =∼

∫︁
Ω×Ys

π̃ψ0
s +

∫︁
Ω

(ψ0
f + ψ0

s)

2
∼

∫︁
ΓY

ρ̄ dSy , (191)

for all ψ0
f , ψ

0
s ∈ H1(Ω), ψ1

f ∈ L2(Ω; H1
#(Y f )), ψ1

s ∈ L2(Ω; H1
#(Ys),

∼

∫︁
Ω×Y f

∂tϑ
0± θ0±+ ∼

∫︁
Ω×Y f

w ·
(︁
∇xϑ

0± + ∇yϑ
1±

)︁
θ0±

+ ∼

∫︁
Ω×Y f

(ID± ·
(︁
∇xϑ

0± + ∇yϑ
1±

)︁
) ·

(︁
∇xθ

0± + ∇yθ
1±

)︁
+ ∼

∫︁
Ω×Y f

β̄(±c±)ID± ·
(︁
∇xϕ

0
f + ∇yϕ

1
f

)︁
·
(︁
∇xθ

0± + ∇yθ
1±

)︁
= 0 (192)

for all θ0± ∈ H1
±(Ω), θ1± ∈ L2(Ω; H1

#(Y f )), [22].

From the form of the limit problem we can see, that the potential ϕ and also its test function
split under the effect of the unfolding operator into their fluid and solid part.

5.7.3 Local model

The local model, relevant to the microscopic scale, is derived from the limit problem above. We
let all the components of the test functions, which are not relevant to the microscopic scale, vanish.
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Thus, we choose the test functions only as θ1±, ψ1
f and ψ1

s . The system of Eq.(191) and (192) then
transforms into its local formulation: Find (ϕ1

f , ϕ
1
s , ϑ

1±) such that for x ∈ Ω

∼

∫︁
Y f

α f

(︁
∇xϕ

0
f + ∇yϕ

1
f

)︁
· ∇yψ

1
f = 0 (193)

∼

∫︁
Ys

αs

(︁
∇xϕ

0
s + ∇yϕ

1
s

)︁
· ∇yψ

1
s = 0 , (194)

ψ1
f (x, ·) ∈ H1

#(Y f ) and

∼

∫︁
Ω×Y f

(ID± ·
(︁
∇xϑ

0± + ∇yϑ
1±

)︁
) · ∇yθ

1±+ ∼

∫︁
Ω×Y f

β̄(±c±)ID± ·
(︁
∇xϕ

0
f + ∇yϕ

1
f

)︁
· ∇yθ

1± = 0 , (195)

for all θ1±(x, ·) ∈ H1
#(Y f ).

5.7.4 Homogenized coefficients

Similarly to the previous model, in order to obtain the effective coefficients describing the properties
on the macro scale, we have to introduce a set of corrector basis functions. Due to the linearity of the
local problem we can express local variables ϑ1±, ϕ1

f and ϕ1
s as linear combinations using quantities

involved in Eq.(193) and (195) as follows.

ϑ1± =
∑︁

z=+,−

Θk±
z ∂

x
kϑ

0z + Ξk±∂x
kϕ

0
f , (196)

ϕ1
f =

∑︁
z=+,−

Ψk
z∂

x
kϑ

0z + Φk
f∂

x
kϕ

0
f , (197)

ϕ1
s = Φk

s∂
x
kϕ

0
s , (198)

where the corrector basis functions Θk±
z ,Ξ

k±,Ψk
z ,Φ

k
f ,Φ

k
s satisfy the problems defined below. In

order to abbreviate the mathematical notation, we introduce the following bilinear forms

a f
Y (φ, ψ) = ∼

∫︁
Y f

α f (y)∇yφ · ∇yψ (199)

as
Y (φ, ψ) = ∼

∫︁
Ys

α f (y)∇yφ · ∇yψ (200)

d f−
Y (θ, η) = ∼

∫︁
Y f

(︁
ID−(y) · ∇yθ

)︁
· ∇yη (201)
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d f +

Y (θ, η) = ∼

∫︁
Y f

(︁
ID+(y) · ∇yθ

)︁
· ∇yη (202)

d f
Y (θ, η) = d f +

Y (θ, η) + d f−
Y (θ, η) , (203)

b f−
Y

(︀
c−; φ, η

)︀
= ∼

∫︁
Y f

c−
(︁
ID−(y) · ∇yφ

)︁
· ∇yη (204)

b f +

Y
(︀
c+; φ, η

)︀
= ∼

∫︁
Y f

c+
(︁
ID+(y) · ∇yφ

)︁
· ∇yη (205)

b f
Y
(︀
±c±; φ, η

)︀
= b f +

Y
(︀
c+; φ, η

)︀
+ b f−

Y
(︀
−c−; φ, η

)︀
, (206)

c f
Y (w; θ, η) = ∼

∫︁
Y f

(︁
w · ∇yθ

)︁
η (207)

Now, with the use of those bilinear forms, we introduce a set of problems leading to the
corrector basis functions, [22]

1. Find (Ξk±,Φk
f ) ∈ H1

#(Y f ) × H1
#(Y f ) for k = 1, 2, 3 such that

a f
Y

(︁
Φk

f + yk, ψ
)︁

= 0 , ∀ψ ∈ H1
#(Y f ) , (208)

d f +

Y

(︁
Ξk+, θ+

)︁
+ b f +

Y

(︁
+c+; Φk

f + yk, θ
+
)︁

= 0 , (209)

d f−
Y

(︁
Ξk−, θ−

)︁
+ b f−

Y

(︁
−c−; Φk

f + yk, θ
−
)︁

= 0 , ∀θ± ∈ H1
#(Y f ) , (210)

These three equations are decoupled: first we solve Eq.(208) and then we use the obtained
solution for Φk

f for computing Ξk+,Ξk− from Eq.(209) and (210) which are also decoupled.

2. Find (Θk±
z ,Ψ

k
z) ∈ H1

#(Y f ) × H1
#(Y f ) for k = 1, 2, 3 and z = +,− satisfying

a f
Y

(︁
Ψk

z , ψ
)︁

= 0 , ∀ψ ∈ H1
#(Y f ) , (211)

d f +

Y

(︁
Θk+

z + yk, θ
+
)︁

+ b f +

Y

(︁
+c+; Ψk

z , θ
+
)︁

= 0 , (212)

d f−
Y

(︁
Θk−

z + yk, θ
−
)︁

+ b f−
Y

(︁
−c+; Ψk

z , θ
−
)︁

= 0 , ∀θ± ∈ H1
#(Y f ) . (213)

Again, these three equations are decoupled. In [22] is stated, that by coercivity the Eq.(211)
yields Ψk

z ≡ 0. Then the correctors Θk±
z are computed using Eq.(212) and (213). Moreover, it

can bee seen that Θk± := Θk±
+ = Θk±

− . Thus, the corrector basis problem transforms into

d f +

Y

(︁
Θk+ + yk, θ

+
)︁

= 0 , ∀θ+ ∈ H1
#(Y f ) , (214)

d f−
Y

(︁
Θk− + yk, θ

−
)︁

= 0 , ∀θ− ∈ H1
#(Y f ) . (215)

Moreover, it can be shown, that for ID+ ≡ ID− solutions of Eq.(214) and (215) are equivalent,
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Θk+ = Θk−.

3. In the solid compartment, the following problem is posed: correctors Φk
s ∈ H1

#(Ys) satisfy the
following equations (for k = 1, 2, 3):

as
Y

(︁
Φk

s + yk, ψ
)︁

= 0 , ∀ψ ∈ H1
#(Ys) , (216)

Upon introducing the corrector basis function, we can compute the effective coefficients. Due
to the structure of the micro-problem, the expression of the local variables ϑ1±, ϕ1

f and ϕ1
s can be

rewritten in a simpler form.

ϑ1± = Θk±∂x
k(ϑ0+ + ϑ0−) + Ξk±∂x

kϕ
0
f , (217)

ϕ1
f = Φk

f∂
x
kϕ

0
f , (218)

ϕ1
s = Φk

s∂
x
kϕ

0
s . . (219)

We may finally introduce the components of the homogenized coefficients for k, l, i = 1, 2, 3
and z = +,−:

D+
kl = d f +

Y

(︁
Θl+ + yl, yk

)︁
= d f +

Y

(︁
Θl+ + yl, Θk+ + yk

)︁
, (220)

D−kl = d f−
Y

(︁
Θl− + yl, yk

)︁
= d f−

Y

(︁
Θl− + yl, Θk− + yk

)︁
, (221)

B+
kl(c

+) = d f +

Y

(︁
Ξl+, yk

)︁
+ b f +

Y

(︁
c+; Φl

f + yl, yk

)︁
, (222)

B−kl(c
−) = d f−

Y

(︁
Ξl−, yk

)︁
+ b f−

Y

(︁
−c−; Φl

f + yl, yk

)︁
, (223)

C±k (w) = c f
Y

(︁
w; Θk± + yk, 1

)︁
, (224)

S ±k (w) = c f
Y

(︁
w; Ξk± + yk, 1

)︁
, (225)

A f
lk = a f

Y

(︁
Φk

f + yk, Φk
f + yl

)︁
, (226)

As
kl = as

Y

(︁
Φk

s + yk, Φl
s + yl

)︁
, (227)

.

Note, that the expressions of D±kl and A f ,s
kl are symmetric, which is a simple consequence of

the microscopic problem.

5.7.5 Homogenized model

With the help of the effective coefficients, which are an approximation of characteristics of the
macroscopic level, we may finally introduce the macroscopic problem of electro-osmosis in a
porous structure. The macroscopic form of the electrostatic equation for the potential ϕ0

f , ϕ
0
s in

the solid and the fluid yields
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∑︁
d= f ,s

∫︁
Ω

∇ψ0
d · AA

d · ∇ϕ0
d +

∫︁
Ω

ℳΓY (ᾱ)(ϕ0
f − ϕ

0
s)(ψ

0
f − ψ

0
s) −

|Y f |

λ2
D|Y |

∫︁
Ω

ψ0
f (ϑ

0+ − ϑ0−) =

=

∫︁
Ω

ℳY(π̄s)ψ0
s +

∫︁
Ω

ψ0
f + ψ0

s

2
ℳΓY (%̃) (228)

for all ψ0
s , ψ

0
f ∈ H1(Ω). Note, thatℳ is an operator of a mean value of a variable over domain.

The electro-diffusion on the macroscopic scale is described by two equations for concentra-
tions ϑ0+/−)

|Y f |

|Y |

∫︁
Ω

∂tϑ
0±θ0± +

∫︁
Ω

C±(w) · ∇(ϑ0+ + ϑ0−)θ0± +

∫︁
Ω

S±(w) · (∇ϕ0
f )θ

0±+

+
∑︁

z=+,−

∫︁
Ω

∇θ0± · ID± · ∇(ϑ0+ + ϑ0−) +

∫︁
Ω

∇θ0± · IB± · ∇ϕ0
f = 0 , (229)

for all θ0± ∈ H1
±(Ω).

5.7.6 Relation between the microscopic model and the macroscopic solution

By solving the macroscopic problem defined in the previous section, we obtain the macroscopic
solutions ϑ0±, ϕ0

s and ϕ0
f . The relation between the local variables ϑ1±, ϕ1

s and ϕ1
f is described by

Eqs.(217)-(219). The local variables can be computed by substituting the macroscopic solutions
and computed corrector basis functions into the Eqs.(217)-(219). We may express the local problem
with the help of the macroscopic solution ϑ0±, ϕ0

s and ϕ0
f only. For illustration of the expression of

the local problem with macroscopic solution, let us substitute into the diffusion velocity term from
the Nerst-Planc equation while considering q0± = q0 = ϑ0 + 1

ID
[︁
∇xq0 + ∇yq1 + βq0(∇xφ

0
f + ∇yφ

1
f )
]︁

= (230)

= ID
[︁
∇k

x(ϑ
0 + 1) + ∇y(θk∇k

x2(ϑ0 + 1) + Ξk∇kφ0
f ) + βq0(∇xφ

0
f + ∇y(Φk

f∇
k
xφ

0
f ))

]︁
(231)

5.8 Semi-discretized microscopic local problem

Following the approach published in [24], we consider a finite element partition of Y with N num-
ber of all nodes. Further, we use the notation ϕd for the vectors of potential ϕd, d = f , s and the
notation ϑ± for the vectors of concentration ϑ±. By Nd, d = f , s we denote the number of all free
degrees of freedom of the vectors of potential ϕd. By N± we denote the number of all free degrees
of freedom of the vectors ϑ±. By the capital bold letters we denote the matrices corresponding to
the bilinear forms employed in the section 5.7.4. We introduce the matrix notation of used bilinear
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forms in Tab.10

Bilinear form Matrix Size Bilinear form Matrix Size
a f

Y(., .) Af N f × N f as
Y(., .) As N s × N s

d f−
Y (., .) Df− N− × N− d f +

Y (., .) Df+ N+ × N+

c f
Y(.; ., .) Cf N± × N± b f−

Y (.; ., .) Bf− N f × N f

b f +

Y (.; ., .) Bf+ N f × N f b f
Y(.; ., .) Bf N f × N f

Table 10: Matrix notation of used bilinear forms

Using the notation above, we can introduce a discretized form of the microscopic corrector
problems Eqs.(208)-(216).

1. Approximation to correctors (Φk
f ,Ξ

k±) is denoted by (ϕ̂k
f , ϑ̂

k±
):

Afϕ̂
k
f + Afyk = 0, (232)

Df+ϑ̂
k+

+ Bf+ϕ̂
k
f + Bf+yk = 0, (233)

Df−ϑ̂
k−

+ Bf−ϕ̂
k
f − Bf−yk = 0. (234)

2. Approximation to correctors Θk±is denoted by ϑ̃
k±

:

Df+ϑ̃
k+

+ Df+yk = 0, (235)

Df−ϑ̃
k−

+ Df−yk = 0. (236)

3. Approximation to corrector Φk
s is denoted by ϕ̃k

s:

Asϕ̃
k
s + Asyk = 0. (237)

Using the vectors of the corrector basis functions we can evaluate the homogenized coeffi-
cients. Eqs.(220)-(227) have the following matrix form

D+
kl ≈ (yk + ϑ̃

k+
)T Df+(yk + ϑ̃

k+
) , (238)

D−kl ≈ (yk + ϑ̃
k−

)T Df−(yk + ϑ̃
k−

) , (239)

B+
kl ≈ (yk)T Df+ϑ̂

k+
+ (yk)T Bf+(ϕ̂k

f + yk) , (240)

B−kl ≈ (yk)T Df−ϑ̂
k−

+ (yk)T Bf−(ϕ̂k
f + yk) , (241)

C±k ≈ Cf(yk + ϑ̃
k±

) , (242)
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S ±k ≈ Cf(yk + ϑ̂
k±

) , (243)
A f

lk ≈ (ϕ̂k
f + yk)T Af(ϕ̂k

f + yk) , (244)

As
kl ≈ (ϕ̃k

s + yk)T As(ϕ̃k
s + yk) , (245)

.

5.9 Discretized macroscopic problem

In this section we introduce the discretized form of the macroscopic problem, which can be used in
the finite element (FE) model. By ϕd, d = f , s and ϑ± we refer to the column vector incorporating
all degrees of freedom (DOF) of FE mesh nodes associated with the macroscopic domain Ω. We
need the FE counterparts of the bilinear forms involved in the macroscopic problem Eqs.(228) and
(229):

(θ+)T T+ϑ+
≈

|Y f |

|Y |

∫︀
Ω
∂tϑ

+θ+, (θ−)T T−ϑ− ≈ |Y f |

|Y |

∫︀
Ω
∂tϑ

−θ−,

(θ+)T C+ϑ+
≈

∫︀
Ω

C+(w) · ∇ϑ0+θ0+, (θ+)T C+ϑ− ≈
∫︀

Ω
C+(w) · ∇ϑ0−θ0+

(θ+)T C−ϑ+
≈

∫︀
Ω

C−(w) · ∇ϑ0+θ0−, (θ+)T C−ϑ− ≈
∫︀

Ω
C−(w) · ∇ϑ0−θ0−,

(θ+)T D+ϑ+
≈

∫︀
Ω
∇θ0+ · ID+ · ∇ϑ0+, (θ+)T D+ϑ− ≈

∫︀
Ω
∇θ0+ · ID+ · ∇ϑ0−

(θ−)T D−ϑ+
≈

∫︀
Ω
∇θ0− · ID− · ∇ϑ0+, (θ−)T D−ϑ− ≈

∫︀
Ω
∇θ0− · ID− · ∇ϑ0−,

(θ+)T S+ϕ f ≈
∫︀

Ω
S+(w) · (∇ϕ0

f )θ
0+, (θ−)T S−ϕ f ≈

∫︀
Ω

S−(w) · (∇ϕ0
f )θ

0−,

(θ+)T B+ϕ f ≈
∫︀

Ω
∇θ0+ · IB+ · ∇ϕ0

f , (θ−)T B−ϕ f ≈
∫︀

Ω
∇θ0− · IB− · ∇ϕ0

f ,

(ψs)
T Zsϕs ≈

∫︀
Ω
∇ψ0

s · AA
s · ∇ϕ0

s , (ψ f )
T Zsϕ f ≈

∫︀
Ω
∇ψ0

f · AA
f · ∇ϕ0

f ,

(ψ f )
T Mϕ f ≈

∫︀
Ω
ℳΓY (ᾱ)ϕ0

fψ
0
f , (ψs)

T Mϕ f ≈
∫︀

Ω
ℳΓY (ᾱ)ϕ0

fψ
0
s ,

(ψ f )
T Mϕs ≈

∫︀
Ω
ℳΓY (ᾱ)ϕ0

sψ
0
f , (ψs)

T Mϕs ≈
∫︀

Ω
ℳΓY (ᾱ)ϕ0

sψ
0
s ,

(ψ f )
T Nϑ+

≈
|Y f |

λ2
D |Y |

∫︀
Ω
ψ0

fϑ
0+, (ψ f )

T Nϑ− ≈
|Y f |

λ2
D |Y |

∫︀
Ω
ψ0

fϑ
0−,

(ψ f )
T Pf ≈

∫︀
Ω

ψ0
f

2 ℳΓY (%̃), (ψs)
T Ps ≈

∫︀
Ω
ψ0

s(ℳY(π̄s) + 1
2ℳΓY (%̃)).

The terms T± are time dependent and continuous in time. For the purpose of computation
we need to discretize them also in time. According to [24], we can introduce time discretization
using so-called time increment ∆t. ∆t is defined as the difference between two following time steps,
∆t = tn+1 − tn. Let us assume that we know T±0 in initial time t0. We can compute any other time
level tn of T±n by approximation

T±n ≈ ∆tT±n−1. (246)

For small ∆t, the approximation formula transforms into

T±n ≈ ∆tT±0 . (247)

For more detailed information about time discretization we recommend to look into [24].

Using the FE counterpart defined above, we can display the linear subproblems of the macro-
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scopic problem in the matrix form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∆tT+

0 + C+ + 2D+ C+ + 2D+ 0 S+ + B+

C− + 2D− ∆tT−0 + C− + 2D− 0 S− + B−
0 0 Zs + M −M
−N N −M Zs + M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ϑ+

ϑ−

ϕs
ϕ f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
0
Ps
Pf

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (248)

From the matrix form Eq.(248) is evident, that all equations describing the problem are cou-
pled. The matrix of the problem is not singular, which means that the sub-matrices on the diagonal
are regular. This is accomplished by a suitable choice of the boundary conditions. The matrix form
is more suitable for implementation in the FE software, for example in SfePy.

5.10 Model parameters

In what follows, we introduce material parameters found by the literature survey which are relevant
to the solid and the fluid part on the microscopic level. Later, we introduce the geometry used for
describing the porosities in the microstructure.

5.10.1 Material parameters

In this section we introduce the parameters used for the numerical evaluation of the electro-osmosis
model represented in the chapter 5.

First, let us focus on the diffusion coefficients ID±. We consider the matrix on the microscopic
level to be isotropic. The diffusion coefficients in a three-dimensional space have the form of a
square 3 × 3 matrix. According to [11], the diffusion coefficient for the isotropic medium is a
diagonal matrix with Dii = D j j, i, j = x, y, z. Thus, for the determination of the diffusion coefficient
in the matrix form, we need just one scalar value D, which is multiplied by a unit matrix I. The
matrix form of the diffusion coefficient is computed as ID = DI The values of the scalar diffusion
coefficients for Na+ and Cl− were estimated as values computed by [28], see Tab.11.

The relative permitivity αs of the bone tissue was estimated in [19] as 111.5. For the relative
permitivity α f of the bone fluid, which is considered to be salt water, we use the value from [2].
Note, that all parameters can be found in Tab.11. Other parameters were chosen after consultation
with Dr. Thibauld Lemaire.

5.10.2 Geometry for the model of electro-osmosis

The homogenization of the problem of electro-osmosis in the cortical bone structure is modeled
with one level of porosity. We want to study the convection-diffusion of ions in the canalicular
network. For this purpose we consider the domain Ω generated by periodically repeated "cross"
geometry, i.e. geometry with three orthogonal channels, each in the direction of one axis. In other
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Parameter Value Unit Source
αs 111.5 - [19]
α f 4.23 - [2]
D+ 1.334 × 10−9 m2s−1 [28]
D− 2.032 × 10−9 m2s−1 [28]
c+ 150 mol/m3 -
c− 250 mol/m3 -
w

[︁
0, 0, 10−4

]︁
m/s -

Table 11: Parameters of the electro-osmosis model

words, for the homogenization problem is used the same geometry, as for α−level homogenization
of the problem of poroelasticity, see Fig.8a. The geometrical parameters are also the same, so they
can be found in Tab.7.

5.11 Numerical results

In this section the results of the numerical computation of the electro-osmosis problem, defined in
sections above, are presented. First, we introduce the results of upscaling from the microscopic
level to macroscopic, while obtaining the effective coefficients and then we use them for the macro-
scopic problem computation. Later, we perform the parameter study of coefficient dependence on
the porosity change and also solve the problem on the microscopic scale.

5.11.1 Problem implementation

First, we implement the microscopic model for one level homogenization in the software SfePy.
Obtained homogenized coefficient are used for the computation on the macroscopic level, which
is implemented in the same software. Then, using the macroscopic solution, we can compute the
problem on the microscopic scale. The numerical solutions are visualized in the parallel visualiza-
tion application ParaView Viewer and, in part, by the module matplotlib in the Python programing
language.

5.11.2 Numerical solution of microscopic problem

The geometry of RPC Y , used for describing the structure of porosities on the microscopic scale,
is the same as in the Fig.8a. Note that because the macroscopic domain Ω is generated by periodic
repeating of RPC Y , the used mesh must be periodical. On this geometry we compute the corrector
basis function defined by Eqs.(208)-(216), which are completed by conditions. There are two types
of conditions in the microscopic level.
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Figure 20: Boundary and integral conditions of microscopic problem, cases I and II

∙ First, the periodicity must be preserved, so we prescribe the periodic boundary condition.
Thus, any corrector basis function Ψ has the following periodic boundary conditions

Ψ(A) = Ψ(B), (249)

where A and B are the opposing faces of cubic RPC Y , see Fig.20.

∙ The second type of conditions are the zero conditions of the mean integral of the corrector
over the domain on which it is defined: for any corrector Ψ∫︁

Yd

Ψ = 0, (250)

where d = f , s.

In what follows, we consider two following cases.

∙ Case I: We consider that the ion concentrations of positively and negatively charged parti-
cles differ from each other. This case approximates the bone fluid better, because we can’t
precisely say, that there is the same amount of anions and cations in the same time.

∙ Case II: We consider that the ion concentrations of positively and negatively charged par-
ticles are the same. We can imagine that this case refers to salt dissolved in water, where
the molar concentration of Na+ and Cl− is the same. Note that this case is more approxi-
mative but it is better for the numerical solution of the macroscopic problem. Considering
ϑ0− = ϑ0+ = ϑ0 Eqs.(229) become independent on ion concentration and can be solved first
in order to obtain the potentials ϕ0

d, d = f , s. Than using ϕ0
f we compute concentration from

Eqs.(228), which are reduced to only one equation for variable ϑ0.

In the following text we introduce the effective coefficients computed form both cases and
their comparison. For simplicity, macroscopic model will be solved only for case B.
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Case I Case II
A f 4.754e-01, 2.338e-20, 2.812e-19; 4.754e-01, 2.338e-20, 2.812e-19;
[−] 5.146e-20, 1.385e-02, 2.569e-20; 5.146e-20, 1.385e-02, 2.569e-20;

5.718e-20, 2.544e-20, 1.127e-01 5.718e-20, 2.544e-20, 1.127e-01
As 9.534e+01 1.878e-17 2.711e-17 9.534e+01, 1.878e-17, 2.711e-17;
[−] 4.175e-17 8.313e+01 6.510e-17 4.175e-17, 8.313e+01, 6.510e-17;

3.094e-17 5.046e-17 8.656e+01 3.094e-17, 5.046e-17, 8.656e+01
Bm 5.709e+01, -6.484e-16, -4.918e-17; 2.249e+01, -2.534e-16, -1.419e-17;[︁

m2/s
]︁

1.473e-16, 1.664e+00, -5.103e-18; 5.830e-17, 6.553e-01, -5.666e-19;
5.287e-17, -2.408e-16, 1.354e+01 6.080e-18, -9.454e-17, 5.332e+00

Bp 2.998e+01, -3.413e-16, -2.726e-17; 2.249e+01, -2.534e-16, -1.419e-17;[︁
m2/s

]︁
7.768e-17, 8.738e-01, -2.330e-18; 5.830e-17, 6.553e-01, -5.666e-19;
2.736e-17, -1.167e-16, 7.110e+00 6.080e-18, -9.454e-17, 5.332e+00

Cm 1.124e-05, 5.609e-23, 7.189e-24 1.124e-05, -1.044e-23, -1.844e-22
[m/s]

Cp 1.124e-05, -1.044e-23, -1.844e-22 1.124e-05, -1.044e-23, -1.844e-22
[m/s]

Dm 2.284e-01, 1.440e-20, -6.695e-20; 1.499e-01, 7.468e-21, 4.087e-20;[︁
m2/s

]︁
9.168e-21, 6.655e-03, 1.474e-20; 6.771e-21, 4.369e-03, 6.251e-21;
-4.541e-21, 1.355e-20, 5.415e-02 2.241e-20, 4.233e-21, 3.555e-02

Dp 1.499e-01, 7.468e-21, 4.087e-20; 1.499e-01, 7.468e-21, 4.087e-20;[︁
m2/s

]︁
6.771e-21, 4.369e-03, 6.251e-21; 6.771e-21, 4.369e-03, 6.251e-21;
2.241e-20, 4.233e-21, 3.555e-02 2.241e-20, 4.233e-21, 3.555e-02

S m 1.262e-05, 0.000e+00, 0.000e+00 1.262e-05, 0.000e+00, 0.000e+00
[m/s]

S p 1.262e-05, 0.000e+00, 0.000e+00 1.262e-05, 0.000e+00, 0.000e+00
[m/s]

Table 12: Comparison of effective coefficients of case I and II

5.11.3 Effective coefficients

We compute the effective coefficients by upscaling from the microscopic to the macroscopic prob-
lem. The effective coefficients are computed by substituting the correctors into Eqs.(220)-(227).
For the case I, we use the input values from Tab. 11. In case II, we use the same input values
as for case I, excluding anion concentration c− and its diffusion coefficient D−. For both of those
quantities we use the same values as for cations. In Tab12 we see the resulting coefficients for both
cases.

We consider that components < 10−6 can be omitted. It is evident, that all coefficients
As, A f ,Dp,Dm, Bp, Bm have form of diagonal 3 × 3 matrix. The interesting fact is that coefficients
S p and S m when omitting small components are nearly the same.
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When comparing the case I and II, the coefficients As, A f ,Dp, Bp,Cp, S p remain the same for
both cases, while Dm, Bm, have the same components as their "positive" counterpart, which is effect
of using only "positive" input values.

Solution Conditions

(a) Solution of ϑ0

∙ φ0
f (x, y, l) = sin( ti

(T−3∆t)π ) V for ti < (T − 3∆t)

∙ φ0
s(x, y, 0) = 300 V

∙ ϑ0(x, y, 0, t) = 0 mol/m3

∙ ϑ0(x, y, z, 0) = 0 mol/m3

(b) Solution of φ0
f (c) Solution of φ0

s

Table 13: Numeric solution of macroscopic test problem, case II

5.11.4 Numerical solutions of the macroscopic problem

In this section we introduce the numerical solution of the macroscopic problem defined by Eqs.(228)
and (229). We consider the case II from the previous section. While considering ϑ0− = ϑ0+ = ϑ0

Eqs.(229) become independent on ion concentration. The system transforms into two equations for
computation of potentials ϕ0

d, d = f , s, which can be solved first, and one equation for concentration
of ion particles ϑ0.
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(a) t1 (b) t2

(c) t4 (d) t6

(e) t8 (f) t11

Table 14: Numeric solution of ϑ0 in different time steps, case II

73



We compute the numerical solution of the macroscopic problem on a simple geometry, see
Fig.9, which z-coordinate z ∈< 0, l >. For the computation were used the effective coefficients
belonging to case II solution.

Because the solution of ϑ0 is time dependent due to time term in Eq.(229), we chose com-
putational time T , which is discretized into nt number of time steps. The computation starts on
t0 = 0 and every other time step can be computed from incremental formula ti = ti−1 + ∆t where
∆t = T/nt is a time increment. For the following numerical solution of the macroscopic problem
the computational time was set to T = 0.1 and number of time steps nt = 11.

In Tab.13 we present the solutions of the macroscopic test problem in time t = T . The
concrete boundary and initial condition are stated by each macroscopic solution visualization.

The solution φ0
s diffuses from its boundary condition on z = 0 into the whole body. On the

contrary, the solution ϑ0 has the zero boundary condition on z = 0, but it gradually rises to its
maximum in z = l. This is the effect of the solution φ0

f which takes part in the computation of ϑ0.
The φ0

s is mostly effected by solution φ0
s and then also by the sinus boundary condition.

The previous results were obtained in the time t = T . The solutions φ0
f and φ0

s are time
independent, so they remain the same at all time steps. But this is not true for the concentration
solution ϑ0. In Tab.14 we show the results of ϑ0 in time steps t1, t2, t4, t6, t8 and t11 = T .

From the results of ϑ0 at different time steps can be seen that the values are highly variable.
But from t8 the fluctuation in values decreases and the macroscopic solution starts to improve
accuracy and finally stops in t11 = T .

5.11.5 Influence of change in porosity

For the model of poroelasticity we performed a parameter study, when we changed cross-section
area of one of the canals and studied the influence on the effective coefficients. For the model of
electro-osmosis we performed a similar study while using the same microscopic level geometries,
see Fig.12. For illustration we introduce the visualization of φ0

f solution, where the changes are
clearly visible. From figures in Tab.15 can be seen that the maximum value of φ0

f , which is placed
in the z = 0, decreases as the porosity φγ rises.

5.11.6 Recovery of the diffusion term

In the previous section we visualized the macroscopic solutions φ0
s , φ

0
f , ϑ

0 of the test problem. Those
solutions can be substituted together with computed corrector basis functions into the relations for
local variables φ1

s , φ
1
f , ϑ

1,Eqs.(217)-(219). Note, that Eqs.(217) transform into one equation for ϑ1

only. Thus, we have local variables expressed by the macroscopic solutions. In what follows we
focus on the recovery of diffusion velocity term from Nerst-Planc equation, which is expressed by
Eq.(230). We chose two recovery elements on different sides of the macroscopic geometry, as can
be seen on Fig.21. We chose one element on the left (z = 0) side and one on the right (z = l) side.
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(a) φγ � 0.10 (b) φγ � 0.15

(c) φγ � 0.25 (d) φγ � 0.35

Table 15: Influence of porosity change on φ f solution

Figure 21: Recovery regions on the macroscopic body

Note, that for better visibility of both elements we have to turn the geometry so that the z = 0 is on
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the right side on the Fig.21. To prevent confusion we denote the region in z = 0 by A and on z = l
by B. The recovery of the diffusion velocity of each region is visualized in the figures in Tabs.17.

On the Tabs.17b and 17a, we can notice that the vectors of the diffusion velocity on entrance
to the intersection of canals are closing to each other. On the exit from the intersection the vectors
are moving away from each other. This seems to be in contrary with general knowledge about the
velocity, but don’t forget that we are talking about diffusion velocity. The concentration of ions
is higher in the canals in x and y direction, thus there is a stronger diffusion effect. But why is
concentration of ions in those canals higher? In our model, we consider the fluid flow just in the
z-direction. On the figures in Tabs.16 and 17 the z-canal is almost completely blue, with the lowest
diffusion velocity. It is possible, that the fluid velocity is stronger than the diffusion and the ions
are being washed away. In further research we recommend to choose a smaller fluid velocity.

(a) The magnitude of diffusion velocity and its
vector field for the recovery element A

(b) The magnitude of diffusion velocity and its
vector field for the recovery element B

Table 16: Recovery of the diffusion velocity
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(a) Recovery element A - cross-section through
YZ-plane

(b) Recovery element B - cross-section through
YZ-plane

Table 17: Recovery of the diffusion velocity
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6 Conclusion

The aim of this diploma thesis was to discuss the electromechanical coupling in the porous structure
of the cortical bone tissue. To achieve this aim we introduced the mathematical model of the
double-porous medium and focused on the description of pure mechanical poroelastic behavior.
We explained the homogenization method and its application to the microscopic model in order to
derive the homogenized model and relations for effective poroelastic coefficients. We discussed the
similarity between our model and the Biot model of poroelasticity.

We computed the effective coefficients of poroelastic model and studied their dependency on
the porosity change. The results of our study correspond with our assumption, i.e. we showed that
with rising porosity the values of effective coefficients decrease. Further we perform the computa-
tion of the macroscopic model in FE software SfePy.

In the second part of this thesis we explained the origin of double-layer and main principles
of electro-osmosis. In this part we also discussed the connection of electro-osmosis to the me-
chanical displacement, which may be realized by the piezo-electric term. Further we introduced
the microscopic model of electro-osmosis in a medium with one porosity level. On this model we
performed upscaling while introducing all necessary parts of the mathematical model. Finally we
obtained relations for effective coefficients and then the macroscopic homogenized model. This
model was also implemented in software SfePy for two cases; The first for different concentrations
of anions and cations and the second assuming their concentrations to be the same. We introduced
the numerical solution of the macroscopic problem for the case with the same concentrations. Us-
ing computed macroscopic quantities, we recovered the electro-diffusion term on the microscopic
level. On the recovered regions we were able to visualize the directions and magnitudes of the
diffusion in the microstructure.

The main references for the poroelasticity model were works of authors [20], [25] and [26].
As the main references for the model of electro-osmosis served works and manuscripts [10], [22]
and [14]. The application of unfolding method was performed accordingly to [26].

This diploma thesis deals with a comprehensive theme and attempts to explain some main
principles and problems, but we must admit, that this field of study deserves more detailed and
complex insight. In a future work on a resembling theme we recommend to connect both models
with piezo-electricity and the fluid velocity caused by pore deformation. It is also possible to focus
on the role of bone fluid on mechano-sensing.
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List of symbols

V Volume
Vpore Sum of volumes of all pores in the porous body
φi Porosity, subscript i refers to porosity level
α Subscript/superscript referring to microscopic porosity level
β Subscript/superscript referring to mesoscopic porosity level
φγ Total porosity
L Characteristic length of RPC
e = (ei j) Cauchy’s strain tensor
u(x) = (ui) Displacement tensor
x = (xi) Coordinates in macroscopic domain
σ = σi j Stress tensor
ID = Di jkl Fourth-order stiffness tensor
µ, λ Lamme’s coefficients
δi j Kronecker’s symbol
Ei Young’s modulus
νi j Poisson’s ratio
C Compliance tensor
Gi j Shear modulus
γ Fluid compressibility
p Pressure
Ω Macroscopic domain
m Subscript referring to matrix part of a domain
c Subscript referring to a part of domain belonging to canals
Γd Intersection between domains,d = mc, s, f
ε Scale parameter
micro Subscript referring to microscopic level
macro Subscript referring to macroscopic level
Y Representative periodic cell (RPC)
y = (yi) Coordinates in RPC Y
ŷi Side length of RPC Y
∂extZ Outer boundary of general domain Z
ξi Macroscopic coordination of i-th RPC Yi

A = (Ai jkl) Effective stiffness tensor
𝒯ε(ψ(x)) Unfolding operator applied on the general function ψ(x)
∇d Gradient operator with respect to d = x, y
f Volume force field
nd Normal vector of bounding domain d = m, c, f , s
J Fluid volume injected from outside space
v Test function
χd Characteristic function of domain Ωd, d = m, c
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k0 The macroscopic part of variable k
k1 The fluctuation of variable k
Φi j = (Φi j

k ) Transformation vector
ωi j(y),ωp(y) Corrector basis functions
am

y (w, v) Bilinear form
B̂ = (B̂i j) Effective tensor of Biot coefficients
M̂ Effective Biot modulus of compressibility
ζ Fluid content per unit volume increase
a0, b0, c0 Semi-axes of ellipsoidal lacunae
rx, ry, rz Radius of canaliculi in x,y,z direction
N.Ca Number of canaliculi per lacunae
ni Number of canaliculi in i-direction
PS Ai j Surface of projection of lacuna into i j−plane
TPS A Sum of surfaces of all three planar projection of lacunae
φ̂ Electrical potential for in one dimension space
Φ Electrical potential for in three dimension space
s Superscript referring to solid part of domain
f Superscript referring to fluid part of domain
s Superscript referring to solid part of domain
ψ Potential difference
zi Valence of ion particles of type i = +,−
e Elemental charge
wi Electric work of ions of type i = +,−
Qi Concentration of ions of type i = +,−
ε0 Permitivity of the void space
ε Permitivity
αd Relative permitivity, d = f , s
kb Boltzmann constant
T Temperature
R Ideal gas constant
F Farraday constant
λD Debye length
NA Avogadro constant
CG = (Gi jk) Piezo-electric coupling
π Volume electric charge density
ρ, % Surface elestric charge density
ϕ Dimensionless potential
qi Dimensionless ion concentrations of particles of type i = +,−
µi electro-chemical potencials of particles of type i = +,−
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Di Diffusion coefficient of particles of type i = +,−
ci Molar concentration of particles of type i = +,−
Θk±

z ,Ξ
k±,Ψk

z , Corrector basis functions of electro-osmosis model
Φk

f ,Φ
k
s

AA f ,s = (A f ,s
kl ),

Effective coefficients of electro-osmosis model
IB± = (B+,−

kl )
ID± = (D+,−

kl )
S± = (S +,−

k )
C± = (C+,−

k )
ℳZ(s) Operator of a mean value of a variable s over domain Z

81



References

[1] BENO, T., YOON, Y.-J., COWIN, S. C., et al. Estimation of bone permeability using accurate
microstructural measurements. Journal of biomechanics, 2006, vol. 39, no 13, p. 2378-2387.

[2] CARCIONE, J. M., SERIANI, G., et GEI, D. Acoustic and electromagnetic properties of soils
saturated with salt water and NAPL. Journal of Applied Geophysics, 2003, vol. 52, no 4, p.
177-191.

[3] CARTER, Y., at al.: Variation in Osteocyte Lacunar Morpholigy and Density in the Human
Femur - a Synchrotron Radiation Micro-CT Study. Bone, 2013, vol. 52, p. 126-132.

[4] CIORANESCU, D. at al.: The periodic unfolding method for perforated domains and Neu-
mann sieve models.J. Math. Pures Appl. 2008, Vol. 89, pp. 248–277.

[5] CIMRMAN, R. et ROHAN, E. HIERARCHICAL MULTISCALE MODELLING OF
POROUS MEDIA WITH APPLICATIONS IN BIOMECHANICS. Engineering Mechanics,
2012, vol. 1000, p. 18thInternational.

[6] COWIN, S. C. Bone poroelasticity. Journal of Biomechanics, 1999, vol. 32, no 3, p. 217-238.

[7] HAMED, E., LEE, Y., et JASIUK, I. Multiscale modeling of elastic properties of cortical bone.
Acta mechanica, 2010, vol. 213, no 1-2, p. 131-154.

[8] HANNAH, K. M., THOMAS, C. D. L., CLEMENT, J. G., et al. Bimodal distribution of osteo-
cyte lacunar size in the human femoral cortex as revealed by micro-CT. Bone, 2010, vol. 47, no
5, p. 866-871.

[9] HELLMICH, C., BARTHÉLÉMY, J.-F., et DORMIEUX, L. Mineral–collagen interactions in
elasticity of bone ultrastructure–a continuum micromechanics approach. European Journal of
Mechanics-A/Solids, 2004, vol. 23, no 5, p. 783-810.

[10] HUNTER, R. J.: Foundations of colloid science. Oxford University Press. 2001.

[11] KIM, J. H., OCHOA, J. A., et WHITAKER, S. Diffusion in anisotropic porous media. Trans-
port in porous media, 1987, vol. 2, no 4, p. 327-356.
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