
University of West Bohemia

Faculty of Applied Sciences

Department of Computer Science and Engineering

MASTER’S THESIS

Pilsen, 2013 Jan Froněk



University of West Bohemia

Faculty of Applied Sciences

Department of Computer Science and Engineering

Master’s Thesis

Security in EEG/ERP Portal

Pilsen, 2013 Jan Froněk



Prohlašuji, že jsem diplomovou práci vypracoval samostatně a výhradně s
použitím citovaných pramenů.

V Plzni dne 14. května 2013 Jan Froněk, . . . . . . . . . . . . . . . . . . . . . .



Acknowledgements

I would like to thank my supervisor, Ing. Petr Jěžek, Ph.D., for all his time
he dedicated to me and for his guidance and help to complete this thesis.

I would also like to acknowledge my loyal friend Mates, the best dog in the
world, who never fails to cheer me up. Most ideas used in this thesis came
to me during our walks in the park.

And finally, I want to thank my parents for their support during my studies.
This thesis could never be completed without them.



Abstract

The main goal of this thesis is to investigate current security threats in field
of web applications. Especially, in relation to EEG/ERP Portal of neuroin-
formatics group at the University of West Bohemia. First part of this thesis
investigates and describes the most spread threats together with ways of
their removal and prevention. The investigated risks are based on the "Top
Ten" list published by The Open Web Application Project, a well known and
respected group in field of internet security. Second part tests and identifies
security weaknesses of EEG/ERP Portal while the third part suggests their
removal and future prevention. Last part of this thesis introduces design and
implementation of secured e-shop for EEG/ERP Portal. This store’s security
design is based on knowledge gained in previous parts. The security measures
are implemented according to suggestions given in third part of this thesis.
It practically demonstrates presented approach.



Contents

1 Introduction 1

1.1 Neuroinformatic Research Group . . . . . . . . . . . . . . . . 2

1.2 EEG/ERP Portal . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Motivation for this Thesis . . . . . . . . . . . . . . . . . . . . 3

1.4 Technologies in EEG/ERP Portal . . . . . . . . . . . . . . . . 4

1.4.1 Hibernate . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.2 Spring . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.3 Spring Security . . . . . . . . . . . . . . . . . . . . . . 5

1.4.4 Spring Social . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.5 Apache Wicket . . . . . . . . . . . . . . . . . . . . . . 5

2 Existing Security Standards 7

2.1 Open Web Application Security Project . . . . . . . . . . . . . 7

2.2 Top Ten Security Risks . . . . . . . . . . . . . . . . . . . . . . 7

3 Security Risks 9

3.1 Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Preventing Injections . . . . . . . . . . . . . . . . . . . 10



CONTENTS

3.2 Cross-Site Scripting . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Preventing Cross-Site Scripting . . . . . . . . . . . . . 11

3.3 Broken Authentication and Session Management . . . . . . . . 12

3.4 Insecure Direct Object References . . . . . . . . . . . . . . . . 13

3.5 Cross-Site Request Forgery . . . . . . . . . . . . . . . . . . . . 13

3.5.1 Preventing Cross-Site Request Forgery . . . . . . . . . 14

3.6 Security Misconfiguration . . . . . . . . . . . . . . . . . . . . 17

3.7 Insecure Cryptographic Storage . . . . . . . . . . . . . . . . . 18

3.8 Failure to Restrict URL Access . . . . . . . . . . . . . . . . . 19

3.9 Insufficient Transport Layer Protection . . . . . . . . . . . . . 20

3.10 Unvalidated Redirects and Forwards . . . . . . . . . . . . . . 20

3.11 Clickjacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.11.1 Preventing Clickjacking . . . . . . . . . . . . . . . . . 21

4 Current State of Security in EEG/ERP Portal 24

4.1 Injection Vulnerability . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Cross-Site Scripting Vulnerability . . . . . . . . . . . . . . . . 25

4.3 Authentication and Session Management . . . . . . . . . . . . 25

4.4 Securing Direct Object References . . . . . . . . . . . . . . . . 26

4.5 Cross-Site Request Forgery Vulnerability . . . . . . . . . . . . 26

4.6 Security Configuration . . . . . . . . . . . . . . . . . . . . . . 28

4.7 Cryptographic Storage . . . . . . . . . . . . . . . . . . . . . . 28

4.8 Restricting URL Access . . . . . . . . . . . . . . . . . . . . . 28

4.9 Transport Layer Protection . . . . . . . . . . . . . . . . . . . 29



CONTENTS

4.10 Validation of Forwards and Redirects . . . . . . . . . . . . . . 29

4.11 Clickjacking Vulnerability . . . . . . . . . . . . . . . . . . . . 29

5 Security Improvements in EEG/ERP Portal 30

5.1 Preventing Injections . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Preventing Cross-Site Scripting . . . . . . . . . . . . . . . . . 31

5.3 Authentication and Session Management . . . . . . . . . . . . 32

5.4 Cross-Site Request Forgery Protection . . . . . . . . . . . . . 32

5.4.1 Enabling CryptoMapper . . . . . . . . . . . . . . . . . 33

5.5 Data Storage Encryption . . . . . . . . . . . . . . . . . . . . . 35

5.5.1 Existing Solutions . . . . . . . . . . . . . . . . . . . . . 35

5.5.2 Oracle Transparent Data Encryption . . . . . . . . . . 36

5.5.3 Setting-up Transparent Data Encryption . . . . . . . . 37

5.5.4 Choosing Data for Encryption . . . . . . . . . . . . . . 39

5.5.5 Impact of Encryption on Database Response Time . . 41

5.6 Clickjacking Prevention . . . . . . . . . . . . . . . . . . . . . . 43

6 Building Secured E-Shop 46

6.1 Current State of EEG/ERP Portal . . . . . . . . . . . . . . . 46

6.2 Shopping Cart Functions . . . . . . . . . . . . . . . . . . . . . 47

6.3 Payment Options . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.4 Shopping Cart Design . . . . . . . . . . . . . . . . . . . . . . 48

6.5 Example Purchase Scenario . . . . . . . . . . . . . . . . . . . 49

6.6 Processing a Payment . . . . . . . . . . . . . . . . . . . . . . 55

6.7 Securing the Purchase Process . . . . . . . . . . . . . . . . . . 59



CONTENTS

6.7.1 Total Price Protection . . . . . . . . . . . . . . . . . . 60

6.7.2 Two-step Confirmation . . . . . . . . . . . . . . . . . . 60

6.7.3 Encryption . . . . . . . . . . . . . . . . . . . . . . . . 62

6.8 Description of Implemented E-Shop . . . . . . . . . . . . . . . 62

7 Conclusion 64



Chapter 1

Introduction

Providing sufficient security measures is part of application development,
especially in field of web applications. The main goal of this thesis is to
investigate and improve security measures in EEG/ERP Portal developed
by neuroinformatics research group at the University of West Bohemia. The
EEG/ERP Portal contains private data collected from experiments performed
by the research group. Therefore all steps necessary to secure such private
information should be taken as required by Czech law.

Following this goal, Chapter 3 of this thesis investigates and describes the
current most common threats in field of web applications. Each such threat
is described and a general solution of its removal and prevention is given.
The investigated security risks were chosen according to list of top 10 web
application security issues published by The Open Web Application Security
Project, a well known and respected authority in field of web security.

In Chapter 4, the EEG/ERP Portal is tested for presence of aforemen-
tioned risks and weaknesses followed by solutions suggested in Chapter 5.
When suggesting solutions to improve level of security in EEG/ERP Portal
and eliminate any weakness found, the possibilities offered by already used
frameworks are preferred. In addition to securing the application layer of
EEG/ERP Portal, the ways of securing physical data storage, containing

1



CHAPTER 1. INTRODUCTION

collected private information, are discussed and implemented.

In Chapter 6, a prototype of secured online store is introduced, designed
and implemented. The security measures taken in this store are based on
knowledge gained in previous parts of this thesis. The developed store allows
EEG/ERP Portal visitors to purchase an experimental data. To provide a
secure way of online payment, the PayPal’s Express Checkout service is used.

This thesis provides the EEG/ERP Portal application with security mea-
sures necessary to prevent the most spread and severe threats to avoid any
private information exposure or theft.

1.1 Neuroinformatic Research Group

At the University of West Bohemia there is a research group perform-
ing experiments in a field of neuroinformatics. Its research contains a lot of
experiments with human subjects, such as hospital patients, children or uni-
versity students. These experiments usually measure subject’s EEG waves
and stores them for further processing.

1.2 EEG/ERP Portal

To easily share experimental data a project of web portal1 is being de-
veloped. This portal application allows members to upload, store and share
experimental data and scenarios, publish articles or comments and share
them on LinkedIn. Users are organized into smaller groups based on cur-
rent projects they work on. By doing so, they can easily restrict published
information to be shared only within such group.

You can see an example of EEG/ERP Portal application in Figure 1.1.
1http://eegdatabase.kiv.zcu.cz

2



CHAPTER 1. INTRODUCTION

Figure 1.1: EEG/ERP Portal example.

1.3 Motivation for this Thesis

As a result of numerous experiments, EEG/ERP Portal contains private
information provided by participating subjects, such as their name, date of
birth or contact information. According to Czech law [1], everyone who
collects, processes or stores such information is obliged to undertake any
steps necessary to secure such data and restrict access to them. This is
one reason to investigate and evaluate current security measures taken in
EEG/ERP Portal, improve them and eliminate any security risks found.
The referred law [1] also mentions a duty to document all security measures
taken. Therefore, this thesis is intended to serve this purpose as well.

Leak of private information could harm and discredit the research group’s
credibility. This could be a serious issue considering ongoing collaboration
with INCF2 organization and possibility of joining their DataSpace project3.

2http://www.incf.org
3http://www.incf.org/resources/data-space

3



CHAPTER 1. INTRODUCTION

This project offers a possibility to share data collected from experiments
among INCF member organisations worldwide. The responsibility to secure
shared data remains on each participating organization. The research group
should therefore secure its data before considering joining such project. This
doesn’t apply only to the database containing data to be shared but to the
whole application of EEG/ERP Portal which accesses this database as well.
Any security measures suggested in this thesis shall eliminate or at least
minimize a possibility of compromising stored data or its theft.

1.4 Technologies in EEG/ERP Portal

The implementation of EEG/ERP Portal is programmed in Java language
and uses many technologies commonly used in development of contemporary
Enterprise applications.

1.4.1 Hibernate

Application’s data are stored in Oracle database. Since the EEG/ERP
Portal is object oriented based, there is a need to map data stored in rela-
tional database to data objects. This is done using Hibernate4 ORM (Object
Relational Mapping) technology. Therefore, the database queries are per-
formed using HQL (Hibernate Query Language), it is an object oriented
modification of SQL (Structured Query Language).

1.4.2 Spring

Spring5 is an open source framework for Java Enterprise application de-
velopment. It offers configuration of components, managing life cycle of
application’s objects, object creation and wiring dependent objects together.

4http://www.hibernate.org
5http://www.springsource.org

4



CHAPTER 1. INTRODUCTION

1.4.3 Spring Security

Spring Security6 is an open source framework providing means to secure
developed application. It offers authentication and authorization tools for
identifying users and managing privileges by set of roles - e.g. admin, user,
etc.

1.4.4 Spring Social

The EEG/ERP Portal provides possibility of user authentication using
user’s Facebook or LinkedIn credentials. This feature is implemented us-
ing corresponding version of Spring Social7 framework. Both frameworks,
for Facebook and LinkedIn, use OAuth8 (Open Standard for Authorization)
protocol to exchange confirmation token between social network’s login ser-
vice and developed application.

1.4.5 Apache Wicket

Since early 2013, the EEG/ERP Portal is developed using ApacheWicket9

which mostly replaces formerly used Spring MVC framework. Apache Wicket
is a component-based web application framework that varies a bit from the
standard MVC frameworks. Standard MVC framework uses controller ob-
jects and maps incoming requests to particular controller’s methods with
desired actions. In contrast, Wicket application is based on a tree of com-
ponents and listeners serve the incoming HTTP requests. Apache Wicket is
often compared to GUI framework Swing for its use of listeners. In both cases,
the components are pure Java objects. While Swing is used for desktop appli-
cations development, Apache Wicket is a web application framework. Both
of them uses similar principles. Therefore, it is considered easy to adopt

6http://www.springsource.org/spring-security
7http://www.springsource.org/spring-social
8http://oauth.net
9http://wicket.apache.org

5



CHAPTER 1. INTRODUCTION

usage of Wicket once you know the usage of Swing. Apache Wicket and its
listeners also offer an advantage of eliminating extensive usage of XML con-
figurations required by other similar frameworks (e.g. aforementioned Spring
Web MVC).

For further details on Apache Wicket framework and security measures
it offers see sections 4.5 and 5.4 on pages 26 and 32.

6



Chapter 2

Existing Security Standards

2.1 Open Web Application Security Project

The Open Web Application Security Project, mostly known by its abbre-
viation OWASP, is a non-profit organisation focused on providing security
advice and standards for web application development. This community
group realizes numerous projects such as Application Security Verification
Standard or Application Development guide.

2.2 Top Ten Security Risks

In 2010, OWASP published a list of Top 10 most critical security risks
[2] along with recommendations about their removal and future avoidance.
Even though this list is almost three years old, it is still a good start when
trying to develop a secure application. The most critical threats it describes
still exist nevertheless. Therefore, it is still beneficial to take them into
consideration. Beside the listed threats, this work includes description and
solution for another security threat, the Clickjacking, that was not listed in
aforementioned list. Its occurrence has rapidly risen and its security risk is
severe and therefore needs to be looked at and solved.

7



CHAPTER 2. EXISTING SECURITY STANDARDS

The OWASP Top Ten List is recommended to follow and implement by
U.S. Trade Commission. It was adopted as a part of Payment Card Industry
standard and is used by many companies like HP, IBM, Citibank, Microsoft
or Oracle.

The published list [2] consists of these risks:

1. Injection

2. Cross-Site Scripting (XSS)

3. Broken Authentication and Session Management

4. Insecure Direct Object References

5. Cross-Site Request Forgery (CSRF)

6. Security Misconfiguration

7. Insecure Cryptographic Storage

8. Failure to Restrict URL Access

9. Insufficient Transport Layer Protection

10. Unvalidated Redirects and Forwards

Not every one of these items describes an actual threat or particular
attack technique. Some of them are about general principles required to
provide sufficient security level.

OWASP Top ten Lists were published with a three year difference, in
2004, 2007 and 2010. A list of candidates for new version was introduced in
March, 2013 and final version is due May, 2013. In comparison, the 2010 and
2013 versions only differ in minor aspects. Several risks changed positions,
"Security Misconfiguration" was divided into two risks while "Insecure cryp-
tographic storage" and "Insufficient Transport Layer" were merged together.
Full list of 2013 candidates can be found at [3]. Considering the 2013 list
is not final yet and the minor changes compared to 2010 version, this thesis
elaborates with the 2010 version.

8



Chapter 3

Security Risks

This chapter goes through aforementioned threats, describes them and
suggests a general solutions. Note that another threat - Clickjacking (see
section 3.11) was added besides the OWASP Top ten list threats.

3.1 Injection

The application or system can be compromised with injection when it is
possible to insert and execute unsecured code or command by submitting
user input. It can be either injecting command to interpreter like PHP or
query injection when user input is used as a parameter in database query.
These exploits can cause possible loss of data, data corruption or personal
data can be compromised or stolen. The business impact of this exploit is
considered severe because of possible loss or theft of stored data.

An instance of injection attack [4, 5] can be demonstrated on an applica-
tion which uses URL
.../show_article&id=x
to display article identified by id. This id, when submitted, is used as a
parameter to query the database. An attacker can modify the URL to
.../show_article&id=’ or ’1’=’1

9



CHAPTER 3. SECURITY RISKS

to see whether the application is vulnerable to injection [6] or not.

If application builds SQL queries by simply appending parameters from
requests as in listing 3.1 its weakness can be exploited to insert and execute
any SQL command, for instance deleting all users data by modifying URL
to
.../show_article&id=;DELETE * FROM users.

Listing 3.1: Unprotected Query.

1 String query = "SELECT * FROM articles WHERE id=’" +
2 request . getParameter ("id") + "";

3.1.1 Preventing Injections

Injections can be prevented by escaping any special character such as
; ’, and /. As regards SQL query, injections can be eliminated by using
so called Prepared Statements. Prepared Statement eliminates any need to
escape special characters manually and input is used only as parameter for
prepared query. This makes it impossible to sneak in and execute another
command within created query.

See an example of Prepared Statement in listing 3.2.

Listing 3.2: Protected Query.

1 String query = "SELECT * FROM articles where id=?";
2 PreparedStatement stmt =
3 connection . prepareStatement (query);
4 stmt.setInt (1, requested_id );

10



CHAPTER 3. SECURITY RISKS

3.2 Cross-Site Scripting

This attack is done by including a malicious script into user input which
is then stored in the application, for instance into a text reply in web fo-
rum. Whenever any user views attacked page, the web browser interpreter
is tricked into executing included script leading into modifying either page’s
appearance or including unwanted <script> tags. These scripts can either
steal user’s credentials, include unwanted advertisements or redirect the user
to some malicious web page. For example a post in simple web forum is
described by tags <div><p>Text of post</p></div>.

If text of the post isn’t properly escaped, an attacker might easily submit
a post containing something like:
Text of post <script>document.location=malicious_URL</script>.

The user can be totally unaware he/she became a victim of an Cross-Site
Scripting attack. XSS scripts can simply make user’s browser to send user’s
cookie file to attacker’s web page without raising any suspicion. Such attack
results into compromising session id and complete account loss with all its
impacts. For instance, compromising user’s account in some online store can
result in losing money in unwanted purchases.

3.2.1 Preventing Cross-Site Scripting

The danger of Cross-Site Scripting [7, 8] can be partially avoided by mak-
ing sure any user input is properly escaped when sent back to the browser
and possibly escaped before storing in database. Still, this solution should
be supported by proper defence of user’s cookie by making them HTTP only.
HTTP only cookies cannot be viewed by client-side scripts. A cookie can be
set to HTTP only by adding a flag into its HTTP header. In Java EE appli-
cations this is usually done by modifying WEB-INF/web.xml configuration
file with parameters shown in listing 3.3.

11



CHAPTER 3. SECURITY RISKS

Listing 3.3: Session-config example.
1 <session -config >
2 <session - timeout >
3 60
4 </session - timeout >
5 <cookie -config >
6 <http -only >true </http -only >
7 </cookie -config >
8 </session -config >

3.3 Broken Authentication and Session Man-
agement

This topic depicts common mistakes in security setting that can result in
account theft or either password or session ID exposure. Such mistakes allow
attacker to impersonate other user and perform any action under his/her
identity in order to abuse his/her privileges.

There is no method that would assure 100% safety against this kind of
exploit but a general set of rules and recommendations to make it less likely
to happen exists.

• Session ID should be protected by not exposing it as a part of URL.

• Passwords shall be created as a combination of lower and upper case
letters and digits to be considered strong.

• Passwords should be also stored in encrypted form.

• Possibility that an attacker could guess a valid credentials should be
limited by allowing only several attempts to login.

• All credentials shall be transferred through protected communication
(e.g. via SSL).

12



CHAPTER 3. SECURITY RISKS

• User shall remain authenticated only for a limited time by setting ses-
sion time-out.

3.4 Insecure Direct Object References

This security weakness occurs when application uses objects IDs as pa-
rameters. For instance, article id is used as request parameter without fol-
lowing test whether the user is authorized to view requested article or not.
The attacker can exploit this flaw by simply modifying URL parameter and
access an article or a resource with restricted admission. For instance, URL
.../show_article&id=x
where x as originally viewed article might be altered to refer to another article
the user wasn’t intended to to be allowed to view.

To avoid this weakness all direct references need to be validated for autho-
rized access or direct references shall be replaced by indirect ones wherever
it is possible. This is rather general recommendation since it heavily relies
on used technologies and might differ with used programming languages.

3.5 Cross-Site Request Forgery

This attack technique, also known by its abbreviation CSRF [9], relies
on forging false HTTP requests and tricking users into submitting them.
Doing so, user unwillingly performs some action as though he/she performed
it himself knowingly. When user was previously logged in, an vulnerable
application can’t distinguish whether the action was really requested by the
user himself. These false links or image tags usually refer to some actions user
needs to be authorized for, such as thread creation or deletion, subscription,
etc.

13



CHAPTER 3. SECURITY RISKS

3.5.1 Preventing Cross-Site Request Forgery

To be protected against CSRF users should follow these rules [9]:

• Log out before leaving the web site. Since CSRF attack requires the
user to be logged in, logging out before leaving a web site eliminates
the risk of becoming a victim of CSRF attack.

• Avoid using the "remember me" options when logging in and do not let
your browser to store usernames and passwords.

• Use different browser for internet browsing and for accessing sites of
high importance, such as internet banking.

However, users prefer higher comfort in exchange for lowering their secu-
rity [10] and usually expect the application takes care of all security measures
without their participation.

To prevent this flaw within an application it is necessary to exchange some
secret information other than user’s id, credentials or session id to ensure
request’s validity, for instance when a form is submitted. This is usually done
by adding invisible secret field into <form> element which contains some
secret key. This key is then, upon request reception, compared with generated
key the form was created with. There are basically three possible ways to
perform such exchange and comparison. The key can be either stored in a
cookie file, session object or database. All possibilities are vulnerable in some
ways. Cookie needs to be protected against client side access (see HTTP Only
cookies in section 3.2.1). In case cookies are disabled the solution doesn’t
work at all or the whole form cannot be accepted and processed. The other
approach, storing generated key into session object, requires secure session
handling so its id isn’t exposed and therefore vulnerable to exploiting. Some
solutions suggest storing generated keys into database but this possibility
is rather slow compared to those mentioned previously. Plus, it also makes
managing keys more difficult when user uses multiple tabs in his browser.

14



CHAPTER 3. SECURITY RISKS

General solution for keys stored in a session object in Java applications
is shown in listings 3.4, 3.5 and 3.6. An incoming request goes through a
filter where the secret key is generated and stored into a session object. De-
pending on used frameworks, secret token can be generated inside standard
HTTP doFilter method, inside controller code or done by handlerInterceptor.
The example in listings 3.4 and 3.6 explains principles of Cross-Site Request
Forgery prevention usage on doFilter method but the code it contains would
stay nearly unchanged for other implementations (controller, handlerInter-
ceptor) as well.

Listing 3.4: CSRF Protection - creating token [11].
1 public void doFilter ( Request request , Response

response , FilterChain chain){
2 Cache <String , Boolean > csrfPreventionSaltCache =
3 (Cache <String , Boolean >) httpReq . getSession ()
4 . getAttribute (" csrfPreventionSaltCache ");
5

6 if( csrfPreventionSaltCache == null){
7 csrfPreventionSaltCache = CacheBuilder
8 . newBuilder ()
9 . maximumSize (5000)

10 . expireAfterWrite (20, TimeUnit . MINUTES )
11 .build ();
12 request . getSession (). setAttribute (
13 " csrfPreventionSaltCache ",
14 csrfPreventionSaltCache );
15 }
16 String salt = RandomStringUtils .random (20, 0, 0,

true , true , null , new SecureRandom ());
17 csrfPreventionSaltCache .put(salt , Boolean .TRUE);
18 request . setAttribute (" csrfPreventionSalt ", salt);
19 chain. doFilter (request , response );
20 }

15



CHAPTER 3. SECURITY RISKS

Most available solutions have a limitation that they generate and include
only one secret key per user. Such limitation is restricting users to only open
and use the application in only one tab. If user opened the application in
another tab, the secret key would be overwritten resulting in all but last
opened form being refused upon submission. Therefore, described solution
operates with a cache object, actually a Map1, allowing multiple keys to be
stored in it. In addition, cache used in listing 3.4 adds an attribute of time-out
after which is the stored key considered invalid. The aforementioned cache
uses Guava CacheBuilder2 implementation but generally any implementation
of a Map could be used.

After the secret key is generated, the request is passed to a page where a
form is created. The Secret key is then stored in a hidden field of a form as
shown in listing 3.5.

Listing 3.5: CSRF Protection - hidden field in form [11].

1 <form action="/ requiredAction " method="post">
2 <input type="hidden" name=" csrfPreventionSalt "
3 value="<c:out value =’${ csrfPreventionSalt }’/>
4 "/>
5 </form >

When a form is filled in and submitted back to the server, the incoming
request is passed to a filter where the received key is compared to the gen-
erated one. If the incoming secret value matches the one stored in session
cache, the request is passed for further processing. Otherwise, the request
is refused to be served. In such case, some kind of alert might be raised or
CSRF attempt logged into sever log file.

An example of incoming form validation is shown in listing 3.6. If a CSRF
attack is detected the request is not passed to another filter or servlet. As a
result the attack is prevented from performing any action.

1Abstract Data Type organising stored data into pairs of keys and values
2http://docs.guava-libraries.googlecode.com

16



CHAPTER 3. SECURITY RISKS

Listing 3.6: CSRF Protection - recieving token [11].

1 public void doFilter ( Request request , Response
response , FilterChain chain){

2 String salt = (String) request . getParameter (
3 " csrfPreventionSalt ");
4 Cache <String , Boolean > csrfPreventionSaltCache =
5 (Cache <String , Boolean >) request . getSession ()
6 . getAttribute (" csrfPreventionSaltCache ");
7

8 if( csrfPreventionSaltCache != null

9 && salt != null

10 && csrfPreventionSaltCache
11 . getIfPresent (salt) != null){
12 chain. doFilter (request , response );
13 }
14 else{
15 // CRF occurred
16 // Application should log a CSRF detection or

raise any other alert
17 }
18 }

3.6 Security Misconfiguration

The Security Misconfiguration on OWASP’s list of threats describes com-
mon mistakes in managing privileges and admissions to files or objects. It
includes flaws not only in application design but in used frameworks as well.
Therefore, it is necessary to keep all frameworks, libraries up to date to en-
sure an attacker cannot abuse any known weakness of an outdated part of
application. The danger of using outdated libraries and frameworks should
not be treated lightly. Anytime a new version of library is released, its patch

17



CHAPTER 3. SECURITY RISKS

notes contain information about fixed issues and therefore any flaw of pre-
vious version become publicly known and documented. Especially, in case
of an open source solution where anyone can view the source code, knowing
both, issue and a way it was fixed, can provide a solid amount of knowledge
necessary to construct an attack scenario.

OWASP gives another piece of advice about Security misconfiguration. It
is to give as few information as necessary when informing user about appli-
cation’s error or when denying access to any source. This includes disabling
stack trace to be displayed to user upon error occurrence. Basically, any in-
formation should be considered private and any server details, such as class
names or file locations, should be kept secret.

3.7 Insecure Cryptographic Storage

Protecting application’s data shall be a main goal of any project or busi-
ness that somehow collects information about users. The value of customer’s
personal details and contact information is priceless in any business. There-
fore, losing such data or violating its safety could have potentially lethal
impact on any business.

For instance, if a company loses all or even just a part of its data it may
delay or even prevent their deals to be fulfilled. Any lost data need to be
replaced or recollected and any inconvenience could affect customer’s favour.
Therefore, the potential financial loss comes from two sources - additional
expenses on restoring business data and a loss of income as a result of loss of
customers. In addition, if an information about a company being a victim of
private data theft becomes public, its reputation might be shattered up to a
point of losing more customers and losing its credibility.

To avoid or at least minimize any risk of losing or compromising business
data every important data should be encrypted when stored into database.
However, this security measure should always be complemented with physical

18



CHAPTER 3. SECURITY RISKS

data storage protection as well as with secure transport channel.

The possible ways of encrypting a data storage are highly dependent on
software and hardware parts the data storage consists of. Some database
solutions offer additional security features to be purchased such as Oracle
Transparent Data Encryption (see section 5.5 on page 35).

3.8 Failure to Restrict URL Access

Unauthorized access liability is caused by not verifying the user’s privilege
to access any page after requesting it’s URL. Attacker may simply overwrite
requested page name if he/she either knows or can guess it. For instance an
attacker could change the .../home URL to .../admin_settings to get access
a page he/she is not authorized to view.

This can be prevented by validating users privileges upon entering re-
quested page by assigning several different roles with different privileges -
e.g. admin, registered user, guest, etc. User role management can be han-
dled by security frameworks, such as Spring Security which is also used in
EEG/ERP Portal.

A typical example of vulnerable application are sites that perform au-
thorization only when creating links and other content for displayed web
page. In such case, a registered user is viewing menus with different options
than site administrator but when some action is requested no authorization
is performed. Therefore, an attacker can try to guess names and parameters
for restricted pages and operations. In such case, an attacker is allowed to
view such pages and perform such actions without any restrictions as though
he/she was authorized user or administrator himself. For instance, enter and
use URL .../admin_settings and its features.

19



CHAPTER 3. SECURITY RISKS

3.9 Insufficient Transport Layer Protection

The Insufficient Transport Layer Protection risk on OWASP’s list is
about unprotected exchange of information between a user and an appli-
cation server. Even though the application might use or implement multiple
security measures, the data are exposed when transferred through a commu-
nication channel. For instance, a user’s cookie might possibly be stolen when
accessing a page via wi-fi connection.

To prevent any private data exposure, application shall communicate via
secured channel, for instance using the SSL with a valid certificate.

3.10 Unvalidated Redirects and Forwards

If application handles forwards and redirects by specifying destination as
a request parameter this weakness can be exploited into redirecting user to
malicious pages by links that appear as links of trusted web page.

Recommended solution is not to use redirects and forwards. Application’s
security is strongly dependent on its design. An unsecured redirects and
forwards should be eliminated from the very beginning. When trying to
improve security of already existing application it is not always possible to
totally eliminate this flaw. If there is a need to keep redirects and forwards
within application’s logic, these shall avoid setting destination page as a
parameter. It parameters cannot be avoided then such parameters always
need to be validated to refer only to such pages that are valid and requesting
user is authorized to view them.

20



CHAPTER 3. SECURITY RISKS

3.11 Clickjacking

Clickjacking is a very powerful technique which was firstly used in 2008.At-
tacked facebook users were lured to give "likes" to chosen pages unwillingly.
Since abusing this weakness is very easy, the Clickjacking technique has
spread very quickly. This technique is performed by including exploitable
web page into malicious page in an iframe tag. This iframe is then set to
100% opacity via CSS so visitors cannot see it unless they inspect the HTML
code. Since most users do not possess the knowledge of HTML there is no
way they could suspect their accounts or identities being abused.

Visitors of a such pages are forced to click somewhere on the page, for
instance on some Next button or an image they want to view. But these
elements are positioned exactly under the see-throw iframe resulting in user
clicking onto some submit button, link or "Like" button. These iframes can
be either placed on some fixed position or can be always moving under user’s
cursor using JavaScript. If the user was logged in the exploitable applica-
tion and his/her browser still contains this information, clicking onto such
elements has same results as if the user clicked on them willingly.

Potential risk of this exploit is severe. It can lead from simple "Like"
exploit into posting some advertisements, illegal pictures or making unwanted
purchases.

3.11.1 Preventing Clickjacking

There are two possible ways to deal with Clickjacking. First approach,
used in the past, suggests disabling the <body> element from being rendered
and re-enabling it via JavaScript under condition it is not included in other
page or element (see listing 3.7). The web page contains a <style> element
with assigned ID. This element prevents the web page from being rendered
and needs to be removed when the page is not included in an <iframe>
element. This is done using JavaScript. The script either removes the afore-

21



CHAPTER 3. SECURITY RISKS

mentioned <style> element using its ID or forces the browser to render
current frame’s URL by setting top.location = self.location. This technique
is called "frame-breaker".

This solution is currently recommended only for legacy browsers that does
not support the second approach introduced in this section.

Listing 3.7: Clickjacking Protection - variant 1 [12].
1 <style id=" antiClickjack ">
2 body{ display:none ! important ;}
3 </style >
4

5 <script type="text/ javascript ">
6 if(self === top){
7 var antiClickjack = document . getElementById (
8 " antiClickjack ");
9 antiClickjack . parentNode . removeChild (

antiClickjack );
10 }
11 else{
12 top. location = self. location ;
13 }
14 </script >

Second approach to defend against Clickjacking is setting so called X-
FRAME-OPTIONS parameter into page’s HTTP header. This solution was
introduced in 2009 and is currently supported by all contemporary browsers.
By specifying this option to values DENY or SAMEORIGIN page will not
be rendered when included in any iframe tag at all or in any iframe outside
its origin site.

An example of setting X-FRAME-OPTIONS parameter in Wicket appli-
cation is shown listing 3.8. Note, that this example is platform dependent
and therefore may differ for other programming languages and frameworks.

22



CHAPTER 3. SECURITY RISKS

Listing 3.8: X-FRAME-OPTIONS settings.

1 @Override
2 protected void setHeaders ( WebResponse response ) {
3 super. setHeaders ( response );
4 response . setHeader ("X-Frame - Options ","deny");
5 }

23



Chapter 4

Current State of Security in
EEG/ERP Portal

After a theoretical base of possible attacks and threats this chapter in-
vestigates the level of security in EEG/ERP Portal. It describes performed
tests and their results. Following actions taken in order to improve overall
security are introduced in chapter 5 on page 30.

4.1 Injection Vulnerability

Since EEG/ERP Portal is developed in Java language and does not use
any direct code input to interpreter, it is immune against any Code Injections
in general.

Application’s data are stored in Oracle database and accessed using the
Hibernate framework. Special kind of SQL injections for Hibernate frame-
work is called HQL injection. Injection Prevention in EEG/ERP Portal is
ensured by parameter binding, a technique described in section 3.1.1 on page
10.

24



CHAPTER 4. CURRENT STATE OF SECURITY IN EEG/ERP
PORTAL

4.2 Cross-Site Scripting Vulnerability

In current implementation, application is secured against Cross-Site Script-
ing attacks. This is ensured by Apache Wicket framework, which escapes any
output by default. Such behaviour needs to be explicitly disabled [13] ev-
ery time the applications needs to skip the escaping process by declaring
.setEscapeModelStrings(false) for particular label, panel, etc.

However, user’s cookie files were not protected against script admission
and therefore were vulnerable to such attack. This issue was resolved as
described in section 5.2 on page 31.

4.3 Authentication and Session Management

The level of security in relation to Authentication and Session Manage-
ment was revised according to recommendations given in section 3.3 on page
12.

Currently, EEG/ERP Portal uses email address and password as login
credentials. The chosen password needs to have at least six alpha-numerical
characters, but there are no other requirements - e.g. how many numbers,
upper or lower case letters it must contain. Passwords in database are hashed,
not stored as a plain text.

In a case that a user needs to change his/her password, the original one is
required. This provides sufficient protection in situation when user’s cookie
was stolen and attacker might want to overtake user’s account by changing
its credential. The "forgotten password" function generates new password
which is then sent to given email address. If an attacker knew user’s email
address, used in the register process, and wanted to steal his account using
the "forgotten password" function, the attacker would have to gain access
into user’s email account first.

25



CHAPTER 4. CURRENT STATE OF SECURITY IN EEG/ERP
PORTAL

The amount of times user can attempt to log into EEG/ERP Portal is
not anyhow limited or restricted. The reasons on keeping such state are
discussed in section 5.3 on page 32.

The session ID is not exposed as a part of URL and credentials are trans-
ferred via SSL protected channel. However, no time period after which the
session is invalidated was set.

4.4 Securing Direct Object References

The Portal application pages were tested for presence of an URL param-
eter that could be possibly exploited to gain access to a restricted resource.
The tested pages and their results are shown in Table 4.1 on page 27.

All pages were proved secure. In many cases, the content is generated and
displayed based on user’s role, so even if a resource is accessed by parameter
value modification, a view matching user’s role is provided. In current state,
no actions were needed to be taken.

4.5 Cross-Site Request Forgery Vulnerability

Before using the Apache Wicket framework, the EEG/ERP Portal did not
use any security measures against Cross-Site Request Forgery and was there-
fore vulnerable to such technique. The Apache Wicket framework offers two
measures to prevent CSRF attacks from being executed. The first one, called
Session-relative URL, is used by default and therefore Portal application was
already provided with this protection.

The Session-relative URL means that there is a numerical counter bound
to session that contains the number of actions user took from the beginning
of the session. This counter is then used as a part of URL which looks, for
instance, as: http://147.228.64.172:8080/experiments-list?9. This number is
contained also in generated forms and compared upon their submission.

26



CHAPTER 4. CURRENT STATE OF SECURITY IN EEG/ERP
PORTAL

Figure 4.1: Object References Security Test.

Page Parameters Safe
AccessDeniedPage no yes
AccountOverViewPage no yes
ArticlesPage no yes
ConfirmPage no yes
DataFileDetailPage yes yes
ExperimentsDetailPage yes yes
ForgottenPasswordPage no yes
HistoryPage no yes
HomePage no yes
ChangePasswordPage no yes
ListExperimentsPage yes yes
ListPersonPage no yes
ListResearchGroupsPage yes yes
ListScenariosPage no yes
ListsPage no yes
MyGroupsPage no yes
PersonDetailPage yes yes
RegistrationPage no yes
ResearchGroupsDetailPage yes yes
ScenarioDetail yes yes
SocialNetworksPage no yes
UnderConstructPage no yes
WelcomePage no yes

27



CHAPTER 4. CURRENT STATE OF SECURITY IN EEG/ERP
PORTAL

However, this solution provides only a basic protection against CSRF, the
exchanged value isn’t encrypted and could potentially be guessed. In order
to improve application’s protection against CSRF, second measure, offered
by Apache Wicket framework, was implemented and is described in section
5.4 on page 32.

4.6 Security Configuration

The level of security in EEG/ERP Portal in relation to Security Miscon-
figuration was revised as described in section 3.6 on page 17. Application
uses default error page and printing StackTrace to visitors is disabled. It
uses Spring Security framework providing a system of roles to restrict access
to resources. There was no weakness found and therefore no action taken.
Only recommendation given is to keep using most up to date libraries and
web server.

4.7 Cryptographic Storage

Application’s database, containing private information collected from test
subject, did not use any encryption beside of storing passwords as hash im-
prints. Therefore, a set of private information was chosen and secured using
data encryption as described in section 5.5 on page 35.

4.8 Restricting URL Access

To restrict access to certain pages for registered users only a system of
roles is used. Currently the system defines a role of an administrator, a
registered user and anonymous visitor. This is ensured using Spring Security
framework and authorization annotations defining access requirements for
particular pages. No action were necessary to improve current system.

28



CHAPTER 4. CURRENT STATE OF SECURITY IN EEG/ERP
PORTAL

4.9 Transport Layer Protection

One of recommendations given in Thesis [14] investigating security mea-
sures in EEG/ERP Portal in 2010, was to provide sufficient protection of
communication channel using SSL protocol. The EEG/ERP Portal currently
uses such measure therefore the information exchanged between client and
server is not exposed and potentially vulnerable to be exploited.

4.10 Validation of Forwards and Redirects

The EEG/ERP Portal does not use forwards or redirects that could be
directly influenced by URL parameter modifications. Therefore, application
is safe against such threat and no improvement was necessary.

4.11 Clickjacking Vulnerability

The EEG/ERP Portal did not have any security measure against Click-
jaking and was vulnerable to such exploit. The implemented security im-
provement is described in section 5.6 on page 43 along with test performed
to verify this solution.

29



Chapter 5

Security Improvements in
EEG/ERP Portal

5.1 Preventing Injections

In current implementation, data stored in database are accessed using
Data Access Objects. Some of their methods use queries in form shown in
listing 5.1, some in form shown in listing 5.2.

Listing 5.1: Hibernate HQL example 1.

1 List <String > list = getSessionFactory ()
2 . getCurrentSession ()
3 . createQuery ( hqlQuery ).list ();

Listing 5.2: Hibernate HQL example 2.

1 List <String > list = getHibernateTemplate ()
2 . findByNamedParam (hglQuery ,
3 " groupId ", groupId );

30



CHAPTER 5. SECURITY IMPROVEMENTS IN EEG/ERP PORTAL

According to Hibernate documentation:

As of Hibernate 3.0.1, transactional Hibernate access code
can also be coded in plain Hibernate style. Hence, for newly

started projects, consider adopting the standard Hibernate3 style
of coding data access objects instead, based on

SessionFactory.getCurrentSession(). [15]

it is now supported creating queries by invoking SessionFactory methods
and using HibernateTemplate is no longer recommended. This means newly
added DAOs and their methods should follow this rule and current imple-
mentation should be unified so all queries are created and used in a same
way.

This is not an imminent security risk, but unified approach should be
used in order to simplify any potential transformation in case any security
flaw is found.

5.2 Preventing Cross-Site Scripting

To improve protection against XSS attacks as well as protection against
reading user’s cookie file via such scripts, two measures were taken. First,
all user input is escaped when outputted on a page. This is ensured by
Apache Wicket framework, which escapes any output by default as described
in section 4.2 on page 25. Second, application’s cookies were set to be HTTP-
only, and therefore readable only through HTTP requests, as described in
chapter 3.2.1 on page 11.

31



CHAPTER 5. SECURITY IMPROVEMENTS IN EEG/ERP PORTAL

5.3 Authentication and Session Management

As described in section 4.3 on page 25, there is no limitation on how many
attempts to login can be made. After consideration of possible solutions and
their impact on both, application security and user comfort, no actions were
made. If login attempts were bound to username, attacker could simply guess
valid usernames by being locked out after several unsuccessful login attempts
leaving him/her with a list of valid usernames. If users were simply locked out
for another login attempt for certain period of time, an attacker could exploit
such measure to limit real account owners from logging in as well, resulting
in inability to use the service. If login attempts were counted per session
or IP address, attacker could simlpy restart or change them before each
attempt leaving him in same position as though as there were no limitations.
In addition, guessing a matching pair of username and password using brute
force based attack would take an excessive amount of time even for one single
user.

Considering the above-mentioned reasons and a fact, that any measures
taken might have impact on user’s comfort of using EEG/ERP Portal, no
actions to limit login attempts were taken.

5.4 Cross-Site Request Forgery Protection

The CSRF protection implementation introduced in section 3.5.1 on page
14 would be convenient to use in former version of EEG/ERP Portal using
SpringWeb MVC. But since it now uses the Apache Wicket, more suitable
and complex solution was at hand. Apache Wicket provides a so called
CryptoMapper [16] allowing to encrypt any URL generated by the server.
The encryption algorithm generates a private key for each user and stores it
in his/her session. In addition, generated key is changed for every session.

32



CHAPTER 5. SECURITY IMPROVEMENTS IN EEG/ERP PORTAL

An example of encrypted URL is shown in Figure 5.1.

Figure 5.1: Encrypted URL example.

Providing native CSRF protection is quite unique among other web page
frameworks. It was desired by web developers during the Wicket’s develop-
ment phase.

5.4.1 Enabling CryptoMapper

Wicket’s CryptoMapper can be activated by adding a command shown
in listing 5.3 to init method of Application’s main class - EEGDataBaseAp-
plication.java. Once the CryptoMapper is activated, all generated URLs are
encrypted. To keep some pages accessible by their symbolical name (e.g.
/homepage) a mountPage method is used (see listing 5.4).

CryptoMapper can be used in multiple ways, all described in Table 5.2.
Pages mounted after enabling cryptoMapper stay accessible by their mount
name.

The main disadvantage of using CryptoMapper is that a page secured
by encrypting URL is not bookmarkable [17] or accessible by its name. To
keep a maximum level of user’s comfort while providing sufficient security to
most important pages a multi-level security was made. From list of pages,
already shown in Table 4.1 on page 27, only those processing private infor-
mation were chosen to be protected by encrypting their URL. Those are:
ForgottenPasswordPage, ChangePasswordPage and RegistrationPage. For
other pages, protection using session relative URL is considered sufficient.

Listing 5.3: Enabling CryptoMapper.

1 setRootRequestMapper (new CryptoMapper (
getRootRequestMapperAsCompound (), this));

33



CHAPTER 5. SECURITY IMPROVEMENTS IN EEG/ERP PORTAL

Figure 5.2: Multi-level Security using Wicket’s cryptoMapper.

Order Advantages Disadvantages
CryptoMapper
No pages mounted

Best security option.
Parameters cannot be
guessed nor used for
CSRF.

Pages are not acces-
sible by their symbol-
ical name and there-
fore cannot be book-
marked.

Mount Pages
CryptoMapper

Medium security
option. All pages
are encrypted but
are still accessible by
their symbolical name
and therefore book-
markable. Parameter
names remain hidden
from the user.

Pages can be accessed
by their name includ-
ing parameters which
could be guessed and
potentially abused by
attacker.

CryptoMapper
Mount Pages

Mounted pages are
not encrypted at all
meaning the URL is
clean and pages are
bookmarkable. User’s
orientation on page
might be smoother.

Weaker security op-
tion. Pages and their
parameters are not
protected against pos-
sible attacks.

34



CHAPTER 5. SECURITY IMPROVEMENTS IN EEG/ERP PORTAL

Listing 5.4: Mounting page to its name.

1 mountPage ("home -page", HomePage .class);

5.5 Data Storage Encryption

[18] EEG/ERP Portal project is focused on neuroinformatics science and
serves as a data store of experimental data. The subjects participating in
performed experiments provide their basic credentials for their identification,
such as name, surname, email address or date of birth. According to the
Czech law [1] this information is considered private. Anyone who collects,
keeps or in any way manipulates data containing private information is bound
by law to perform all actions necessary to protect this data and restrict any
possible access by unauthorized persons.

Considering the fact that private information stored in database is not
encrypted, one goal of this thesis is to find and implement such security
measures to provide strong and sufficient protection of collected data.

5.5.1 Existing Solutions

[18] Considering that the project of EEG/ERP Portal uses the Oracle
database it was obvious to investigate related work and possible solution.
Oracle provides support for a DICOM1 format [19]. It is commonly used to
store medical data in the field of neuroinformatics experiments or medical
experiments in general. The format’s header includes private information
about patients similar to information used and stored in EEG/ERP Portal.
Therefore, similar methods to secure this data are to be expected.

When storing medical data containing private information about the pa-
tient there are two possible approaches. The first one assumes that the
information, such as patient’s name, will no longer be needed and therefore

1http://medical.nema.org

35



CHAPTER 5. SECURITY IMPROVEMENTS IN EEG/ERP PORTAL

can be replaced with unique hash imprint that still identifies the patient but
no longer allows to decrypt their full name. Hash algorithms as SHA1 or
MD5 are commonly used for this purpose. The second approach requires the
private information to be securely stored with possibility of fully decrypting
the stored information, for example to contact the patient etc. In such case,
hash algorithms need to be replaced with encryption algorithms.

The second approach has been chosen and a way to encrypt and de-
crypt private data has been found for the needs of EEG/ERP Portal. Ora-
cle database encrypts private information in aforementioned DICOM format
[19] using its TDE - Transparent Data Encryption [20, 21] feature. Same
approach can be used for encrypting the private data stored in EEG/ERP
Portal.

5.5.2 Oracle Transparent Data Encryption

[18] Oracle’s Advanced Security pack, which is possible to use with Enter-
prise edition of Oracle database, includes methods for data encryption and
decryption. This can be achieved in two ways:

• Tablespace Data Encryption

• Column Data Encryption

The first option encrypts the whole database tablespace with all its data.
This approach should be, according to the Oracle’s manual, slightly faster
and more CPU efficient compared to the column encryption because all the
encryption is made in a cache memory during the select queries. On the other
hand, using this kind of encryption on already existing database requires its
cloning and transferring into newly made encrypted tablespace. The second
option is to encrypt only chosen columns by adding an "ENCRYPT" attribute
to their definition. Considering the need of transferring existing database and
the fact that only a small percentage of all stored data needs to be encrypted,
the second choice appears to be more convenient and fitting.

36



CHAPTER 5. SECURITY IMPROVEMENTS IN EEG/ERP PORTAL

When using Column Data Encryption, every table containing an en-
crypted column it is provided a specific key shared by all columns within
it. All this keys assigned to tables are all encrypted by so called Master key
which is stored in an Oracle wallet. The Oracle wallet can be either external
security device or a file. The Master key is stored outside the database and
therefore can be accessed only by security administrator(who can be com-
pletely different from a database administrator). Besides storing the Master
key, Oracle wallet is also responsible for the process of data encryption and
decryption. The default database wallet can be used or another one can be
created by specifying its location in SQLNET.ORA file.

Both ways of data encryption support commonly used encryption algo-
rithms [22], such as AES 128, 192, 256 and 3DES 168 (the number value
specifies the length of used encryption key). The Column data encryption
uses the AES 192 algorithm by default. This is considered slightly faster
than 3DES and its key length is sufficient. This algorithm is considered safe
and its complexity of breaking the cipher by brute force is estimated to be
2189 for the 192 bit key length.

5.5.3 Setting-up Transparent Data Encryption

Column version of Transparent Data Encryption can be set and enabled
in few steps [23]:

1. Create new Oracle wallet (if doesn’t exist) by specifying its location
in SQLNET.ORA file using ENCRYPTION_WALLET_LOCATION
parameter.

2. Create new Master Key: ALTER SYSTEM SET ENCRYPTION KEY
IDENTIFIED BY password

3. Set the wallet to be automatically opened after the database is restarted
or shut down: ALTER SYSTEM SET WALLET OPEN IDENTIFIED
BY password

37



CHAPTER 5. SECURITY IMPROVEMENTS IN EEG/ERP PORTAL

4. It is also highly recommended to set a "sticky bit" to the wallet file so
it cannot be accidentally deleted which would cause all the encrypted
data to be permanently lost since there would be no way of decrypting
them without the Master key. Sticky bit can be set using command:
CHMOD +t oracle_wallet_file.

When all the steps above are performed it is possible to either create a
new table or alter an existing one by specifying which columns are supposed
to be encrypted. This can be done by executing command shown in listing
5.5.

Listing 5.5: Alter Table script - structure.
1 ALTER TABLE

2 table_name
3 modify(
4 column_name ENCRYPT ,
5 ...
6 );

Specific script used to encrypt personal information stored in EEG/ERP
Portal database is described in listings 5.6 and 5.7 on pages 40 and 41. Beside
the ENCRYPT attribute it is also possible to specify following options:

• SALT / NO SALT

• USING ’encryption_algorithm’

• ’MAC’ / ’NOMAC’

SALT option defines whether or not to use a random string to strengthen
the cipher. Using salt makes identical values appear as different. It is con-
venient to use if data in column are not restricted to contain only unique
values. Once a column is encrypted using SALT option the salt can be re-
moved by altering the column to ENCRYPT NOSALT re-encrypting the
data automatically without forcing the user to do it manually.

38



CHAPTER 5. SECURITY IMPROVEMENTS IN EEG/ERP PORTAL

USING option defines the used encryption algorithm. Values 3DES168,
AES128, AES192, AES256 can be used, but all columns within one table
must use the same encryption algorithm.

NOMAC option specifies if integration check should be performed or not.
According to Oracle documentation using NOMAC option can save up to
20B per encrypted value but it is recommended to use integrity check unless
the amount of encrypted data is excessive. By default ’SHA-1’ algorithm is
used.

5.5.4 Choosing Data for Encryption

After analysis of data stored in database it was decided to encrypt only
specific columns in PERSON table (see Figure 5.3).

Figure 5.3: Definition of PERSON table.

39



CHAPTER 5. SECURITY IMPROVEMENTS IN EEG/ERP PORTAL

All values that could possibly lead to identifying a real person were taken
into consideration of encrypting them. From above-mentioned columns it
is name, surname, date of birth and possibly also email address, Facebook
id and phone number that are all easily traceable and connectible with real
person.

All columns that require unique values can be encrypted with the NO
SALT option, while SALT option was used with other columns to ensure
higher security by all values appearing different from each other. To alter
the table definition, following script showed in listing 5.6 was used.

Listing 5.6: Alter Table script - encryption.

1 ALTER TABLE

2 PERSON
3 modify
4 (
5 NAME encrypt ,
6 SURNAME encrypt ,
7 DATE_OF_BIRTH encrypt ,
8 email encrypt no salt ,
9 fb_uid encrypt no salt ,

10 phone_number encrypt
11 );

In case this encryption ever needs to be removed, similar script can be
used to turn the encryption off (see listing 5.7).

40



CHAPTER 5. SECURITY IMPROVEMENTS IN EEG/ERP PORTAL

Listing 5.7: Alter Table script - decryption.

1 ALTER TABLE

2 PERSON
3 modify
4 (
5 NAME decrypt ,
6 SURNAME decrypt ,
7 DATE_OF_BIRTH decrypt ,
8 email decrypt ,
9 fb_uid decrypt ,

10 phone_number decrypt
11 );

5.5.5 Impact of Encryption on Database Response Time

[18] To compare the difference in database performance with or without
using the Transparent Data Encryption a simple test case was prepared.

A table with exactly the same definition as PERSON table was created,
once using the encryption and once without it. Then this table was repeat-
edly filled with certain amount of data - 100, 1000 and 10000 rows. For
each of this number a full select over the table was performed and value of
response time was measured. This was done 100 times for each table size
without data encryption and repeated for the same amount but on the table
with encrypted data.

From these measured times an average value, which is shown in graph in
Figure 5.4 on page 42, was taken.

Also a SELECT including WHERE clause was tested using the same
table and scenario. The results for query
SELECT * from test_table WHERE email = ’test_subject@gmail.com’
are shown in Figure 5.5 on page 42.

41



CHAPTER 5. SECURITY IMPROVEMENTS IN EEG/ERP PORTAL

Figure 5.4: Graph of response times with/out TDE.

Figure 5.5: Graph of response times for SELECT including WHERE clause.

42



CHAPTER 5. SECURITY IMPROVEMENTS IN EEG/ERP PORTAL

These values prove that there is some increase in response time, yet it has
to be taken into consideration that due to Oracle’s query optimisation and
result caching its exact value doesn’t necessarily have to depict reality. That
is why this was tested on bigger amount of data while the application usually
fetches only a single row. In addition, the measured times also include the
amount of time necessary to transport the results over the internet which
might have influenced their values.

Considering the results provided by aforementioned test it is very easy
and convenient to use Oracle’s Transparent Data Encryption for securing the
stored private data without any significant impact on database performance.
It should be still kept in mind that securing data with Oracle TDE only
protects physically stored data against direct access of unauthorized person
but has no influence on possible abuse of web application or monitoring an
ongoing information exchange between client and application server. This
security measure is therefore supported by other improvements, such as by
using secure encrypted communication on web via SSL protocol.

5.6 Clickjacking Prevention

To protect EEG/ERP Portal against Clickjacking, the second approach,
using the X-FRAME-OPTIONS, described in section 3.11.1 on page 21, was
used. X-FRAME-OPTIONS parameter can be added into page’s HTTP
header by overriding setHeaders method in BasePage class definition (see
example in listing 5.8).

Listing 5.8: X-FRAME-OPTIONS settings.

1 @Override
2 protected void setHeaders ( WebResponse response ) {
3 super. setHeaders ( response );
4 response . setHeader ("X-Frame - Options ","deny");
5 }

43



CHAPTER 5. SECURITY IMPROVEMENTS IN EEG/ERP PORTAL

This solution was tested using simple web page code shown in listing 5.9.
For demonstration purposes, home-page was left without Clickjacking pro-
tection while experiments-list had the X-FRAME-OPTIONS parameter set
to "DENY". As you can see in Figure 5.6, the unprotected page is rendered
as usual while the iframe with protected page remains blank.

Listing 5.9: X-FRAME-OPTIONS test.

1 <!DOCTYPE html >
2 <html >
3 <body >
4

5 <h1>Test X-FRAME - OPTIONS </h1>
6

7 <p>home -page </p>
8 <p><iframe src="http :// localhost :8080/ home -page">
9 </iframe ></p>

10

11 <p>experiments -list </p>
12 <p><iframe src="http :// localhost :8080/ experiments -

list"></iframe ></p>
13

14 </body >
15 </html >

44



CHAPTER 5. SECURITY IMPROVEMENTS IN EEG/ERP PORTAL

Figure 5.6: Results of X-FRAME-OPTIONS test.

45



Chapter 6

Building Secured E-Shop

Providing strong security measures is a main goal of any online store
development. This chapter depicts design and implementation of secured
online store for EEG/ERP Portal. The application must ensure that the
whole process of purchase, including the payment processing, is secured and
cannot be exploited. The EEG/ERP Portal is intended to share its collected
data with public community, therefore part of this thesis suggests security
measures needed to provide a possibility of selling the collected experimental
data.

6.1 Current State of EEG/ERP Portal

In current situation, EEG/ERP Portal offers a possibility to share and
download scenarios and experiments among registered users. The research
group, developing the Portal project, has a vision of allowing Portal visitors to
purchase data collected from performed experiments. Such goal will require
labelling published data as either public, downloadable for free, or private,
purchasable for a fee.

The experiments should be grouped into purchasable packs, each con-
taining several experiments or scenarios. These packs will contain only

46



CHAPTER 6. BUILDING SECURED E-SHOP

anonymized data, so it will be impossible to anyhow identify the subjects
measured during these experiments.

The package structure, amount of experiments it will contain and its
pricing is recently being discussed. Therefore the developed store operates
with single experiments and serves as a prototype or proof of concept.

6.2 Shopping Cart Functions

The designed online store is required to provide following functions:

• browse store of available experiments

• add experiments to the cart

• review the cart content

• remove experiments from the cart

• check out current cart content as an order

• pay for an order online

6.3 Payment Options

When building an online store, it is important to offer various payment
methods. Since each method requires its own implementation and particular
payment methods are being subject of current discussion, it was decided to
implement only the PayPal payment option. In addition to PayPal services,
application could, in the future, accept payments with credit cards or other
online payment services similar to PayPal, such as eGold, MoneyBookers or
Stormpay.

PayPal service was chosen as one of the most used and known online
payment services, and so a high level of security is to be expected.

47



CHAPTER 6. BUILDING SECURED E-SHOP

6.4 Shopping Cart Design

The design of EEG/ERP Portal’s shopping cart is based upon example of
Apache Wicket tutorial book [13]. Since the shopping cart object is unique
for each user and his session, the object of shopping cart is placed in the
EEGApplicationSession object, which offers methods for cart creation and
admission. The shopping cart is destroyed together with session when it
cease to exist.

For more details on Shopping cart and Session class, such as attribute
and method list, see UML diagram in Figure 6.1.

Figure 6.1: Shopping Cart UML diagram.

Shopping cart is a wrapper object to manage user’s order - add items
to the cart, remove them, compute the total price of order and perform the
process of checking out and paying.

The very order is implemented as an ArrayList of Experiments. Since user
can buy an experiment only once, there was no need to deal with quantity
of purchased items. Therefore, object of Map, usually used for managing
orders, could be replaced with a List of items.

To ensure each experiment can be placed inside a list of ordered items
only once, the shopping cart’s addToCart method always checks experiment’s
presence before adding it into order. In addition, this restriction is also sup-
ported by making "Add to Cart" links invisible for every experiment already
placed in an order. In future, when the EEG/ERP Portal’s store goes live,
this rule should be extended even for experiments user already bought.

48



CHAPTER 6. BUILDING SECURED E-SHOP

6.5 Example Purchase Scenario

This section describes the process of online purchase from user’s point of
view. The purchase use case is shown to introduce the context of payment
processing. The security measures taken to secure each of the following
purchase steps are described in section 6.7 on page 59.

1. In order to view a list of purchasable experiments, user has to be logged
in.

See an example of Experiment store in Figure 6.2 on page 50.

2. While browsing through available experiments, user can simply add
desired experiment into his/her cart by licking the "Add to Cart" link.

See an "Add to Cart" link in Figure 6.3 on page 50.

Note, that the user can always see how many items are there in a cart
by checking the number shown next to "My Cart" link placed in top
right navigation menu.

Top right menu can be seen in Figure 6.4 on page 50.

3. When done adding experiments in the cart, the user can view its current
content by clicking the "My Cart" link placed in top right navigation
menu.

Top right menu can be seen in Figure 6.4 on page 50.

4. On the "My Cart" page, the user can review details of selected exper-
iments, remove them from the cart, see total price of order and select
a payment method.

An example of "My Cart" page can be seen in Figure 6.5 on page 52.

49



CHAPTER 6. BUILDING SECURED E-SHOP

Figure 6.2: Experiment list example.

Figure 6.3: Add to Cart link.

Figure 6.4: My Cart menu.

50



CHAPTER 6. BUILDING SECURED E-SHOP

5. After reviewing the current order and choosing the payment method,
user is redirected to PayPal’s web site in order to authorize the pay-
ment.

(a) User is prompted to log in using his PayPal credentials.
See an example of PayPal login screen in Figure 6.6 on page 52.

(b) Upon successful login, user is shown his/her order’s description
along with total price and vendor’s name, EEG Database, in this
case. In this step, the user is asked to authorize the payment by
clicking the "Continue" button. The user can also cancel current
transaction. In such case, the user is redirected back into his/her
shopping cart on EEG/ERP Portal web site.
See an example of payment authorization page in Figure 6.7 on
page 53.

6. When the payment is authorized, the user is redirected to EEG/ERP
Portal’s payment confirmation page. On this page, the user is asked
to do a final revision of authorized payment’s total price and a list of
ordered items. The user can either confirm or cancel his order. Upon
cancelling the order, the user is redirected back to his/her cart, where
he/she can modify the items placed in the order.

See an example of Order confirmation page in Figure 6.8 on page 53.

7. Upon confirming the payment, user’s PayPal account is billed for amount
of order’s total price and user is then redirected to "My Downloads"
page. There, user is provided with successful payment confirmation
message along with a list of purchased items.

See an example of My Downloads page in Figure 6.9 on page 54.

8. In case an error occurs when processing the payment, the user is redi-
rected to an Error page. The Error page contains a brief information
that the order could not have been completed and offers a possibility
to continue either to user’s cart or EEG/ERP Portal’s home page. See
an example of Error page in Figure 6.10 on page 54.

51



CHAPTER 6. BUILDING SECURED E-SHOP

Figure 6.5: My Cart page.

Figure 6.6: PayPal login screen.

52



CHAPTER 6. BUILDING SECURED E-SHOP

Figure 6.7: PayPal payment authorization page.

Figure 6.8: Order confirmation page.

53



CHAPTER 6. BUILDING SECURED E-SHOP

Figure 6.9: My Downloads page.

Figure 6.10: Error page.

54



CHAPTER 6. BUILDING SECURED E-SHOP

6.6 Processing a Payment

Since EEG/ERP Portal store deals only with digital goods, there is no
need to bother customers with a need to fill in unnecessary shipping details.
For this purpose PayPal offers a so called "Express Checkout" service which
is a modification of standard checkout process but eliminating the need of
filling any additional information. The Express Checkout process is shown
in Figure 6.11 on page 56 and each phase is described in this section.

To use PayPal’s payment services within an application developers are
provided with PayPal SDK libraries1 along with application credentials tied
to a business account. Every PayPal business account receives 3 keys to
identify and authorize vendor’s application when billing customer’s account
as shown in listing 6.1.

Payment processing consist of following steps:

User chooses to perform an Express Checkout with PayPal. Vendor ap-
plication then needs to build a request to be sent to PayPal’s server. This
setExpressCheckout request must contains following information as shown in
listing 6.2.

Listing 6.1: PayPal credentials example.

1 Username : eegportal_api1 .zcu.cz
2 Password : 1363432632
3 Signature : AFcWxV21C7fd0v3bYYYRCpSSRl31Am .91
4 JsLe8yAsbqHkYJ35J4tbGWk

1http://paypal.github.io

55



CHAPTER 6. BUILDING SECURED E-SHOP

Figure 6.11: Express Checkout process [24].

56



CHAPTER 6. BUILDING SECURED E-SHOP

Listing 6.2: setExpressCheckout request example [25].
1 "USER=<callerID > # User ID of the PayPal caller

account
2 &PWD=<callerPswd > # Password of the caller account
3 & SIGNATURE =<callerSig > # Signature of the caller

account
4 &METHOD= SetExpressCheckout
5 & VERSION =93
6 & PAYMENTREQUEST_0_PAYMENTACTION =SALE # type of

payment
7 & PAYMENTREQUEST_0_AMT =19.95 # amount of transaction
8 & PAYMENTREQUEST_0_CURRENCYCODE =USD # currency of

transaction
9 & RETURNURL =http :// www. example .com/ success .html # URL

of your payment confirmation page
10 & CANCELURL =http :// www. example .com/cancel.html # URL

redirect if customer cancels payment "

When the request is completed, it is sent to PayPal’s server that registers
a payment with provided details and responds with a token identifying re-
quested payment. The setExpressCheckout request is created and submitted
using the aforementioned PayPal SDK’s API call. When application receives
requested token, it redirects the user to PayPal web site using received token’s
value as an URL parameter in form:

https://www.paypal.com/webscr?cmd=_express-checkout&token=<tValue>

User is then prompted to log in using his PayPal credentials, review his
order’s total price and description and authorize the payment to be charged.
Upon user’s decision, he is redirected either to cancel or success URL specified
in the setExpressCheckout request.

After authorizing a payment for PayPal, the user is requested to con-
firm the payment again for vendor application. When both confirmations,
for PayPal and EEG/ERP Portal store, are given, application needs to get

57



CHAPTER 6. BUILDING SECURED E-SHOP

user’s PayPal ID in order to charge him/her. To receive the payer’s ID, get-
ExpressCheckout request, containing customer’s payer ID, must be sent. The
getExpressCheckout request must specify details needed as shown in listing
6.3.

Listing 6.3: getExpressCheckout request example [25].

1 "USER=<callerID >
2 &PWD=<callerPswd >
3 & SIGNATURE =<callerSig >
4 &METHOD= GetExpressCheckoutDetails
5 & VERSION =93
6 &TOKEN=<tokenValue >"

When application recieves customer’s PayPal payer ID, his account can
be finally charged for his order’s price. The billing is requested sending doEx-
pressCheckout request containing details as shown in listing 6.4. Both these
requests are created and submitted to PayPal’s server using the provided
SDK’s API.

Listing 6.4: doExpressCheckout request example [25].

1 "USER=<callerID >
2 &PWD=<callerPswd >
3 & SIGNATURE =<callerSig >
4 &METHOD= DoExpressCheckoutPayment
5 & VERSION =93
6 &TOKEN=<tokenValue >
7 & PAYERID =<payerID > # customer ’s unique PayPal ID
8 & PAYMENTREQUEST_0_PAYMENTACTION =SALE # payment type
9 & PAYMENTREQUEST_0_AMT =19.95 # transaction amount

10 & PAYMENTREQUEST_0_CURRENCYCODE =USD # transaction
currency , e.g. US dollars "

58



CHAPTER 6. BUILDING SECURED E-SHOP

6.7 Securing the Purchase Process

The process of purchasing experiments is divided into several phases:

• Order review

• Checkout

• Payment authorization on PayPal

• Payment confirmation in EEG/ERP Portal

• Executing transaction

• Transaction success confirmation

• Informing about error during payment processing

The security measures required were taken into consideration for each of
the listed phases. The store must ensure, that no one can alter the content
of the cart or its pricing, neither an attacker nor user himself. The following
security measures were implemented:

• The cart does not store the information about order’s total price. The
price is computed whenever requested.

• The process of checking out requires two-step confirmation.

• All URLs involved in payment processing are encrypted with user and
session specific key.

• For security reasons, the error page does not specify the error occurred.
Revealing any details could lead into exposing a possibly exploitable
weakness.

59



CHAPTER 6. BUILDING SECURED E-SHOP

6.7.1 Total Price Protection

As was already stated, the shopping cart does not store the information
about order’s total price. For security reasons, the total price is computed
whenever requested to ensure the price always matches the cart’s content.

6.7.2 Two-step Confirmation

After authorizing a payment for PayPal, the user is requested to confirm
the payment again for vendor application. The Two-step confirmation scheme
is shown in Figure 6.12 on page 61. The blue highlighted part depicts the
first step - payment authorization on PayPal web site. The grey highlighted
part shows the second step - payment confirmation in vendor application.
This two-step confirmation is required by PayPal’s service policy [25, 24]. In
addition, this rule provides a security measure when the user browse vendor
application in multiple tabs at once. In such case, a situation could occur
when the user performs checkout on PayPal in one tab while altering the
order in another. To solve such exploitable weakness, application can either
implement the aforementioned two-step confirmation or lock the shopping
cart to prevent any changes of order during the checkout process. To im-
plement and manage such lock is difficult in order to prevent its potential
deadlock. Vendor application would have to keep track of all opened tabs.
In case the user performed a checkout in one of multiple tabs, then closed
this tab and tried to perform checkout from another tab, the shopping cart
would still be locked by the first, already closed tab. This would result in an
inability to perform checkout process at all. To avoid this issue, application
would have to be aware of any tab being closed and check whether it was
keeping the cart locked or not. On the other hand, when using the two step
confirmation rule, a checkout process can only result in an error when altering
order in one tab, while performing checkout on payment service provider’s
site from another tab.

60



CHAPTER 6. BUILDING SECURED E-SHOP

Figure 6.12: Two-step confirmation scheme [24].

For instance, when creating a checkout request, application needs to spec-
ify the total price of order. When user authorizes the payment and confirms
the order in vendor application, another request, to bill the user’s account, is
created and sent. This request contains the total price again. In case, order
has been altered, these two prices would differ and PayPal would refuse to
process such payment. In that case, PayPal would answer the vendor ap-
plication with a negative response indicating an error during the payment
process. If such situation occurs in current EEG/ERP Portal’s shopping
cart, the user is redirected to Error page with information about unsuccess-
ful payment. The user can then try to perform the whole checkout process
again.

Following the OWASP’s recommendation (see section 3.6 on page 17),
EEG/ERP Portal uses default Error page for any error that occurs during
payment processing in order not to expose unnecessary and possibly ex-
ploitable error details.

61



CHAPTER 6. BUILDING SECURED E-SHOP

6.7.3 Encryption

Every URL involved in shopping process is encrypted with user and ses-
sion bound secret key. In addition, these pages have no symbolical name and
are therefore inaccessible by guessing their URL names. This ensures that
there is no URL an attacker could abuse to modify shopping cart content or
its total price. It also provides overall immunity against CSRF attacks.

The encryption is ensured using the Apache Wicket’s CryptoMapper de-
scribed in section 5.4 on page 32.

6.8 Description of Implemented E-Shop

Any visitor, who is authorized to view a list of shared experiments is
also allowed to purchase them. When viewing said list, user can add desired
experiment into his cart. Any experiment can be added into the shopping
cart only once. This is ensured in two steps. First, the implementation of
shopping cart always checks, upon calling the addToCart method, whether
the requested experiment isn’t in the cart already. Second, the "Add to Cart"
link is disabled and not shown for experiments that are already in the cart.

When user is done selecting experiments, he/she can then proceed to
review content of his order by clicking "My Cart" link placed in top right
navigation menu next to his/her profile management link. While browsing
his/her order, user can remove experiments from the cart, view chosen ex-
periment’s details or checkout his/her order and proceed to pay. Since the
prototype only operates with single experiments instead of packages and the
pricing wasn’t decided yet, every experiment has a fixed price of 5e.

The left menu of shopping cart is designed to allow the user to either view
the current content of his/her order or let him/her view a list of previous pur-
chases, allowing him/her to re-download them. For aforementioned reasons,
the "My downloads" page currently serves only for viewing the content of
order upon its successful realization. The application currently doesn’t store

62



CHAPTER 6. BUILDING SECURED E-SHOP

any information about purchased experiments and therefore users cannot
view their purchase history.

The shopping cart currently offers only one payment method - PayPal’s
Express Checkout. The other payment methods can be added in the future.
In addition, all PayPal payments currently take place in PayPal’s Sandbox
[26] - test server for developers.

63



Chapter 7

Conclusion

In this thesis, I investigated and described current security threats iden-
tified by The Open Web Application Project in field of web applications.
Each such threat was described along with general solution for its removal
and prevention.

In Chapter 4, the current level of security in EEG/ERP Portal is tested
in order to ensure the project provides sufficient security measures to pro-
tect private information collected from performed experiments. Investigating
and improving security measures is required by Czech law whenever private
data are collected, stored or processed. Security level was evaluated and
recommendations for security improvements were given and implemented in
Chapter 5.

In Chapter 6, I designed and implemented a prototype of secured online
store for EEG/ERP Portal web site. Its design is based on security measures
implemented in previous parts of this thesis. The e-shop offers an ability to
browse a list of available experiments, add them to cart, checkout and pay the
order using PayPal’s online payment services. An access to shopping cart is
secured using Apache Wicket’s CryptoMapper, encrypting all related URLs.
The checkout process follows the two-step confirmation rule to ensure the
order cannot be anyhow exploited or altered during the payment processing.

64



CHAPTER 7. CONCLUSION

The implemented online store is prepared to be extended in the future by
adding more payment options.

65



List of Abbreviations

CSRF Cross-Site Request Forgery
EEG Electroencephalography
ERP Event-Related Potential
GUI Graphical User Interface
HQL Hibernate Query Language
MVC Model View Controller
ORM Object Relational Mapping
OWASP The Open Web Application Security Project
SQL Structured Query Language
SSL Secure Sockets Layer
TDE Transparent Data Encryption
URL Uniform Resource Locator
XML Extensible Markup Language
XSS Cross-Site Scripting



References

[1] Czech law about protecting private information. [online], cited: 1. 1.
2013. http://business.center.cz/business/pravo/zakony/oou/
cast1h2.aspx.

[2] The Open Web Application Security Project. Top 10 list - 2010.
[online], cited: 17. 4. 2013.
owasptop10.googlecode.com/files/OWASPTop10-2010.pdf.

[3] The Open Web Application Security Project. Top 10 list - 2013.
[online], cited: 17. 4. 2013.
https://www.owasp.org/index.php/Top_10_2013-T10.

[4] Tsung-Po Lin. Shih-Kun Huang. D.T. Lee. Sy-Yen Kuo.
Yao-Wen Huang., Chung-Hung Tsai. A testing framework for Web
application security assessment. Computer Networks, Volume 48(Issue
5):Pages 739–761, 5 August 2005.

[5] GOLLMAN Dieter. Securing Web applications. Information Security
Technical Report, Volume 13(Issue 1):Pages 1–9, 2008.

[6] MORGAN David. Web application security – SQL injection attacks.
Network Security, Volume 2006(Issue 4):Pages 4–5, April 2006.

[7] Hee Beng Kuan Tan. Lwin Khin Shar. Automated removal of cross site
scripting vulnerabilities in web applications. Information and Software
Technology, Volume 54(Issue 5):Pages 467–478, May 2012.



REFERENCES

[8] RITCHIE Paul. The security risks of AJAX/web 2.0 applications.
Network Security, Volume 2007(Issue 3):Pages 4–8, March 2007.

[9] The Open Web Application Security Project. Testing for CSRF.
[online], cited: 17. 4. 2013. https:
//www.owasp.org/index.php/Testing_for_CSRF_(OWASP-SM-005).

[10] SANDHU Ravi. Speculations on the science of web user security.
Computer Networks, Volume 56(Issue 18):Pages 3891–3895, December
2012.

[11] ZUASTI Ricardo. Preventing CSRF in Java web apps. [online], cited:
17. 4. 2013. http:
//ricardozuasti.com/2012/preventing-csrf-in-java-web-apps/.

[12] The Open Web Application Project. Clickjacking Defense Cheat Sheet.
[online], cited: 19. 4. 2013. https:
//www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet.

[13] HILLENIUS Eelco. DASHORST Martijn. Wicket in Action. Manning,
Greenwich, 2009. ISBN 1-932394-98-2.

[14] VLAŠIMSKÝ Jiří. System oprávnění v EEG/ERP portálu. Master’s
thesis, University of West Bohemia. Department of Computer Science
and Engineering, Pilsen, 2011.

[15] HibernateTemplate Class Documentation. [online], cited: 17. 4. 2013.
http://static.springsource.org/spring/docs/2.5.x/api/org/
springframework/orm/hibernate3/HibernateTemplate.html.

[16] VAYNBERG Igor. Apache Wicket Cookbook. Packt, Birmingham,
2011. ISBN 978-1-849511-60-5.

[17] Wicket und CSRF. [online], cited: 17. 4. 2013. http://codepitbull.
wordpress.com/2012/04/10/wicket-und-csrf-deutsch/.



REFERENCES

[18] FRONĚK Jan. Data Encryption in Oracle Database. Student’s
project, University of West Bohemia. Department of Computer Science
and Engineering, Pilsen, 2013.

[19] Oracle Database 11g DICOM Medical Image Support. [online],
September 2009. http://www.oracle.com/technetwork/products/
multimedia/overview/dicom11gr2-wp-medimgsupport-133109.pdf.

[20] Oracle TDE documentation. [online], cited: 1. 1. 2013. http://docs.
oracle.com/cd/B19306_01/network.102/b14268/asotrans.htm.

[21] Oracle Advanced Security Transparent Data Encryption Best
Practices. [online], March 2012.
http://www.oracle.com/technetwork/database/security/
twp-transparent-data-encryption-bes-130696.pdf.

[22] Oracle Advanced Security with Oracle Database 11g Release 2.
[online], October 2010. http://www.oracle.com/technetwork/
database/owp-security-advanced-security-11gr-133411.pdf.

[23] Oracle Advanced Security Administration documentation. [online],
cited: 1.1.2013. http://students.kiv.zcu.cz/doc/oracle/
network.112/e10746/toc.htm.

[24] PayPal. Getting Started With Express Checkout. [online], cited: 17. 4.
2013.
https://www.x.com/developers/paypal/documentation-tools/
express-checkout/integration-guide/ECGettingStarted.

[25] PayPal. How to Create One-Time Payments Using Express Checkout.
[online], cited: 17. 4. 2013.
https://www.x.com/developers/paypal/documentation-tools/
express-checkout/how-to/ht_ec-singleItemPayment-curl-etc.

[26] PayPal. Paypal Sandbox Overview. [online], cited: 17. 4. 2013.
https://www.x.com/developers/paypal/documentation-tools/ug_
sandbox.



Appendix A

CD content

This thesis has a CD attached which contains following folders:

• bin - contains an executable file EEGBase.war with complete project
of EEG/ERP Portal. The .war file is executable on any common web
container, such as Jetty or Apache Tomcat.

• doc - contains electronic version of this thesis in a .pdf file

• src - contains source codes of EEG/ERP Portal project


