

University of West Bohemia

Faculty of applied sciences

Department of computer science and Engineering

DIPLOMA THESIS

NOSQL DATABASES IN EEG/ERP

DOMAIN

Pilsen, 2013 Ladislav Janák

Acknowledgments

First of all, I would like to thank to my family and friends for the support during the study.

Furthermore, I would like to thank the tutor of my diploma thesis Václav Papež, and his colleague

Roman Mouček. Thanks to their valuable advices and comments it was possible to realize this

thesis and brought it into the final form.

Statement

I hereby declare that this master thesis is completely my own work and that I used only

the cited sources.

Pilsen, ……………………….

……………………………………………
 Ladislav Janák

Abstract

 NoSQL databases in EEG/ERP domain

This thesis deals with current knowledge in NoSQL databases. The main goal was to

choose a suitable NoSQL database model and a related NoSQL database system. NoSQL database

system could replace the current relational database system used in the EEG/ERP portal

application. This request of replacement within the meaning of improvement current EEG/ERP

portal’s database model has been made by EEG/ERP research group at the University of West

Bohemia. This thesis addresses the issue of the suitability of the chosen NoSQL database system

for EEG/ERP domain. This suitability is evaluated on the base of working convenience and

performance testing of the new database system in comparison with existing solution.

The theoretical part of this work contains general overview and concepts of database

models that are currently available. Then relational and NoSQL models are compared. It is

followed by the description of the current EEG/ERP portal database layer and the more detailed

description of the chosen NoSQL database system. In the practical part the development of the

NoSQL database model from the EEG/ERP portal model is described. Then the selection of the

part of the EEG/ERP portal model and the development of the corresponding NoSQL database

model for testing purposes are presented. Performance analysis of both models using the same

database queries and commands over each database model is discussed in the next part. The last

part of this work evaluates the suitability of the chosen NoSQL model for the EEG/ERP domain.

 1 INTRODUCTION 1 INTRODUCTION

CONTENT

1 INTRODUCTION ... 7

2 THEORETICAL PART .. 8

2.1 DATABASE MODELS .. 8

2.1.1 General characteristic .. 8

2.1.2 Relational database model – basic concepts ... 9

2.1.3 NoSQL generally information .. 12

2.1.4 Basic description of chosen NoSQL database models .. 14

2.2 COMPARISON OF RELATIONAL AND NOSQL APPROACH .. 20

2.2.1 When to choose and not to choose an RDBMS... 20

2.2.2 When to choose and not to choose NoSQL ... 21

2.3 EEG/ERP PORTAL APPLICATION ... 23

2.3.1 General characteristic .. 23

2.3.2 Database layer ... 23

2.4 ORIENTDB NOSQL DATABASE ... 24

2.4.1 Main concepts ... 24

2.4.2 APIs .. 28

2.4.3 TinkerPop Blueprints and Graph model .. 29

2.4.4 Query possibilities ... 30

2.4.5 Binary data management .. 33

2.4.6 OrientDB server ... 34

2.4.7 Tools for database management ... 35

3 PRACTICAL PART .. 38

3.1 CREATION OF EEG/ERP ORIENTDB GRAPH MODEL ... 38

3.1.1 Left out tables .. 38

3.1.2 Decomposition on vertices .. 40

3.1.3 Decomposition on edges and semantics description of edges between nodes 40

3.1.4 Installation of OrientDB ... 41

3.1.5 Database creation .. 41

3.1.6 Import of EEG/ERP RDBMS model into OrientDB graph database......................... 42

3.2 CREATION OF DATABASE MODEL FOR TESTING PURPOSES .. 48

3.2.1 Software Assumptions ... 49

3.2.2 Database model ... 49

3.2.3 generating of Testing data .. 51

3.3 TESTING OF ORIENTDB ... 53

3.3.1 Used testing method ... 53

3.3.2 Testing configuration, testing software and tested databases Setting 54

3.3.3 OrientDB Java API basics ... 55

3.3.4 Binary files storing ... 56

3.3.5 Types of tested queries and commands .. 58

3.3.6 OrientDB graph model suitability for EEG/ERP domain .. 75

4 CONCLUSION .. 78

5 LIST OF ABBREVIATIONS .. 80

6 BIBLIOGRAPHY .. 81

7 ATTACHMENTS .. 84

ATTACHMENT A .. 84

 1 INTRODUCTION 1 INTRODUCTION

ATTACHMENT B .. 88

ATTACHMENT C .. 90

ATTACHMENT D .. 92

ATTACHMENT E ... 95

ATTACHMENT F ... 100

ATTACHMENT G .. 103

ATTACHMENT H .. 106

ATTACHMENT I .. 107

 1 INTRODUCTION 1 INTRODUCTION

7

1 INTRODUCTION

Database layer of any software application (web, standalone, embedded, etc.) is one of

the most important parts of application which deals with efficient data management – important

roles play especially performance aspects, good variability of data model, more kinds of

supported Application Program Interfaces (APIs) and standards, good support for query languages

or good scaling options. The importance of database systems has been rapidly increased,

especially in recent years when thousands of terabytes of data (social data, business data, etc.)

are processed per second. Outside the standard usage there are two relatively new areas of

database using – social networking and data mining.

Standard relational databases with their tabular model are used for well-known use cases

like banking, education, finance, sales, etc. However, they are not so suitable for more general

models, which are used e.g. in social networking, where model forms a network where every

node of the network is connected with any other node and the nodes are connected with edges.

Model for this network in relational database is often very difficult. Moreover, this model has

small capabilities of semantic expression of relationships among records. Now, new generation of

database systems is coming – Not only SQL (NoSQL). These database systems are very suitable for

applications like social networking or data analysis. More types of NoSQL databases exist, which

are different in their database model and their query language. It is important to realize that

NoSQL is not a replacement for relational databases. Both are suitable for specific application.

 This work was created on the base of requirements of an EEG/ERP portal group. Currently,

the EEG/ERP portal application uses Oracle relational database as database layer. The main

requirement was to explore non – relational database solutions, which may be suitable for

replacement or improvement of current database layer and thus to increase the performance and

options variability. As the best solution for this purpose I chose the OrientDB database, which is

NoSQL document/graph database. I chose OrientDB on the base of previous study. I imported the

part of EEG/ERP portal database model into OrientDB database model. In this work I will present

the analysis of results of database queries testing and commands on OrientDB NoSQL database

system against Oracle relational database system. These tests are performed on the same sub-

model of EEG/ERP portal application. Finally, I bring my own point of view on OrientDB solution

and I bring the summary of suitability of this solution for the EEG/ERP domain.

 2 THEORETICAL PART 2 THEORETICAL PART

8

2 THEORETICAL PART

2.1 DATABASE MODELS

2.1.1 GENERAL CHARACTERISTIC

Information for this chapter was taken from [1].

Database model allows making abstractions of real-world events or conditions and enable

us to store characteristics of entities and relationships between them. It allows collecting data

into logical construct which represents the data structure and the data relationships.

Figure 2-1 History of database evolution [2]

Database model may be grouped into two categories:

 Conceptual model: focuses on the logical nature of data (what is represented in the

database). Conceptual models in data modelling are:

 Entity relationships (E-R) model

 Domain model

E-R models use three types of relationships to describe associations among data; relationships

can be seen on Figure 1-2.

 2 THEORETICAL PART 2 THEORETICAL PART

9

Figure 2-2 Types of entity relationships in conceptual E-R model

 Implementation model: it explains how information is represented in the database or

how the data structures are implemented. Implementation models are:

 Hierarchical database model (this database model is no longer used)

 Network database model (this database model is no longer used)

 Relational database model

There also are other database systems – NoSQL. The well-known NoSQL database models are:

 Document database model

 Column database model

 Key-Value database model

 Graph database model

2.1.2 RELATIONAL DATABASE MODEL – BASIC CONCEPTS

Information for this chapter was taken from [1] [3].

Basically the relational model is a collection of tables in which data are stored. Each of

table can be understood like matrix consisting of row/column intersections. Tables are related to

each other by sharing entity characteristic. Each table is completely independent of another one,

but is easy to connect the data between tables. The relation mathematically is any set :

 2 THEORETICAL PART 2 THEORETICAL PART

10

2.1.2.1 LOGICAL VIEW OF RELATIONAL MODEL

The basic data components are entities and their attributes. These components are

stored into logical construct – table. Entities abstract entities from real world e.g. – person,

address, room. Each entity has own attributes like – name, address number, room number. Data

in relational model must be homogeneous. It means every row has the same format (fixed table

schema). Table model with its entities, relationships and attributes is also called E-R-A model.

2.1.2.2 RELATIONS BETWEEN ENTITIES

 Relations between tables are realized through keys. Key is an attribute which is shared

among tables. The link is created by two tables which share an attribute. There are two basic

types of keys:

 Primary key

 Foreign key

The primary key of one table appears again as the foreign key in another table. The

foreign key contains value that matches the other table’s primary key. This relationship between

primary and foreign key can be seen on Figure 2-3.

Figure 2-3 Example of database table model with primary and foreign key fields [4]

 2 THEORETICAL PART 2 THEORETICAL PART

11

2.1.2.3 DATA INTEGRITY

It is necessary to avoid data corruption, for this purpose integrity model serves. The three

main integrity rules are:

 Referential integrity: foreign key must contain values that match the other table’s

primary key value, or it must contain a null value

 Entity integrity: no null values for a primary key columns and guarantee that each entity

will have a unique identity

 Domain integrity: it ensures the validity of values for a given column (this is ensured by

defining the type, constrains and rules of the column)

2.1.2.4 SQL QUERY LANGUAGE

Structured Query Language (SQL) is a standardised query language for relational

databases. SQL lets us work with data in relational databases. SQL allows to process sets of data

as groups or as individual units. It provides operations like querying data, inserting, updating

columns and deleting rows in table. The next provided operations are: creating, replacing,

altering, and dropping objects, controlling access to the database and its object. SQL provides

resources for ensuring database integrity and consistency.

Among the well-known relational database systems (RDBMS) using relational model

belong e.g. Oracle Database Xg, MySQL, MS SQL Server, Firebird or PostgreSQL. Relational model

was used very successfully throughout the 80s and 90s and it’s still working today. Nowadays,

NoSQL databases are increasingly perceived.

2.1.2.5 PROBLEM WITH JOINS

Relational database model retrieves relationships by using foreign key that points to the

primary key.

One-to-many relationship – typical query:

SELECT TITLE FROM PERSON p

INNER JOIN EDUCATION_LEVEL e ON

p.EDUCATION_LEVEL_ID = e.EDUCATION_LEVEL_ID WHERE p.SURNAME = 'Walker'

 This query is a JOIN operation. JOIN (creation of virtual tables) is executed at run-time.

The same problem occurs at one-to-many and at many-to-many relation too. The problem is that

 2 THEORETICAL PART 2 THEORETICAL PART

12

Relational Database Management System (RDBMS) does not have concept of collections. So, for

more complex relations like many-to-many we need a intersect table with keys in all possible

combinations – this leads to double JOIN per record.

 This approach is very expensive. Indexes speed up the searching but slow down

operations like INSERT, UPDATE and DELETE. Moreover, indexes need additional space on disk. If

we have e.g. 5 tables with thousands of records - millions of JOINs can be. The solution how to

avoid JOIN operations are NoSQL databases.

2.1.3 NOSQL GENERALLY INFORMATION

Information for this chapter was taken from [5] [6] [7] [8].

NoSQL (Not-Only SQL) is not relational database and it is not a replacement for a RDBMS.

Instead of tables with columns and rows which we can find in a traditional RDBMS – NoSQL

databases have not fixed schema. NoSQL databases have not relationships made by keys too.

NoSQL databases can handle hierarchical or unstructured nested data. To handle these types of

data in RDBMS, we would need multiple relational tables with all kinds of primary and foreign

keys. NoSQL can easily take advantage of horizontally scaling unlike RDBMS (RDBMS require for

next scaling faster hardware). They do not use SQL because Structure Query Language was

designed for use with relational databases and NoSQL is much closer to object-oriented approach.

The original intention of NoSQL approach has been creation of modern web-scale

databases. Primarily, NoSQL is designed for distributed data stores with needs of scaling of the

data (e.g. Facebook or Twitter, which accumulates terabits of data every single day). To basic

characteristic belong:

 schema-free

 easy replication support

 own API

 consistency (BASE/ ACID (Atomicity, Consistency, Isolation, Durability) transactions)

 huge amount of data

 unstructured data

 data on multiple servers in the cloud

 2 THEORETICAL PART 2 THEORETICAL PART

13

Massive scalability, low latency, the ability to grow the capacity of database on demand

and an easy programming model is necessary for top-tier web-sites.

Many different NoSQL database systems (NoSQL DBMS) are currently available. These

DBMS are different in their way to store data – database model. Next differences are in their

programming language (API), query language, transaction management and so on.

Changing needs on storing data are closely related with the arrival of NoSQL databases.

Nowadays, it is easier to capture data and access them through third parties such as Facebook,

Twitter and others. Personal information, geo data, social graphs, user-generated content, sensor-

generated data are a few examples of the ever-expanding array of data being captured. And the

usage of the data is rapidly changing the nature of communication, shopping, advertising,

entertainment, and relationship management. Developers want very flexible databases that easily

accommodate new data types which are not disrupted by content structure changes. Much of the

new data is unstructured and semi-structured, so developers also need a database which is

capable to efficiently store these types of data. The rigidly defined, schema-based approach used

by relational databases makes it difficult to quickly incorporate new data types and it has a poor

fit for unstructured and semi-structured data. NoSQL provide data model that can better satisfy

these needs.

Semi-structured and unstructured data are generated by applications which have millions

users per day. Database must be able to growing up with these needs.

Figure 2-4 Time trend of changing evolution in terms of needs on data structure and data size [8]

 2 THEORETICAL PART 2 THEORETICAL PART

14

2.1.4 BASIC DESCRIPTION OF CHOSEN NOSQL DATABASE MODELS

Information for this chapter was taken from [9] [10] [11] [12] [13] [14] [15] [16] [17].

This chapter gives an introduction into chosen NoSQL database models.

2.1.4.1 DOCUMENT-ORIENTED MODEL

A document database is, at its core, a key/value store – the difference is that each record

has multiple fields in a document data store (see Figure 2-6) but one key is the only way to access

a record in a key/value store (see Figure 2-7). Document is represented by key. Each document

has a unique key (often simple string value). Document database requires data which are stored

in understandable format. The format can be Extensible Markup Language (XML), Javascript

Object Notation (JSON), Binary JSON or anything else the database can understand.

 Document: it is the fundamental unit of storage; equivalent to a row in a relational

database.

 Collection: it is a set of related documents and plays a role similar to table in relational

database. Collection may be also likened to a directory in a file system.

 Associations: association between documents (collections) are stored as a single

document, associations are direct links between documents -no JOINs (see chapter

2.1.2.5) and they can be found by key or by index.

The main difference from RDBMS systems is much more flexible database model called

schema-less model in document-based style, instead of defining a strict schema. You can see on

the Figure 2-6 that the records (documents) of the same entity have not the same set of fields and

unused fields might be kept empty. Document is stored by serializing an object (e.g. a Java-based

instance of an object class), previously mentioned, by using a recognized data standard such as

JSON.

 2 THEORETICAL PART 2 THEORETICAL PART

15

Figure 2-5 Comparison of relational and document data model [18]

The primary benefit of the document model approach is that the structure does not have

to be predefined. The structure of the document allows construction of a document which

contains a large amount of information. Moreover, the structure can be change on the fly. This

approach gives us a lot of flexibility for storing of composite records and information that would

be difficult within RDBMS.

Figure 2-6 Credit card transaction sample with different information in JSON format [9]

 2 THEORETICAL PART 2 THEORETICAL PART

16

 Important subclasses of document databases are XML databases, which can process XML

files. They map XML data (elements, attributes, etc.) to instances of their model. There are two

types of XML databases:

 XML-native: use the XML data model directly – they are designed to hold arbitrary XML

documents and XML schemas (elements, attributes, text, etc.). They can store complete

documents and can store any document, regardless of schema.

 XML-enabled: are useful when publishing existing data as XML or importing data from

XML document into an existing database. They are not good way to store complete XML

documents. They store data and hierarchy but discard everything else: document identity,

sibling order etc.

Document store databases can be especially used when following characteristics are desirable:

 wide variety of access pattern and data types

 to build CRUD (Create, Read, Update, Delete) based applications

 easier upgrade path

 programmatically friendly data types (JSON, HTTP, etc.)

Main representatives of document store databases are CouchDB, MongoDB, BaseX or

Redis.

2.1.4.2 KEY/VALUE MODEL

Key-Value databases use the same pattern, which is used e.g. in accessing memory

locations - the memory location’s address serving as the key and the value is stored at that

memory address. This type of database is especially designed for storing unstructured big amount

of data (in these cases are much faster than relational database). These databases use schema-

less model too – if we have not some data we do not store fields for this data (see Figure 2-7

where field access is empty with key 314). Data can be stored in data type of the used

programming language. Keys and bins are created to store this kind of data.

 Keys: key is created for each record. Arbitrary fields are available as bins. Key can be e.g.

string value.

 2 THEORETICAL PART 2 THEORETICAL PART

17

 Bins: they could be equated to the columns in relational databases. Each bin consists of a

name and a value. Bin can be created for each piece of data.

Each record has a primary key and a collection of bins (values). All data for single record

are stored together (similar to rows in relational database).

Figure 2-7 Example of unstructured data stored in bins in one dataset [19]

Key/Value store databases can be especially used when following characteristics are

desirable:

 small continuous read and writes (fast in-memory access)

 programmatically friendly data types

 easier upgrade path

 to store cache or Binary Large Object (BLOB) data

Main representatives of Key-Value databases are Membase, Riak or Oracle NoSQL

database.

2.1.4.3 GRAPH MODEL

Graph database model can be characterized as those where data structures for the

schema and instances are modelled as graphs or generalizations of them. Data manipulation is

expressed by graph-oriented operations. Graph model is the most generic data structure, which is

 2 THEORETICAL PART 2 THEORETICAL PART

18

capable to represent in a highly accessible way any kind of data. Typical graph is composed from

nodes and edges. Mathematically graph is an ordered pair of nodes and edges:

 Most implementations of graph database implements so called property graph, where

nodes and edges can have properties.

 Nodes represent records that have named values (properties) corresponding to columns

or attributes in relational world. The simplest graph consists of one node. Node can have

millions of properties, but it is much better to distribute data into multiple nodes,

organized with explicit relationships. Properties of node are organised as a collections.

Each node has a unique identifier and a set of outgoing and incoming edges. Nodes

represents entities of real world (similar to row in relational table)

 Edges represent relationships between graph nodes. Edges themselves are records as

well. They are labelled for expression of relation between two nodes and can have

arbitrary number of properties (it depends on specific implementation). Each edge has a

unique identifier. Eventually, edge can have an outgoing tail vertex and incoming tail

vertex.

Figure 2-8 Property graph model [20]

 2 THEORETICAL PART 2 THEORETICAL PART

19

The biggest advantage of the graph model is its flexibility (unlike RDBMS). They are usually

schema-less and they allow a dynamic set of properties (changes on the fly). Storage is optimized

to traverse graph and it is optimized for queries which use benefit of the leveraging data

proximity - starting from one or several root nodes, rather than global queries. Nodes can be

arbitrary linked to other nodes through arbitrary edges. Thanks to all these features, graph

databases have great ability to express semantics between records.

The special type of graph databases are Resource Description Framework (RDF) storages that

handle with RDF triples natively. They are designed for building semantic web applications. They

can store data and metadata as triples.Graph databases can be especially used when following

characteristics are desirable:

 to develop application related with social networking

 to dynamically build relationships between objects that have dynamic properties

 to build database incrementally through programming

 to avoid very nested JOIN operations (thanks to fast navigation between graph entities)

Main representatives of graph databases are Neo4J, AllegroGraph or InfiniteGraph.

Figure 2-9 Popular NoSQL databases examples [21]

 2 THEORETICAL PART 2 THEORETICAL PART

20

2.2 COMPARISON OF RELATIONAL AND NOSQL APPROACH

In this chapter I will describe some advantages and disadvantages of both approaches

that have impact on the application design and performance. The right choice of database model

for specific use case is very important and also difficult task. We can see comparison between

relational and NoSQL databases according to the scaling size and database model complexity on

Figure 2-10.

Figure 2-10 Positions of NoSQL databases (scaling vs. complexity) [16]

2.2.1 WHEN TO CHOOSE AND NOT TO CHOOSE AN RDBMS

Information for this chapter was taken from [22].

One of the key aspects of RDBMS is its logical model when there is fixed schema in table

form, each column could have values with predefined restrictions. Next key aspect is integrity

model. Referential integrity ensures logical consistency of the domain model and cross entity

consistency. The aspect of consistency is ACID transactions. It ensures that either all changes are

consistent in every moment – changes are committed or not committed at all. The next key

feature is the ability to execute arbitrary queries within SQL selects.

 2 THEORETICAL PART 2 THEORETICAL PART

21

Pros of RDBMS are:

 suitability for structured data with the ability to ask different questions all the time

 native referential integrity and ACID transactions

 well-known relational model which uses well-known query language (SQL)

Cons of RDBMS are:

 unsuitability for storing application entities in a persistent and consistent way

 unsuitability for hierarchical application objects with query capability into them

 unsuitability for storing large trees or networks

 unsuitability for running in the Cloud and usage as a distributed database

 unsuitability for very fast growing data which is not possible to process on a single

machine

 not easy accessible horizontal scaling (without buying more expensive hardware)

 performing JOIN operations

2.2.2 WHEN TO CHOOSE AND NOT TO CHOOSE NOSQL

Information for this chapter was taken from [5] [22] [23].

How it was mentioned before, NoSQL databases were designed for distributed data

stores for very large scale of data. Thanks to better options for horizontal scaling, NoSQL

databases means an inexpensive solution for large datasets. Another big advantage of NoSQL is its

flexible data model (schema-less model). Moreover, we can make changes in model at runtime.

There are no restrictions on data unlike RDBMS where every minor change must be carefully

managed. The benefit of this approach is that application changes and database schema changes

do not have to be managed as one complicated change unit.

Nowadays, the amount of stored data rapidly grows and NoSQL model can handle large

datasets very well. Data continues to become more connected (social networks, blogs, etc.) every

major system is built to be interconnected. Next challenge of NoSQL databases is that they can

easily handle nested data structures. To accomplish the same thing in SQL, we would need

multiple relational tables with all kinds of keys – this has the influence on performance, which can

 2 THEORETICAL PART 2 THEORETICAL PART

22

degrade in RDBMS as we store massive amount of data required in social networking and

semantic web. The last significant advantage of NoSQL approach is the absence of expensive

JOINs. In NoSQL databases there are direct links among records (unlike RDBMS - if we make query

over multiple tables in RDBMS then JOIN operations among table are used).

The thing which can be a little confused for new users of NoSQL databases is that each

NoSQL database has own set of APIs, libraries and query languages. RDBMS have long tradition

and SQL knows almost everyone who works with databases. RDBMS are stable, in comparison

many NoSQL alternatives are not fully stable versions and their key features are not yet

implemented (triggers, ACID transactions). Earlier was the problem that NoSQL did not support

ACID transactions, but nowadays these differences are rapidly erased and many of NoSQL

databases support ACID natively. Next disadvantage for some users is that even a simple query

requires significant programming expertise. NoSQL requires a lot of skills to install and set-up.

Pros of NoSQL are:

 flexible data model without restrictions on data

 suitability for running in the Cloud

 good options for horizontal scaling without buying additional expensive hardware

 suitability for storing of rapidly growing data

 suitability for hierarchical, heavily interconnected or unstructured data

 suitability for creation semantic model (semantic web)

Cons of NoSQL are:

 unsuitability for users with small programming skills → difficulty to manage database and

make database queries

 partial instability of open source projects (the most of NoSQL projects are open source)

→ on-going development process → some required features could be missing

 bigger difficulty to install and set-up than RDBMS

 2 THEORETICAL PART 2 THEORETICAL PART

23

2.3 EEG/ERP PORTAL APPLICATION

2.3.1 GENERAL CHARACTERISTIC

EEG/ERP portal is a web application that is managed by members of EEG/ERP group at the

University of West Bohemia. This group performs electrophysiological experiments in EEG

(Electroencephalography) laboratory. These experiments are based on the brain activity

measurement (EEG). EEG is non-invasive method and EEG/ERP group use it for the measurement

of evoked potentials. Following example describes possible course of the experiment:

Experimenter prepares subject person and measure required data, then stores information about

experiment and measured data into portal application.

The main purpose of the portal is storing and management of EEG data. Other data types

managed by portal are:

 articles which are related with EEG/ERP

 information about configuration of EEG/ERP experiments

 information about experimenters

 information about subject persons

 information about used hardware and software

Currently EEG/ERP portal is based on Java Enterprise Edition (Java EE) and uses Java Servlet

Pages (JSP) for presentation layer, Spring Framework for application layer and Oracle Database

11g RDBMS with Hibernate Object Relational Mapping (ORM) as database layer.

2.3.2 DATABASE LAYER

 The database layer ensures storing all kinds of data which I have previously mentioned and

it uses Oracle database 11g Enterprise edition with Hibernate that ensures object relation

mapping. This database uses standard relational database model based on tables.

Current database contains about 85 tables. Tables can be divided into three following

groups:

1) tables related with experiments and configuration of experiments

2) tables related with research groups and their members

3) tables related with storing of data files, and XML files

 2 THEORETICAL PART 2 THEORETICAL PART

24

 Oracle database has not own Java or other API, therefore ORM must be used. ORM

ensures binding Plain Old Java Objects (POJOs) with records. This approach makes the access to

Oracle database easier, but there is still some additional overhead because of using ORM.

As a query language in EEG/ERP portal application Hibernate Query Language (HQL) is

used. For functions, triggers and procedures are used Oracle PL/SQL (Procedural

language/Structured Query Language). The weaknesses of current model (except disadvantages

mentioned in chapter 2.2.1) are these: Oracle database has not got own Java API. It has the effect

need for ORM for binding POJOs with records→ additional overhead in the form of ORM. Finally,

current database model is not suitable for semantic web (semantic web principle is one of the

possible solutions for EEG/ERP portal database model replacement).

The main goal of this thesis is to find out whether NoSQL solution could avoid above

mentioned restrictions and thus improve EEG/ERP portal database layer.

2.4 ORIENTDB NOSQL DATABASE

As a suitable NoSQL database for the replacement of EEG/ERP portal relational model I

chose OrientDB. This database was chosen on the grounds of results from study [24]. OrientDB, at

its core, is a document database written in Java. OrientDB is free to use without limitation –

Apache license. The records are documents but relationships between them can be managed like

in a graph database models.

2.4.1 MAIN CONCEPTS

Information for this chapter was taken from [25] [26]

2.4.1.1 STORAGE TYPES

There are three options how to access the database:

 Local: OrientDB runs as embedded. Database is open via the local File System (without

remote connection). Database cannot be opened by multiple processes. It is the fastest

access – it avoids any network connection and transfers.

 2 THEORETICAL PART 2 THEORETICAL PART

25

 Remote: The access is made by using network. Database is open via remote network

connection. Database is shared among multiple clients. It requires OrientDB server

running.

 Memory: All data remain in memory without file system usage

The speed of protocols from the fastest one is: Memory > Local > Remote. Storage is

composed of multiple Cluster and Data Segments.

2.4.1.2 CLASSES, CLUSTERS, DATA SEGMENTS, RECORDID AND RELATIONSHIPS

Classes

The basic element of record is document (see 2.1.4.1). Document can belong to one class.

This approach of classes is well known from object-oriented programming (OOP), the same rules

are applied in OrientDB. Classes can have properties but they are not mandatory - schema-less

model, but class can be schema-full (mandatory properties) or mixed. New class is by default new

physical cluster and cluster has the same name as the class

Clusters

 Groups of records are stored in a cluster – equivalent in relational world may be table.

The main difference is that cluster can record heterogeneous records, e.g. Customers and

Providers all together. One class can be partitioned in multiple clusters – we can store records

physically in multiple places, see Figure 2-11.

Figure 2-11 Class Customer partitioned on two clusters (red star marks the default one) [25]

 2 THEORETICAL PART 2 THEORETICAL PART

26

 The default cluster is cluster USA_customers, it is used by default when the generic class

Customer is used: insert into Customer

 When we query the Customer class, all clusters are scanned: select * from Customer

 If we know the type of Customer, we can query directly the target cluster avoiding to scan

all the others: select * from cluster:China_customers

Thanks the option to use different physical places to store records we can make faster

queries against clusters because we query a sub-set of all class’s clusters. We can achieve better

partitioning – it reduces usage of indexes. We can make parallel queries on multiple discs.

There are two types of clusters:

 Physical cluster (default): It is persistent and it is written directly to the file system.

 Memory cluster: It is in-memory storage → all data is temporarily in memory.

Data segments

OrientDB uses data segments for storing record content. It uses two or more files with

extension “oda” (OrientDB Data) and one file with the extension “odh” (OrientDB Data Holes).

RecordID

Each record in OrientDB has its own unique ID - RecordID, ID is self-assigned. RecordID has

two parts:

 #<cluster-id>:<cluster-position>

 Cluster-id: It is the ID of the cluster.

 Cluster-position: It is the position of the record inside the cluster.

It means that loading by a recordID has the response time close to O(1).

Relationships (document model)

There are two kinds of relationships:

 2 THEORETICAL PART 2 THEORETICAL PART

27

 Referenced: Relationships are natively managed without computing JOINs. OrientDB

stores direct links between objects.

Figure 2-12 Referenced relationship

Record A will contain the reference to Record B in the property customer. Both records

are reachable by each other.

 Embedded: Embedded records are contained inside the record that embeds them. It is

similar to composition relationship in UML.

Figure 2-13 Embedded relationship

Record A will contain the entire record B in the property address.

One-to-one and many-to-one referenced/embedded relationships are expressed using

LINK/EMBEDDED type. One-to-many and many-to-many referenced/embedded relationships are

expressed by using collections of links: LINKLIST/EMBEDDEDLIST (ordered),

LINKSET/EMBEDDEDSET (unordered), LINKMAP/EMBEDDEDMAP (ordered map of links with string

key)

 2 THEORETICAL PART 2 THEORETICAL PART

28

Vertices are records of type OGraphVertex and edges are records of type OGraphEdge by

using graph Java API. Vertices and edges are records and they have their own recordID. Edges are

always bidirectional, see Figure 2-14.

Figure 2-14 Bidirectional edges in OrientDB graph model

2.4.2 APIS

Information for this chapter was taken from [27]

OrientDB offers five types of API. APIs are different in their supported database model

and in their level of abstraction. All APIs are native Java.

Table 2-1 OrientDB API types

API Type Usage Description Speed

Object database Object Oriented
abstraction. All
entities are bind to
POJO.

Higher level database.
It uses the Document
to store objects at its
core.

40%

TinkerPop graph
database

It is designed for work
with graphs. It is
portable across
TinkerPop Blueprints
implementations.

It is the bridge to use
OrientDB with all
TinkerPop
technologies

45%

Raw graph database It is designed for work
with graphs and for
maximum
performance.

Lower level graph API.
It directly uses
ODocument objects.

70%

Document database It provides maximum
performance and/or
work with schema-
less mode.

It handles records as
documents. Fields can
be any of supported
types. It can be used
in schema-less mode.

70%

 2 THEORETICAL PART 2 THEORETICAL PART

29

Flat database It provides maximum
performance, but all
records are Strings.

It contains only string
content. There is no
query capability or
schema-full option,
only direct access to
records as strings.

100%

The speed column in Table 2-1 means speed comparison for generic CRUD operations,

larger is better. Higher level of abstraction brings a speed penalty.

Figure 2-15 OrientDB – Java class stack [27]

2.4.3 TINKERPOP BLUEPRINTS AND GRAPH MODEL

Information for this chapter was taken from [28]

As a suitable model for the EEG/ERP portal I choose OrientDB graph database API with

TinkerPop Blueprints (generic graph API). The most important feature is the management of

relationships as a graph, graph nodes are still documents. Blueprints provide interfaces and

implementations for the property graph data model (see Figure 2-9). It is something like Java

Database Connectivity (JDBC), but for graph databases. Blueprints allow to plug-and-play every

compatible graph database backend, e.g. Neo4J supports Blueprints too.

 2 THEORETICAL PART 2 THEORETICAL PART

30

Blueprints technology stack contains:

 Pipes: data flow framework

 Gremlin: a graph traversal language

 Frames: an object-to-graph mapper

 Rexter: a graph server

2.4.4 QUERY POSSIBILITIES

Information for this chapter was taken from [29] [30]

2.4.4.1 SQL

OrientDB is NoSQL database but it supports SQL as a language. SQL in OrientDB is unlike

standard SQL extended by many new functions. It is important that in queries field names are

case sensitive but class names are case insensitive.

OrientDB SQL supports these constructions:

WHERE conditions, SELECT projections, TRAVERSE to cross records by relationships,

INSERT, UPDATE, DELETE, Create Vertex/Edge to work with graphs, GRANT, REVOKE, Create

class/property, Alter class/property, Create index, Rebuild index, Create link, Alter cluster and

next.

Typical query consist of:

 Items can be document fields, record attributes, columns, functions and context variables

 Operators can be applied to collections, any, strings, maps. There are classic logical

operators, mathematical operators and new field operators

 Field operators can be applied on document, map, lists, arrays, strings etc.

 Functions can be called in SQL SELECT and TRAVERSE statements. Some examples of

functions are: sysdate(), distance(), map(<field>|<key>,<value>>). We

can also make own custom functions with a scripting language or via Java.

 2 THEORETICAL PART 2 THEORETICAL PART

31

 Record attributes like @this, @rid, @class works directly with records

Query example with TRAVERSE command: Return all the vertices that have at least one friend

(connected with out) up to the 3rd degree, that lives in Rome. [29]

SELECT FROM PROFILE

LET $temp = (

 SELECT FROM (

 TRAVERSE * FROM $current WHILE $depth <= 3

)

 WHERE city = 'Rome'

)

WHERE $temp.size() > 0

Queries can be performed from OrientDB console, OrientDB Studio or directly via Java

API.

2.4.4.2 GREMLIN LANGUAGE

Gremlin is a graph manipulation language. It is specialized to work with Property graphs.

Gremlin is a part of TinkerPop Blueprints stack. It provides support for Java and it supports

multiple traversal patterns.

Gremlin main features are:

 manual working with graph (create, delete, update, etc. vertices and edges, ensuring of

integrity)

 to query graph; Gremlin is very efficient by querying the graph model

 exploring, analysis graphs

 exploring the semantic Web/Web of data; Gremlin can be used with RDF graphs and

allows working with the semantic web in real-time

 gremlin is extensible with new methods and steps defined in Gremlin or in Java; Gremlin

can take advantage of Java API

 it is a Turing complete language – it provides memory and computing constructs to

support arbitrary path recognition

 2 THEORETICAL PART 2 THEORETICAL PART

32

Gremlin has a collection of predefined steps. Gremlin steps map to a particular Pipe.

Pipe<S,E> extends Iterator<E> and Iterable<E>. It takes object of type S and emits object of type E.

Chaining pipes together creates Pipeline. Link in a pipeline is called step (see Figure 2-16).

Types of steps are: [30]

 Transform: take an object and emit a transformation of it (map(strings..?), inV,

gather{closure?}, etc.)

 Filter: decide whether to allow an object to pass or not (has('key',value),

retain(collection), sort{closure?} etc.)

 SideEffect: pass the object, but yield some side effect (tree(map?, closures..?),

groupCount(map?){closure?}{closure?}, etc.)

 Branch: decide which step to take (copySplit(pipes...), etc.)

Query example with pipeline demonstration (it is based on Figure 2-9): It gets all names and

paths from vertex with ID = 1 (in Gremlin we have to choose arbitrary root vertex. The root vertex

is the vertex from which searching starts. We can choose more than one vertex. Letter g is

reference to the graph instance.

g.v(1).out.name.paths

Figure 2-16 Gremlin pipeline - get all names and paths from vertex with ID = 1 [20]

Gremlin is usable from Gremlin console, OrientDB Studio or directly from Java API.

Gremlin provides methods for working with graphs from Java API.

 2 THEORETICAL PART 2 THEORETICAL PART

33

2.4.5 BINARY DATA MANAGEMENT

Information for this chapter was taken from [31]

OrientDB handles natively binary data (BLOB). There are different types of storing of

BLOBs. BLOBs can be stored through Java API.

1) the data storing in a different path than the default database directory is

This method can take advantage of faster hard disk (HD) like Solid State Disks (SSD) or

it can utilize parallelism.

E.g.: [31]

 db.addDataSegment("binary", "/mnt/ssd");

 db.addCluster("physical", "binary", "/mnt/ssd", "binary");

2) the data storing on file system and saving the path to the data in the document

This method does not allow data distribution using the cluster.

E.g.: [31]

ODocument doc = new ODocument(db);

doc.field("binary","/usr/local/orientdb/binary/test.pdf");

doc.save();

3) the data storing as a document’s field

ODocument class is able to manage BLOBs in form of byte[] (byte array). This is the

easiest way to write BLOB but it is not effficient – content is serialized in Base64 – it

means 33% more of disk space and a runtime cost in marschaling/unmarshaling of

records.

E.g.: [31]

ODocument doc = new ODocument(db);

doc.field("binary", "Binary data".getBytes());

doc.save();

4) the data storing by using ORecordBytes class

 2 THEORETICAL PART 2 THEORETICAL PART

34

It is probably the best way to store BLOBs. ORecordBytes class is able to store binary

content without conversions. It is the fastest way to handle BLOBs but it needs a

separate record to handle it. Best way to reference it is to link it to a Document

record.

E.g.: [31]

 ORecordBytes record =

 new ORecordBytes(db, "Binary data".getBytes());

 ODocument doc = new ODocument(db);

 doc.field("id", 12345);

 doc.field("binary", record);

 doc.save();

We can access binary data by traversing the binary field of the parent’s document

record.

E.g.: [31]

 ORecordBytes record = doc.field("binary");

 byte[] content = record.toStream();

 ORecodrByte class can work with streams. For more information about this

 method see chapter 3.3.3.

2.4.6 ORIENTDB SERVER

Information for this chapter was taken from [32]

The Server is a multi-thread Java application that listen remote commands and execute

them in OrientDB database. It supports binary and Hyper Text Transfer Protocol (HTTP) protocols.

Binary protocol is used by OrientDB console and HTTP protocol is used by OrientDB Studio

application.

When server starts it is trying to acquire the port 2424 for the binary and 2480 for the

HTTP one (if ports are already used, it will be taken the next one). We can configure multiple

listeners by selecting the ip-address and TCP/IP (Transmission Control Protocol/Internet Protocol)

port to bind in server’s configuration file. Server can be extended by plug-ins, available plugins

are: Automatic Backup, Email Plugin, Java Management Extension (JMX) Plugin, Distributed Server

 2 THEORETICAL PART 2 THEORETICAL PART

35

Manager and Server-side script interpreter. More information about server configuration can be

found in Practical part of this thesis.

Figure 2-17 Running OrientDB server listens on port 2424 for binary and on 2480 port for HTTP
protocol

2.4.7 TOOLS FOR DATABASE MANAGEMENT

Information for this chapter was taken from [33] [34]

For database managing we have three following options:

1) OrientDB console

It is a Java application and it works with OrientDB databases and Server instances.

It supports multiple commands for database managing. It can work in interactive mode

(default), when console is launched by executing the script or in a batch mode. The batch

mode allows launching console script with parameters. Scripts are useful e.g. for data

import. We can execute SQL and SQL-Gremlin mixed queries against OrientDB server,

change server configuration, perform CRUD operations against records, classes and

clusters, etc. If we use local protocol, then the access to the database is made without

remote connection – this is much faster but the database must be on the same machine.

Basic work with OrientDB console will be described in Practical part of this thesis.

 2 THEORETICAL PART 2 THEORETICAL PART

36

Figure 2-18 OrientDB console with printed info about EEG_ERP database

2) OrientDB Studio

It is a client-side web application, which is implemented using HyperText Markup

Language (HTML), Cascading Style Sheets (CSS) and jQuery. OrientDB Studio requires

running OrientDB server. Studio can be started in any web browser. OrientDB studio

provides following functions:

 executing the commands against OrientDB server uses the OrientDB HTTP REST

(REpresentational State Transfer) protocol and AJAX (Asynchronous Javascript

and XML) calls, the response might be very slow on some browsers, especially

with huge result sets

 database tab which contains information about currently-open database

 managing the security of database (roles and rules for roles)

 executing of queries in SQL/Gremlin

 live editing (on fly) - if query is executed, record‘s content can be directly edited

 2 THEORETICAL PART 2 THEORETICAL PART

37

 performing CRUD operations on records, classes and clusters

 monitoring of server status and monitoring of all active connections

Figure 2-19 OrientDB Studio’s logging page

For more figures which show the work with OrientDB Studio see the Attachment F.

3) Java API

The last way to manage and configure database is through native Java API. With

Java API we have the most complex option for database managing. It is the lowest level

therefore we need advanced experiences in Java programming language and OOP

principles. In Java API we have all and even more possibilities than in OrientDB console

and OrientDB Studio (making all kinds of queries, creating of databases, clusters, records

and relationships, making schema, making hooks (triggers), transaction management,

importing and exporting the database, storing of binary files, etc.). Some basic work with

OrientDB Java API can be found in Practical part of this thesis. The more information

about OrientDB API we can found in OrientDB API JavaDoc or in OrientDB Wiki pages.

More information about OrientDB features can be found in the Attachment G.

 3 PRACTICAL PART

38

3 PRACTICAL PART

The main goal of the practical part was to choose suitable NoSQL database system and

attempt to improve current database layer of the EEG/ERP portal application by using the chosen

NoSQL system. As it was mentioned I chose OrientDB database. The suitability of OrientDB for

EEG/ERP portal was evaluated on the basis of its performance testing. OrientDB was compared

with Oracle RDBMS on the sets of database queries and database commands on the same

database model (the same relationships between records and the same database entities). In this

part the whole process from the database model creation to the evaluation of measured results

will be described.

3.1 CREATION OF EEG/ERP ORIENTDB GRAPH MODEL

It was necessary to make certain changes in model design before importing EEG/ERP

model into OrientDB, because standard relational database model is very different from graph

NoSQL database model.

3.1.1 LEFT OUT TABLES

As we know (see chapter 2.1.4.3), graph model manages relationships between records

(nodes/vertices) like edges. Every node can have multiple outgoing and multiple incoming edges

(this approach is similar to relational model when we have multiple relationships between tables).

 OrientDB model supports collections. For more complex relationships like one-to-many,

many-to-many we do not need concept of foreign and primary keys anymore – no intersect tables

(M:N). All these types of tables were left out from the database model. This step very simplified

the whole database model. Each M:N relationship was replaced by bidirectional edge (in both

directions), the most intersect tables has suffix *_REL in name, for better idea see Figure 3-1.

 3 PRACTICAL PART

39

Figure 3-1 Transformation M:N relationships into bidirectional edges

 Tables for managing XML files were also left out from the model. These tables contain

XMLTYPE which is Oracle database native type – OrientDB does not support it and they are

useless for testing purposes. See the Table 3-1 with left out tables. All used tables can be seen in

the Attachment A - Table 1.

Table 3-1 List of left out tables from OrientDB model

Left out tables Reason

All tables with suffix *_REL Intersect tables

RESEARCH_GROUP_MEMBERSHIP Intersect table

EXPERIMENT_OPT_PARAM_VAL Intersect table, property PARAM_VALUE is
used as appropriate edge property

FILE_METADATA_PARAM_VAL Intersect table, property METADATA_VALUE is
used as appropriate edge property

PERSON_OPT_PARAM_VAL Intersect table, property PARAM_VALUE is
used as appropriate edge property

SCENARIO_TYPE_PARENT Useless – it contains only SCENARIO_ID
property (we do not need IDs)

Tables with these prefixes: MD_*, MIGR_*,
SYS_*

Oracle’s tables created by recent database
migration

Every table with prefix SCENARIO_* except
table SCENARIO and SCENARIO_TYPE_NONXML

These tables contain Oracle’s XMLTYPE

 3 PRACTICAL PART

40

3.1.2 DECOMPOSITION ON VERTICES

Every table in EEG/ERP portal RDBMS can be decomposed on vertices. One node

represents one row in RDBMS table. In graph database are columns (known from relational

databases) called properties and in document database are called fields, example:

Table 3-2 Comparison of Oracle database table row record with appropriate OrientDB’s node
record

One row of table RESEARCH_GROUP in
Oracle RDBMS

One node of type RESEARCH_GROUP in
OrientDB graph database

Column Value Property (field) Value

RESEARCH_GROUP_ID 204647 RESEARCH_GROUP_ID 204647

OWNER_ID 26916 OWNER_ID 26916

TITLE Group title TITLE Group title

DESCRIPTION Group description DESCRIPTION Group description

- - @type d

- - @rid #21:214207

- - @version 34

- - @class (node type) RESEARCH_GROUP

- - out (list of outgoing
vertices)

#28:12, #30:100…

- - in (list of incoming
vertices)

#26:1622, #27:50…

3.1.3 DECOMPOSITION ON EDGES AND SEMANTICS DESCRIPTION OF EDGES BETWEEN NODES

Edges are also documents in OrientDB. Every single edge has own arbitrary properties and

the list of outgoing and incoming nodes. Thanks this feature we can express the semantics

between nodes. Property in edge type node is reserved for this purpose, this property is called

label and it is of type String. These labels can be seen on Figure 3-1 (descriptions of

edges).Essentially label property is like any other property (e.g. NAME, TITLE, etc.). Labels

semantically express the relationships between nodes. We can utilize this fact for making more

natural and readable queries, e.g.:

 3 PRACTICAL PART

41

The relationship between article which was created by person can be described with label

CREATED_BY and the query could sound like – „Get all articles which were created by person with

name Peter“.

The whole semantics between all nodes can be seen in Attachment A - Table A.1. In fact,

it is possible to construct the whole OrientDB graph model of EEG/ERP portal database by this

table – see the Attachment B.

3.1.4 INSTALLATION OF ORIENTDB

For my purposes I chose OrientDB Graph Edition v1.3.0. The whole database is distributed

as zip archive. Zip archive can be extracted into arbitrary directory on the disk. Database is ready

to run after extracting. For the correct run OrientDB requires Java Virtual Machine (JVM) 1.6

32/64 bit and higher. The most important directories of OrientDB root directory are:

 bin – It contains all executable .bat and .sh scripts for the server, console and gremlin

console. Server or console can be simply started by clicking on appropriate file.

 config – It contains XML configuration files for server.

 databases – It contains all existing databases. It is a default path, but databases can be

outside the root directory as well.

 other directories – They contain log files, OrientDB Studio source files, etc.

3.1.5 DATABASE CREATION

New database can be created through Java API, OrientDB studio or by using the OrientDB

Console. I chose the third option – Console.

Example of statement syntax for database creation:

CREATE database <database-url> <user> <password> <storage-type> <db-type>

 <database-url> is an url of the created database, url is in the format <mode>:<path>

 <user> is the database’s user name in local mode , in remote mode it is the Server’s

administrator name

 3 PRACTICAL PART

42

 <password> is the server’s password in local mode , in remote mode it is the Server’s

administrator name

 <storage-type> is the type of the storage ('local' for disk-based database, 'memory' for in-

memory database)

 <db-type> is the type of database model, it can be chosen between document database

(the default one) and graph database model; this parameter is optional

I created graph database with name EEG_ERP in remote mode. If we choose remote

mode, then the user name must be root and the password can be found in server configuration

file orientdb-server-config.xml in the xml element <users>.

Example of new OrientDB database creation in remote mode:

orientdb>create database remote:localhost/EEG_ERP root

 5B51EF035C4908D023C16227BEEA2BBED13EE40EC4890BF541026EFA1BBECBB2

 local graph

Example of new OrientDB database creation in local mode:

orientdb>create database local:../databases/EEG_ERP admin admin

 local graph

3.1.6 IMPORT OF EEG/ERP RDBMS MODEL INTO ORIENTDB GRAPH DATABASE

We have three previous options (see chapter 3.1.5) to import RDBMS model and data

into OrientDB graph database. Following procedure concerns OrientDB Console.

OrientDB supports importing of SQL scripts with data from RDBMS but this procedure is

not fully automatic. Script file can generally have arbitrary extension – not only *.sql. It is

necessary to use console in batch mode when we give SQL script as first argument. An example of

importing script with name database.sql:

C:\orientdb-graphed-1.3.0\bin>console.bat database.sql

3.1.6.1 CREATION OF CLASSES FOR VERTICES AND EDGES

It is necessary to create appropriate classes before importing the data. As it was

mentioned before, OrientDB supports custom types of vertices and edges in object oriented

manner. Basic type of the vertex is OGraphVertex and basic type of the edge is OGraphEdge. From

 3 PRACTICAL PART

43

these basic types I created sub-classes for custom types. Names of the vertex types are derived

from chosen tables (see the Attachment A - Table A.1) of the EEG/ERP portal database. Names of

edge types are derived from chosen labels (see the Attachment A - Table A.1).

SQL script can be also used for this purpose. This script has the following parts:

1) Header which contains definition of the database connection. For better performance I

choose local connection which avoids remote connection (without starting server) and it

uses faster binary protocol. Command syntax is:

CONNECT <path> <username> <password>;

Example of the local protocol connection:

CONNECT local:../databases/EEG_ERP admin admin;

Example of the remote protocol connection:

CONNECT remote:localhost/EEG_ERP admin admin;

2) List of vertex classes which are created as subclasses of V (alias for OGraphVertex in Java

API). Command syntax is:

CREATE CLASS <class-name> EXTENDS V;

e.g.: CREATE CLASS PERSON EXTENDS V;

3) List of edges classes which are created as subclasses of E (alias for OGraphEdge in Java

API). Command syntax is:

CREATE CLASS <class-name> EXTENDS E;

e.g.: CREATE CLASS CREATED_BY EXTENDS E;

Complete script file may look like:

CONNECT local:../databases/EEG_ERP admin admin;

CREATE CLASS PERSON EXTENDS V;

... ;

CREATE CLASS CREATED_BY EXTENDS E;

... ;

Database is ready for data import after creating the appropriate classes.

 3 PRACTICAL PART

44

Note: Any supported commands of OrientDB Console can be used in the scripts.

3.1.6.2 IMPORT OF DATA INTO VERTICES

OrientDB supports SQL command INSERT INTO TABLE (VALUES). This feature is useful

when we want to import data from existing RDBMS database. We only need export data from

Oracle database appropriate table.

Exported SQL script with data from RDBMS table RESEARCH_GROUP may look like:

Insert into RESEARCH_GROUP (RESEARCH_GROUP_ID,OWNER_ID,TITLE,DESCRIPTION)

values (151,1744,'Saab','Description number 5483222');

Insert into RESEARCH_GROUP (RESEARCH_GROUP_ID,OWNER_ID,TITLE,DESCRIPTION)

values (152,1754,'Suzuki','This is a description 6112802');

...

Do not forget that one row of RDBMS table corresponds with one OrientDB vertex, see

Figure 3-2.

Figure 3-2 Table rows decomposed on OrientDB vertices

The table name RESEARCH_GROUP corresponds with created vertex named

RESEARCH_GROUP. Unlike RDBMS we do not need fixed schema (like RDBMS tables). OrientDB

itself stores data into appropriate vertices of type RESEARCH_GROUP in the correct data types

thanks to schema-less approach.

 3 PRACTICAL PART

45

This script is different from the script for vertices and edges creation. A difference is in its

header. The script may contain thousands of records - for large datasets we need to declare

massive insertion intent. “Massive insert” intent will auto tune the OrientDB engine for fast

insertion. I used local connection for faster insertion.

Complete script may look like:

CONNECT local:../databases/EEG_ERP admin admin;

DECLARE INTENT massiveinsert;

Insert into RESEARCH_GROUP (RESEARCH_GROUP_ID,OWNER_ID,TITLE,DESCRIPTION)

values (151,1744,'Saab','Description number 5483222');

Insert into RESEARCH_GROUP (RESEARCH_GROUP_ID,OWNER_ID,TITLE,DESCRIPTION)

values (152,1754,'Suzuki','This is a description 6112802');

...

Note: Only problem may occurs by storing the date. Oracle database stores date in this way:

to_date('21.11.2010','DD.MM.RRRR')

OrientDB does not support function to_date. Instead of this function it has sysdate

function. We need to replace to_date with sysdate function.

3.1.6.3 CREATION OF EDGES BETWEEN RELEVANT NODES

The creation of edges between relevant nodes is not so straightforward. For this purpose

I used original ID values of records from RDBMS, e.g.:

In Oracle RDBMS we have relation between record PERSON with ID = 178 and more records of

RESEARCH_GROUP. This relationship expresses ownership between person and research groups

(person with ID = 178 owns some research groups).

SQL sub-queries, which are also supported by OrientDB, were used for edges creation

between relevant vertices. Using of sub-queries is exactly querying the database. For better

understanding see Figure 3-3.

 3 PRACTICAL PART

46

Figure 3-3 RDBMS one-to-many relationship transformation into OrientDB form (we can see that
relationships are reversed)

Relevant OrientDB sub-query in SQL script for Figure 3-3 looks like:

create edge OWNED from (select from PERSON where PERSON_ID = 178)

to (select from RESEARCH_GROUP where OWNER_ID = 178) set label = 'OWNED';

Indexes are very important thing by using approach with sub-query. Without indexes the

performance of insertion is very slow (in fact query look up is slow) because it leads to the linear

scanning of all vertices located in the database graph. Index tree is used with indexes. It is

necessary to put unique index of type integer on every ID property in WHERE condition. The

indexes of OrientDB are applicable only on schema’s properties (all properties are in schema-less

mode after importing the data). Index creating from console is composed from these two steps:

1) schema property creation (properties are accessed by using dot notation like in OOP

approach)

orientdb>create property person.PERSON_ID integer

2) unique index creating

orientdb>create index person.PERSON_ID unique integer

I applied this procedure on every possible relationship among vertices (see the Attachment A

– Table A.1). It is important to declare massive insertion intent in every script. Creation of edges,

 3 PRACTICAL PART

47

which expresses OWNED relationship between vertices of the type PERSON and vertices of type

RESEARCH_GROUP, may look like:

CONNECT local:../databases/EEG_ERP admin admin;

DECLARE INTENT massiveinsert;

create edge OWNED from (select from PERSON where PERSON_ID = 178)

to (select from RESEARCH_GROUP where OWNER_ID = 178) set label = 'OWNED';

...

The edge‘s name OWNED corresponds with created edge type OWNED.

If we need to add other properties to the edge, we must separate properties by commas:

...set label = 'OWNED', AUTHORITY = '1';

I generated the script files by Java program directly from Oracle database. All what is need

is to acquire the connection with Oracle database through JDBC. Finally, appropriate methods for

saving of script files must be written.

3.1.6.4 PERFORMANCE TUNING

Enough memory should be set for Client/Server Java heap (-Xmx parameter for Java

process) before importing of data. . OrientDB’s Client/Server file.mmap.maxMemory is next very

important parameter. This parameter has the influence on value of the max memory for

OrientDB’s memory mapping manager. This parameter is important especially on 32bit

architectures. Difference is when we are using 32bit architecture with 32bit Java Virtual Machine

(JVM) or 64bit architecture with 64bit JVM. The speed of insertion drastically slows down without

following settings – especially for big datasets (GBs of data). Below, you can see my settings of

OrientDB Server/ Client on different architectures.

 3 PRACTICAL PART

48

 32bit architecture (3GB RAM)

o -Xmx800m

o for right functionality of the file.mmap.maxMemory parameter we must enable

OrientDB’s Old manager

 -Dfile.mmap.useOldManager=true

 -Dfile.mmap.maxMemory=1300mb (default value is only 134MB)

 64bit architecture (6GB RAM)

o –Xmx2048m

o it is not necessary to set the file.mmap.maxMemory parameter because the

default value is (maxOsMemory – maxProcessHeapMemory)/2

All mentioned parameters can be set directly on JVM level in Console.bat or in

Server.bat scripts.

Xmx parameter can be set on the following line:

set JAVA_OPTS_SCRIPT=-XX:+AggressiveOpts -XX:CompileThreshold=200

-Xmx2048m

-Dfile.mmap.useOldManager and -Dfile.mmap.maxMemory parameters can be set on the

following line:

set ORIENTDB_SETTINGS=-Dfile.mmap.useOldManager=true,

-Dfile.mmap.maxMemory=1300mb

3.2 CREATION OF DATABASE MODEL FOR TESTING PURPOSES

I will describe the way of creating Oracle test database and OrientDB test database in this

chapter.

Note: Firstly, I created the whole model of the EEG/ERP portal test database, which is running on

the server students.kiv.zcu.cz. However, the database contains little amount of testing

data, therefore I decided to create sub-model of EEG/ERP portal with generated data for testing

purposes.

 3 PRACTICAL PART

49

3.2.1 SOFTWARE ASSUMPTIONS

 Oracle test database

 Server: Oracle Server 11g

 Client: Oracle SQL Developer 3.2

 JVM 1.6 and higher

 OrientDB test database

 OrientDB graphed 1.3.0

 JVM 1.6 and higher

I used Windows 8 64bit operating system for both databases.

3.2.2 DATABASE MODEL

Previous chapter 3.1 expected the whole EEG/ERP portal model. I locally created new

Oracle RDBMS sub-model of EEG/ERP portal model on my machine for testing purposes. I

imported new database model (without data) as the script from the original model. Sub-model is

composed from chosen following tables (it is a core of the original database, see Table 3-3).

Appropriate OrientDB alternatives of vertices for every chosen Oracle database table are listed in

Table 3-3. For more information about direction of edges see Table 1 in the Attachment A.

Table 3-3 OrientDB’s alternatives for Oracle database‘s tables

Table of Oracle test database Alternative in OrientDB test database

ARTEFACT Vertices of type ARTEFACT

ARTEFACT_GROUP_REL Edges of type CREATED

Edges of type CREATED_BY

ARTICLES Vertices of type ARTICLES

ARTICLES_GROUP_SUBSCRIBTIONS Edges of type ART_SUBSCRIBED

Edges of type ART_SUBSCRIBED_BY

COEXPERIMENTER_REL Edges of type COOPERATED

Edges of type COOPERATED_BY

EDUCATION_LEVEL Vertices of type EDUCATION_LEVEL

EDUCATION_LEVEL_GROUP_REL Edges of type DEFINED_BY

 3 PRACTICAL PART

50

Edges of type HAS

ELECTRODE_CONF Vertices of type ELECTRODE_CONF

ELECTRODE_FIX Vertices of type ELECTRODE_FIX

ELECTRODE_FIX_GROUP_REL Edges of type USED

Edges of type USED_BY

ELECTRODE_LOCATION Vertices of type ELECTRODE_LOCATION

ELECTRODE_LOCATION_GROUP_REL Edges of type LOCATED

Edges of type LOCATED_BY

ELECTRODE_LOCATION_REL Edges of type HAS

Edges of type CONFIGURED

ELECTRODE_SYSTEM Vertices of type ELECTRODE_SYSTEM

ELECTRODE_SYSTEM_GROUP_REL Edges of type DEFINED

Edges of type DEFINED_BY

EXPERIMENT Vertices of type EXPERIMENT

HARDWARE Vertices of type HARDWARE

HARDWARE_GROUP_REL Edges of type USED

Edges of type USED_BY

HARDWARE_USAGE_REL Edges of type USED

Edges of type USED_BY

PERSON Vertices of type PERSON

PROJECT_TYPE Vertices of type PROJECT_TYPE

PROJECT_TYPE_GROUP_REL Edges of type OWNED

Edges of type OWNED_BY

PROJECT_TYPE_REL Edges of type IS_IN_PROJECT

Edges of type HAS

RESEARCH_GROUP Vertices of type RESEARCH_GROUP

RESEARCH_GROUP_MEMBERSHIP Edges of type IS_MEMBER

Edges of type IS_MEMBER_OF

SCENARIO Vertices of type SCENARIO

SUBJECT_GROUP Vertices of type SUBJECT_GROUP

WEATHER Vertices of type WEATHER

WEATHER_GROUP_REL Edges of type HAS

Edges of type OWNED_BY

 3 PRACTICAL PART

51

It is possible to construct the whole OrientDB test model from this table (see Figure 3-4).

Figure 3-4 OrientDB test database model

Note: Dashed edges on Figure 3-4 indicate that these relationships were optional in Oracle

database. This fact loses significance in OrientDB schema-less graph model.

3.2.3 GENERATING OF TESTING DATA

Testing data were generated into Oracle RDBMS test database by Data Generator for

Oracle 2011 which is developed by Datanamic. University of West Bohemia owns license for this

software. Basic process for data generation is following:

 3 PRACTICAL PART

52

1) connecting to the Oracle test database

Figure 3-5 Oracle data generator – Connection window

2) selection of tables for which we want to generate data

3) settings of the generated data

220 000 records were chosen for data generating for each relational table of the

test database. Primary and foreign keys are generated automatically. By default,

appropriate generators are automatically assigned for columns. However, manually

assigned data generators were used for each table column. User generators can be also

defined but predefined generators were used in this case. For the window with

generating settings see Figure 3-6.

4) starting of generating (the generation may take a long time for big datasets, it depends on

used configuration)

 3 PRACTICAL PART

53

Figure 3-6 Oracle data generator – Settings window

OrientDB test database was made according to chapter 3.1. OrientDB test database

statistics can be seen in the Attachment C – Table C.1 and Table C.2.

3.3 TESTING OF ORIENTDB

Testing procedure of OrientDB database in comparison with Oracle database will be

described in this chapter and consequently the analysis of results will be made.

3.3.1 USED TESTING METHOD

The alternative is provided for every tested query and command in Oracle database SQL.

Ten measurements were performed for every query and five measurements were performed for

commands. Times of individual measurements of queries are summed and averaged.

Measurements are made on different number of returned records for all queries (except queries

with JOINs, because JOIN operations do not return so big number of results).

The difference in the performance of both tested databases is shown by using percentage

score. Percentage scores for various types of measured queries and commands were evaluated.

Score for each measurement is evaluated for different number of returned results.

 3 PRACTICAL PART

54

3.3.2 TESTING CONFIGURATION, TESTING SOFTWARE AND TESTED DATABASES SETTING

Following tables show specification of used HW and SW resources, specification of testing

software and settings of database servers.

Table 3-4 Testing configuration specification

Hardware

Component Specification

Central Processing Unit (CPU) Intel(R) Core ™ i3-3110M CPU @ 2.40GHz (2
cores, 4 logical processors)

Random Access Memory (RAM) 6 GB DDR3, 1600 MHz

Hard Disk Drive (HDD) 500 GB, 7200 rpm

Table 3-5 Testing software specification

Software

OrientDB Oracle database

Server: OrientDB 1.3.0 graphed Server: Oracle 11g Enterprise edition 64bit

Testing client: Java application Testing client: Oracle SQL developer 3.2.20.09
64bit

Operating system: Windows 8 64bit

JVM: 1.7 64bit

Table 3-6 Database servers settings

OrientDB server settings on JVM level

JVM parameters

set JAVA_OPTS_SCRIPT=

-XX:+AggressiveOpts

-XX:CompileThreshold=200

-Xmx2048m

OrientDB parameters (cache settings)

set ORIENTDB_SETTINGS=

-Dcache.level1.enabled=false

-Dcache.level2.enabled=false

Oracle server settings

memory_target parameter 2048MB

cache settings After every executed query - flushing of cache:

ALTER SYSTEM FLUSH BUFFER_ CACHE

 3 PRACTICAL PART

55

3.3.3 ORIENTDB JAVA API BASICS

OrientDB testing queries and commands were tested through Java API. I mention here

basic OrientDB Java API structures. These structures are assumptions for snippets of Java code in

following chapters.

1) needed *.jar libraries

blueprints-core-2.2.0, blueprints-orient-graph-2.2.0, gremlin-java-2.2.0, pipes-2.2.0,

orientdb-core-1.3.0, orientdb-graphdb-1.3.0, orient-commons -1.3.0,

orientdb-enterprise-1.3.0

2) new database instance creation; remote connection to the database server

//OrientGraph is Blueprints implementation of the graph database

//OrientDB (see chapter 2.4.3)

OrientGraph graph = new OrientGraph("remote:localhost/EEG_ERP");

3) new database instance creation for batch processing tasks

OrientBatchGraph bgraph =

//method getRawGraph makes available the underlaying OrientDB graph

new OrientBatchGraph(graph.getRawGraph());

4) closing the database after the end of the work with it (closing is strongly recommended,

otherwise data corruption may be caused)

graph.shutdown();

5) shutting down the memory cache (it has to be done before database instance creation)

 OGlobalConfiguration.CACHE_LEVEL1_ENABLED.setValue(false);

OGlobalConfiguration.CACHE_LEVEL2_ENABLED.setValue(false);

6) massive insertion settings

bgraph.getRawGraph().declareIntent(new OIntentMassiveInsert());

bgraph.getRawGraph().setValidationEnabled(false);

Before creation of the database instance following settings have to be done.

OGlobalConfiguration.STORAGE_KEEP_OPEN.setValue(false);

OGlobalConfiguration.TX_USE_LOG.setValue(false);

 3 PRACTICAL PART

56

OGlobalConfiguration.ENVIRONMENT_CONCURRENT.setValue(false);

7) enabling of usage of custom type vertices

graph.getRawGraph().setUseCustomTypes(true);

8) Java query/command execution time was measured in milisecs

long startTime = System.currentTimeMillis();

//place for code of query/command

double estimatedTime =

(System.currentTimeMillis() - startTime) / 1000.0;

3.3.4 BINARY FILES STORING

Process of binary data storage into testing database will be described before testing of

queries. This method is based on the method no. 4 in chapter 2.4.5. Basic assumption for this

method is that we have exported BLOBs from Oracle database somewhere on the File System.

BLOBs uploading method was tested on files with size about 200 MB (it is standard size of the

data from one experimental measurement in EEG laboratory. Upload was performed without any

problems.

1) ORecordBytes instance creation with appropriate parameter

//ORecordBytes takes parameter which return bytes array

//method BytesReader is general method which returns bytes array

ORecordBytes BLOBrecord =

new ORecordBytes(BytesReader.getBytesFromFile("fileName"));

2) selection of appropriate document (vertex) for binary file storing

List<ODocument> result = bgraph.getRawGraph()

.query(new OSQLSynchQuery<ODocument>

//execution of query to retrieve record to witch will be linked

//binary data

("SELECT FROM " +targetVertexName+" WHERE " + IDcolumnName + " =

" + numberOfID));

 3 PRACTICAL PART

57

3) binary data saving into appropriate record as a field

result.get(0).field(BLOBfieldName, BLOBrecord);

result.get(0).save();

On the Figure 3-7 we can see how binary files of different types are linked to appropriate

records of type DATA_FILE (marked columns). It can be seen that file content is linked to the

record in the similar way like edges – BLOB records have got own record ID too.

Figure 3-7 We can see how binary files are linked to appropriate records in OrientDB Studio

Note: Text is need to export from Oracle database’s Character Large Objects (CLOBs) before

storing them into OrientDB. Exported files with text can be stored into OrientDB in the same way

like BLOBs. The only difference is that String class instead ORecordBytes class is used, e.g.:

String CLOBrecord =

new String(BytesReader.getBytesFromFile("fileName"));

All data from Oracle database are imported into OrientDB in this moment. The IDs

properties for primary and foreing keys (remainder from relational database), which were used

for edge import needs (see chapter 3.1.6.3), are now useless. They can be removed from vertices.

 3 PRACTICAL PART

58

3.3.5 TYPES OF TESTED QUERIES AND COMMANDS

I tested OrientDB database on three following different groups of tasks:

1) single table queries

These queries were executed on one type of table.

2) queries with JOIN operation

These queries were executed over multiple tables.

3) standard commands INSERT, UPDATE and DELETE

3.3.5.1 INDEXES IN ORIENTDB

Index should be created on fields of vertices which are used in WHERE clause, ORDER BY

clause, etc. to speed up queries. UNIQUE, NOTUNIQUE, FULLTEXT or DICTIONARY types of index

can be put on the properties. Indexes can be manual or automatic (within the meaning of

updating index). Automatic indexes are automatically updated by OrientDB engine and they are

bound to schema properties. Manual indexes are handled by SQL commands. For my purpose I

used automatic indexes.

There is a difference in indexes creation when we want to use OrientDB SQL queries and

when we want to use Gremlin queries. For better understanding see example:

Index Creation/dropping for RESEARCH_GROUP.TITLE property in OrientDB SQL (console syntax):

1) schema property creation (see chapter 3.1.6.3)

CREATE PROPERTY RESEARCH_GROUP.TITLE STRING

2) index on TITLE property creation

CREATE INDEX RESEARCH_GROUP.TITLE NOTUNIQUE STRING

3) index on TITLE property dropping

DROP INDEX RESEARCH_GROUP.TITLE

If we want to use Blueprints Gremlin language, vertex types like RESEARCH_GROUP cannot

be used because Blueprints does not support them. Basic type of vertices – OGraphVertex must

 3 PRACTICAL PART

59

be used in this case (see chapter 3.1.6.1) and schema property does not need to be made. For

better understanding see following example:

CREATE INDEX OGraphVertex.TITLE NOTUNIQUE STRING

This index type is put on all properties named TITLE in database (not only for one vertex

type like RESEARCH_GROUP).

Note: I put indexes on properties in WHERE, ORDER BY, etc. clauses when I used OrientDB SQL. I

put indexes on property of searched vertices when I used Gremlin. These indexed properties will

be mentioned by properly queries. UNIQUE indexes are used on foreign keys in Oracle test

database. All indexes used in OrientDB test database can be found in the Attachment C - Table

C.2.

3.3.5.2 SINGLE TABLE QUERIES

I decided for this test because OrientDB SQL supports some constructions like WHERE,

ORDER BY, etc. which are well known from standard SQL. For all queries on flat table I used

OrientDB SQL language (see 2.4.4). All results of time measurement can be found in the

Attachment D - Table D.1. Graph comparison of the averaged times for the different size of

resultset can be found in the Attachment E. Queries are marked by number in brackets – [query

number]. For the overall percentage score of these queries set of both databases see Graph 3-1 in

this chapter.

OrientDB syntax is the same as Oracle SQL syntax for the same queries. Only difference is

in restriction settings of returned results number, e.g.:

Oracle syntax: SELECT * FROM EXPERIMENT WHERE ROWNUM <= 1000

OrientDB syntax: SELECT * FROM EXPERIMENT LIMIT = 1000

1) simple query with selection of all columns/fields [1]

Verbal description:

 Get all column values from experiment.

Syntax:

SELECT * FROM EXPERIMENT

 3 PRACTICAL PART

60

OrientDB index:

There is no need for index.

2) simple query with WHERE clause[2]

Verbal description:

Get all records from experiment where temperature is bigger than 18.

Syntax:

SELECT * FROM EXPERIMENT WHERE TEMPERATURE > 18

OrientDB index:

Automatic index on property TEMPERATURE (NOTUNIQUE, INTEGER)

3) simple query with WHERE clause no. 2 [3]

Verbal description:

Get all persons with given name that starts with letter A.

Syntax:

SELECT * FROM PERSON WHERE GIVENNAME LIKE ‘A%’

OrientDB index:

Automatic index on property GIVENNAME (NOTUNIQUE, STRING)

4) simple query with ORDER BY clause [4]

Verbal description:

 Get title and time from articles and order them by time in descending order.

Syntax:

SELECT TITLE, TIME FROM ARTICLES ORDER BY TIME DESC

OrientDB index:

Automatic index on property TIME (NOTUNIQUE, DATE)

 3 PRACTICAL PART

61

5) simple query with GROUP BY clause [5]

Verbal description:

Get count for each electrode location and group it by title.

Syntax:

SELECT TITLE, COUNT(*) FROM ELECTRODE_LOCATION GROUP BY TITLE

OrientDB index:

Automatic index on property TITLE (NOTUNIQUE, STRING)

6) simple query with BETWEEN clause[6]

Verbal description:

Get impedance of electrode configuration where impedance is between 20 and

900.

Syntax:

SELECT * FROM ELECTRODE_CONF WHERE IMPEDANCE BETWEEN 20 AND 900

OrientDB index:

Automatic index on property IMPEDANCE (NOTUNIQUE, INTEGER)

I tested OrientDB SQL queries by using OrientDB Java API. I mentioned the code snippet

for testing speed query below.

Code snippet for testing queries (synchronous query):

//list of returned records, records are returned as types of

//ODocument but they can also be returned as types of Vertex

List<ODocument> records= graph.getRawGraph().query(new

OSQLSynchQuery("SELECT * FROM EXPERIMENT LIMIT = 100000"));

Note: OrientDB also supports asynchronous queries that do not consumes Java heap. The time of

query execution is similar.

 3 PRACTICAL PART

62

Graph 3-1 Percentage difference of both databases in queries on single table/vertices (higher is

better)

As we can see on Graph 3-1 OrientDB is much slower than Oracle in the overall

perspective. However, it must be considered (according to the Attachment D - Table D.1) that

query execution time depends on the number of returned records. Query execution time is nearly

similar for smaller resultsets (about 1000 records). Oracle database clearly dominates for bigger

resultsets (except one case with ORDER BY clause). Indexes on properties must be used for better

performance by using OrientDB queries (otherwise, the time of query execution is a little slower).

The biggest time difference is in query with GROUP BY clause when Oracle is up to 1 500% faster

than OrientDB.

However, we must take into consideration that OrientDB and generally graph databases

are not designed for these types of queries on a single type of vertex. It is logical that relational

table structure have big advantage by these queries because table structure keeps well-structured

data – table contains rows with records. Although one vertex is similar to row in relational model,

vertices are stored in cluster which does not have so fixed structure like table therefore the

retrieving records can be slower.

0

500

1000

1500

2000

2500

3000

Oracle OrientDB

2895,66

276,90

[%]

[database system]

Overall percentage score - queries on single table
(one type vertex)

Oracle

OrientDB

 3 PRACTICAL PART

63

The results of this query set showed that if we have well-structured data without need for

JOIN operations, Oracle database is the better choice than OrientDB.

3.3.5.3 QUERIES OVER MULTIPLE TABLES (JOINS)

I used TinkerPop Blueprints Gremlin language for all queries over multiple tables/vertices.

I chose Gremlin thanks to its efficiency on property graph database model. Gremlin is designed

especially for traversal over multiple vertices (see chapter 2.4.4.2).

All time measurement results can be found in the Attachment D - Table D.2. Graph

comparison of the averaged times can be found in the Attachment E. Ten measurements were

performed on one-size resultset for every query. Queries are marked by number in brackets –

[number query]. For the overall percentage score of this queries set of both databases see Graph

3-2 in this chapter.

 The syntax of Gremlin queries is very different from Oracle SQL syntax in this case. I

provide Gremlin console syntax and Java API syntax for each query below.

The traversal over vertices in OrientDB database model is showed on Figure 3-8, each

query traversal is distinguished by colour. Query path with specific colour starts in vertex with

START clause and it ends in vertex with END clause. Basic Descriptions of newly used steps for

OrientDB queries are provided by query syntax (query is executed like steps in pipe e.g. see

chapter 2.4.4.2) in cells.

How it was mentioned, Gremlin queries in console version can be executed through

OrientDB studio or through Gremlin console. We have to firstly connect to the database and

create graph instance in Gremlin console, e.g.:

gremlin>g = new OrientGraph("remote:localhost/EEG_ERP");

==>orientgraph[remote:localhost/EEG_ERP]

Now g is the reference on the OrientDB graph.

1) query with 1x INNER JOIN clause [1] (for traversing over the graph see blue path on Figure

3-8)

Verbal description:

Get education level title of person with surname Walker.

 3 PRACTICAL PART

64

Oracle SQL syntax:

SELECT TITLE FROM PERSON p

INNER JOIN EDUCATION_LEVEL e ON p.EDUCATION_LEVEL_ID =

e.EDUCATION_LEVEL_ID

WHERE p.SURNAME = 'Walker'

Gremlin console syntax:

g.V('SURNAME','Walker') .out('REACHED') .TITLE.as('title') .table().cap()

Gremlin Java API syntax:

//creation of new pipe

GremlinPipeline pipe = new GremlinPipeline();

//starting of pipe

pipe.start(graph.getVertices("SURNAME","Walker"))

.out("REACHED").property("TITLE")

.as("title").table().cap();

//save resultset into list

pipe.toList();

OrientDB indexes:

Automatic index on property SURNAME (NOTUNIQUE, STRING)

2) query with 4x INNER JOIN clause [2] (for traversing over the graph see red path on Figure

3-8)

Verbal description:

Get all reject conditions which belongs to persons which are members and owners

of research group with name DAV from artefact. Get all usernames and title of group too.

Oracle SQL syntax:

SELECT TITLE, USERNAME, REJECT_CONDITION FROM

RESEARCH_GROUP r

INNER JOIN

Look for all vertices with surname
property with value Walker →
(Capital letter V means all
vertices, lower case letter would
mean one vertex, we would use
vertex ID as a parameter.)

which are connected
with vertices by
outgoing edges with
label REACHED→

and get TITLE of
these outgoing
vertices and set alias
title properties in
resultset →

and store
values in the
table. It emits
the values of
the previous
step.

 3 PRACTICAL PART

65

 RESEARCH_GROUP_MEMBERSHIP m ON

(r.RESEARCH_GROUP_ID=m.RESEARCH_GROUP_ID)

INNER JOIN

 PERSON p ON (p.PERSON_ID = m.PERSON_ID)

INNER JOIN

 EXPERIMENT e ON (e.OWNER_ID= p.PERSON_ID)

INNER JOIN

 ARTEFACT t ON (t.ARTEFACT_ID = e.ARTEFACT_ID)

WHERE r.TITLE='DAV'

Gremlin console syntax:

g.V('TITLE','DAV').TITLE.as('title').back(1).out('IS_MEMBER')

.USERNAME.as('username').back(1).in('MEASURED') .out('DEFINED')

.has('TYPE','ARTEFACT') .REJECT_CONDITION.as('reject_cond')

.table().cap()

Gremlin Java API syntax:

GremlinPipeline pipe = new GremlinPipeline();

pipe.start(graph.getVertices("TITLE","DAV"))

.property("TITLE").as("title").back(1).out("IS_MEMBER")

.property("USERNAME").as("username").back(1).in("MEASURED")

.out("DEFINED").has("TYPE","ARTEFACT")

.property("REJECT_CONDITION").as("reject_cond");

OrientDB indexes:

Automatic index on property TITLE (NOTUNIQUE, STRING)

Automatic index on property TYPE (NOTUNIQUE, STRING)

Backtrack pattern – it means one step
back (because we want to get TITLE from
RESEARCH_GROUP, then we have to
return before g.V(...) clause to process
vertices connected to RESEARCH_GROUP
by outgoing edges with label IS_MEMBER)

Filter method for searched vertices–
as you can see on Figure 3-8 vertex
of type EXPERIMENT has more
outgoing edges of type DEFINED, so
we need to distinguish (Gremlin does
not support vertex types) them. This
could be done by adding new property
named TYPE with value ARTEFACT into
vertices of type ARTEFACT.

Incoming edges with
label MEASURED – we
can traverse in reverse
direction too. See
Figure 3-8

 3 PRACTICAL PART

66

3) query with SEMI RIGHT JOIN clause [3] (for traversing over the graph see orange path on

Figure 3-8)

Verbal description:

Get all persons which own research group with name Eagle. Get username, e-mail

and phone number of each person.

Oracle SQL syntax:

SELECT USERNAME, EMAIL, PHONE_NUMBER FROM PERSON

WHERE PERSON_ID IN

(SELECT OWNER_ID FROM RESEARCH_GROUP WHERE TITLE = 'Eagle')

Gremlin console syntax:

g.V('TITLE','Eagle').TITLE.as('t').back(1).out('OWNED_BY')

.transform

({[username:it.USERNAME,email:it.EMAIL,phone:it.PHONE_NUMBER]})

.as('person_properties').table().cap()

Gremlin Java API syntax:

GremlinPipeline pipe = new GremlinPipeline();

pipe.start(graph.getVertices("TITLE","Eagle")).property("TITLE")

.as("t").back(1).out("OWNED_BY")

//we use inner classes to perform specific actions for some

//functions in Gremlin

.transform(new PipeFunction<OrientVertex, List<String>>(){

 @Override

//we can use list as collection for PERSON’S properties

//we have to not use iterator because pipe itself is iterable

 public List<String> compute(OrientVertex s) {

 List<String> properties = new ArrayList<String>();

 properties.add((String) s.getProperty("USERNAME"));

 properties.add((String) s.getProperty("EMAIL"));

 properties.add((String) s.getProperty("PHONE_NUMBER"));

 return properties;

 }

 }).as("person_properties").table().cap();

pipe.toList();

If we want to get some (not all) properties of some vertices located in the middle of pipe, we have to use
transform(..) function. If we want to do the same thing but we will need get all properties, we will use function
map(). We have to call it – iterator that iterates over all specific properties (syntax: alias: it.property_name) for
each property in transform function.

 3 PRACTICAL PART

67

OrientDB indexes:

Automatic index on property TITLE (NOTUNIQUE, STRING)

4) query with 8x INNER JOIN clause [4] (for traversing over the graph see green path on

Figure 3-8)

Verbal description:

Get all project type titles, electrode configuration impedances, research group

titles, electrode location titles and electrode fixation titles for all project types with title

Supplies.

Oracle SQL syntax:

SELECT pt.TITLE, ec.IMPEDANCE, r.TITLE, el.TITLE, ef.TITLE FROM

 PROJECT_TYPE pt

INNER JOIN

 PROJECT_TYPE_REL ptr ON

(ptr.PROJECT_TYPE_ID = pt.PROJECT_TYPE_ID)

INNER JOIN

 EXPERIMENT e ON

(e.EXPERIMENT_ID = ptr.EXPERIMENT_ID)

INNER JOIN

 ELECTRODE_CONF ec ON

(ec.ELECTRODE_CONF_ID = e.ELECTRODE_CONF_ID)

INNER JOIN

 ELECTRODE_LOCATION_REL elr ON

(elr.ELECTRODE_CONF_ID = ec.ELECTRODE_CONF_ID)

INNER JOIN

 ELECTRODE_LOCATION el ON

(el.ELECTRODE_LOCATION_ID = elr.ELECTRODE_LOCATION_ID)

INNER JOIN

 ELECTRODE_FIX ef ON

(el.ELECTRODE_FIX_ID = ef.ELECTRODE_FIX_ID)

INNER JOIN

 ELECTRODE_FIX_GROUP_REL efgr ON

(efgr.ELECTRODE_FIX_ID = ef.ELECTRODE_FIX_ID)

INNER JOIN

 RESEARCH_GROUP r ON

(r.RESEARCH_GROUP_ID = efgr.ELECTRODE_FIX_ID)

WHERE pt.TITLE = 'Supplies'

 3 PRACTICAL PART

68

Gremlin console syntax:

g.V('TITLE','Supplies').TITLE.as('title_pt').back(1)

.out('HAS')

.out('DEFINED').IMPEDANCE.as('impedance').back(1)

.filter{it.TYPE=='ELECTRODE_CONF'}

.out('CONFIGURED')

.has('TYPE','ELECTRODE_LOCATION').TITLE.as('title_el').back(1)

.out('FIXED_BY').TITLE.as('title_ef').back(1)

.out('USED_BY').TITLE.as('title_r').table().cap()

Gremlin Java API syntax:

GremlinPipeline pipe = new GremlinPipeline();

pipe.start(graph.getVertices("TITLE","Supplies")).property("TITLE")

.as("title_pt").back(1).out("HAS").out("DEFINED")

.property("IMPEDANCE").as("impedance").back(1).

//we have to use appropriate inner class to perform filtering by

//using filter method

filter(new PipeFunction<OrientVertex, Boolean>() {

@Override

public Boolean compute(OrientVertex v) {

return v.getProperty("TYPE").equals("ELECTRODE_CONF");

}

}).out("CONFIGURED").has("TYPE","ELECTRODE_LOCATION")

.property("TITLE").as("title_el").back(1).out("FIXED_BY")

.property("TITLE").as("title_ef").back(1).out("USED_BY")

.property("TITLE").as("title_r").table().cap();

pipe.toList();

OrientDB indexes:

Automatic index on property TITLE (NOTUNIQUE, STRING)

Automatic index on property TYPE (NOTUNIQUE, STRING)

5) query with 3x INNER JOIN clause [5] (for traversing over the graph see yellow path on

Figure 3-8)

Filter(..) method can be used for filtering of searched vertices
Instead of has(..) method . Filter offers more possibilities how to
filter records. Iterator it must be used in this case.

 3 PRACTICAL PART

69

Verbal description:

Get all names of scenarios for all persons with surname Wilson which co-operated on

these scenarios.

Oracle SQL syntax:

SELECT p.USERNAME, s.SCENARIO_NAME

FROM SCENARIO s

INNER JOIN

 EXPERIMENT e ON (e.EXPERIMENT_ID = s.SCENARIO_ID)

 INNER JOIN

 COEXPERIMENTER_REL c ON (c.EXPERIMENT_ID = e.EXPERIMENT_ID)

 INNER JOIN

 PERSON p ON (p.PERSON_ID = c.PERSON_ID)

 WHERE p.SURNAME = 'Wilson'

Gremlin Console syntax:

g.V('SURNAME','Wilson').USERNAME.as('username').back(1)

.out('COOPERATED').out('USED').has('TYPE','SCENARIO')

.property('SCENARIO_NAME').as('scenario_name').back(1)

.table().cap();

Gremlin Java API syntax:

GremlinPipeline pipe = new GremlinPipeline();

pipe.start(graph.getVertices("SURNAME","Wilson"))

.property("USERNAME").as("username").back(1).out("COOPERATED")

.out("USED").has("TYPE","SCENARIO")

.property("SCENARIO_NAME").as("scenario_name").back(1)

.table().cap();

pipe.toList();

OrientDB indexes:

Automatic index on property SURNAME (NOTUNIQUE, STRING)

 3 PRACTICAL PART

70

Figure 3-8 Gremlin traversal of each query over multiple vertices in OrientDB database model

 3 PRACTICAL PART

71

Graph 3-2 Percentage difference of both databases in queries on multiple types of tables/vertices

As we can see on Graph 3-2 OrientDB dominates in queries over multiple types of vertices

in overall perspective – see the Attachment D - Table D.2. OrientDB is slightly slower only in case

with Oracle database SEMI JOIN clause – full join operation is not performed in this case (only

sub-query) but this difference is insignificant. The assumptions from chapter 2.1.2.5 and chapter

2.2 were confirmed. The query speed strongly depends on the deep of JOIN operations. OrientDB

graph database model shows the best performance on queries with deep joins between records -

see the difference in query execution times when clause with 8x INNER JOIN is used - OrientDB is

up to 2 100% faster than Oracle database. As it was mentioned in chapter 2.1.4.3, graph model is

designed for big connection complexity among records. Moreover, graph database model brings

much better options for data analysis. The data analysis is provided by tools for graph analysis or

by graph query languages (Gremlin). Gremlin is very efficient by traversing the graph – we can

write the query with the same result in more ways. OrientDB graph model also provides good

possibilities for semantics between records –you can see this fact by comparing of Oracle SQL and

Gremlin query syntax. Gremlin queries have more natural ability to express query syntax than

Oracle SQL and they are easier to read – thanks to labels on edges.

0

500

1000

1500

2000

2500

3000

Oracle OrientDB

29,2

2903,26

[%]

[database system]

Overall percentage score - queries over multiple tables/vertices

Oracle

OrientDB

 3 PRACTICAL PART

72

All results of time measurement show that for big connection complexity among records,

when complex queries with deep JOIN operations are used, the OrientDB is better option than

Oracle database. However, we have to use indexes for this good performance. The searching

without indexes leads to the linear scanning of all vertices in dataset and it could lead to

unacceptable degradation of the performance.

3.3.5.4 COMMANDS INSERT, UPDATE, DELETE

I used OrientDB SQL for commands UPDATE and DELETE. I used OrientDB Java API for

command INSERT. All results of time measurement can be found in the Attachment D - Table D.3.

Graph comparison of averaged times for the different number of processed records can be found

in the Attachment E. For the overall percentage score of these command sets of both databases

see Graph 3-3 in this chapter.

OrientDB syntax for commands UPDATE and DELETE is the same as Oracle SQL

alternative. Only difference is by settings of restriction of number of returned results (see chapter

3.3.5.2). All commands were performed on table/vertices of type SUBJECT_GROUP.

1) insertion speed test – INSERT command

Oracle SQL syntax:

INSERT INTO SUBJECT_GROUP (SUBJECT_GROUP_ID, TITLE, DESCRIPTION)

values (1, 'Title', 'This is a description')

...

OrientDB Java API syntax:

Massive insertion intent is desirable to be set before the records insertion, e.g.:

OrientBatchGraph bgraph = null;

bgraph = new OrientBatchGraph(graph.getRawGraph());

bgraph.getRawGraph().declareIntent(new OIntentMassiveInsert());

 3 PRACTICAL PART

73

Records insertion:

ODocument doc = bgraph.getRawGraph().createVertex();

//iteration over number of chosen records to store

for (int i = 0; i < NUMBER_OF_RECORDS; i++)

{

//resets the record to be reused, it recycles records avoiding the

//creation of them stressing the JVM Garbage

 doc.reset();

//class name for insertion

 doc.setClassName("SUBJECT_GROUP");

//fields(properties) with values

 doc.field("SUBJECT_GROUP_ID", i);

 doc.field("TITLE", "Title");

 doc.field("DESCRIPTION", "This is a description");

//save record into database

 doc.save();

}

2) test of updating speed – UPDATE command

Syntax:

UPDATE SUBJECT_GROUP SET TITLE = 'This is a new title'

3) updating speed test – DELETE command

Syntax:

DELETE FROM SUBJECT_GROUP

I tested UPDATE and DELETE commands by using OrientDB Java API. Below, I mentioned

the code snippet for testing query speed. Code snippet for testing commands:

graph.getRawGraph().command(new OCommandSQL("UPDATE SUBJECT_GROUP

SET TITLE = 'This is a new title' limit = 220000")).execute();

 3 PRACTICAL PART

74

Graph 3-3 Percentage difference of both databases in standard database commands –

INSERT, UPDATE, DELETE

OrientDB is in overall perspective slightly better as we can see on Graph 3-3. We must

considerate (according to the Attachment D - Table D.3) that command execution times strongly

depend on the number of processed records. OrientDB is better than Oracle database for a small

resultset sizes (about 1000 records) in all cases. OrientDB especially dominates in any number of

records insertion when it is up to 1150% faster than Oracle database with 220 000 records . On

the contrary, Oracle database is much faster for bigger number of processed records in operations

UPDATE and DELETE (up to 846% by f 100 000 records deleting).

All results of time measurement show that OrientDB offers superfast records insertion.

Insertion can be much faster (about 1 000 000 inserted records in less than 20 seconds) if

OrientDB uses local protocol (see chapter 2.4.1.1). OrientDB is faster on smaller number of

processed records in all cases. Oracle database is better in case of UPDATE and DELETE commands

for bigger number of processed records. The performance degradation by deleting/updating

records is logical because graph model is much more complex than relational table structure and

the linear scanning must look up for all records in main memory. The performance could be

probably enhanced by putting indexes on some deleted/updated vertices sub-set.

0

500

1000

1500

2000

2500

Oracle OrientDB

2045,82

2394,89
[%]

[database system]

Overall percentage score - Insert, Update, Delete commands

Oracle

OrientDB

 3 PRACTICAL PART

75

3.3.6 ORIENTDB GRAPH MODEL SUITABILITY FOR EEG/ERP DOMAIN

I mention here following insights which are evaluation of working with OrientDB. These

insights are based on my own experience and results from chapters 3.3.5.1 – 3.3.5.4.

1) working with the database

Firstly I tried to test the database on 32bit architecture with 32bit JVM and I was

not able to tune database to work without errors (see chapter 3.1.6.4) with bigger dataset

(GBs). It was caused by small amount of RAM (Random Access Memory) for Java process

and by bad memory mapping of OrientDB on 32bit architecture. Problems were solved

when I switched to the 64bit architecture. The absence of good database client is the

biggest lack of working with OrientDB (unlike robust Oracle SQL Developer). It is true that

OrientDB offers Console and OrientDB Studio clients. However, the console has limited

possibilities of result formatting and it has not fully support of Gremlin language (Gremlin

can be partially combined with OrientDB SQL). Gremlin Console has to be used for pure

Gremlin queries. Moreover, there are minimal options for additional results processing

from consoles. OrientDB studio is web client which offers more comfort by working with

the database, but if we want to execute query which returns big dataset (thousands of

records) then the web browser freezes and it is impossible to work with it. On the Other

hand, OrientDB Studio offers good options for the database model visualization and it

supports Gremlin and SQL query languages. I prefer native Java API as the best way to

work with the database. I think Java API is the best OrientDB advantage – it means no

third party drivers (like JDBC) and no ORM (like Hibernate). Only Java API disadvantage

may be the need for advanced experiences with Java programing language for some

users.

2) database model

EEG/ERP portal application is not the typical case for graph database model

(unlike social network, transportation network, etc.). However, portal complexity is every

year more complicated and the requirement to use more complicated queries and

relationships between records is increased. More complex relationships between records

can be used with graph database model. The semantics possibilities are good assumptions

for f semantic web application creation and the queries can be more natural and much

more readable. The whole EEG/ERP portal database model would be greatly simplified

 3 PRACTICAL PART

76

(see the chapter 3.1) with OrientDB usage from my perspective and it could be more

transparent and flexible. There would be no need for cumbersome ORM thanks to native

Java API.

 Only problem could be missing support for Spring Framework. EEG/ERP portal

uses Spring Framework for application layer. Currently, OrientDB has not direct support

for Spring Framework and the OrientDB configuration for Spring Framework usage could

be more complicated. However, there are some projects in development which will make

easier to build Spring-powered applications with OrientDB, e.g. Spring Data OrientDB1.

3) query possibilities and query speed

In addition to what were mentioned in chapters 3.3.5.1 – 3.3.5.4 I think this is the

biggest OrientDB advantage. OrientDB supports own SQL implementation which can be

combined with Gremlin language or just Gremlin language can be used. OrientDB offers

really good query possibilities (Oracle database supports “only” standard SQL). An

extensive data analysis can be done with Gremlin language power (also thanks to good

semantic expression ability of relationships between records). We are not only restricted

on queries over vertices but we can also query edges. Moreover, external tools for graph

analysis like Gephi2 tool can be used with OrientDB. OrientDB dominates when we mainly

need complex queries with deep JOIN operations. Oracle database dominates when we

mainly need simple queries on single table with well-structured data. EEG/ERP portal does

not use queries with very deep JOIN operations. Querying the EEG/ERP portal with

current HQL queries is suitable but OrientDB SQL could fully replace these current queries

and Gremlin powerful queries could be used with increasing EEG/ERP portal database

model complexity in the future. The number of returned records from EEG/ERP portal

queries is not so big and for these smaller datasets OrientDB is faster than Oracle

database or as fast as Oracle database in all cases (see the Attachment D). Moreover, The

OrientDB queries are more readable than HQL from my viewpoint. I can recommend

OrientDB for querying EEG/ERP portal on the base of previous information.

1
 Spring data project make it easier to build Spring-powered applications. Spring data project will implement

2
 Gephi is an interactive visualization platform for networks and dynamic and hierarchical graphs. It

supports all Blueprints graph implementations (including OrientDB or Neo4J) [36]

 3 PRACTICAL PART

77

4) features

OrientDB supports ACID transactions, Locks, Hooks (triggers), database import

and export etc. See the Attachment G for main OrientDB features.

Finally, see Graph 3-4 which shows the overall percentage score of both tested databases.

This score is composed from all sub-measurements., Databases are not so different in their

performance from the overall view, but the concrete use case has to be considered. Current

relational EEG/ERP portal database is suitable for querying the database on the current level

(lower connectivity between records and queries with smaller JOINs depth). However, OrientDB

offers more simple and more flexible database model with own Java API and without ORM. I think

that the change of EEG/ERP portal database to OrientDB would be useful.

Graph 3-4 Overall percentage score of both tested database systems

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

Oracle OrientDB

4970,68

5575,05
[sec]

[database system]

Oracle database vs. OrientDB - overall percentage score

Oracle

OrientDB

 4 CONCLUSION 4 CONCLUSION

78

4 CONCLUSION

This thesis was created on the base of EEG/ERP research group requirement. The main

goal of my work was to choose appropriate NoSQL database system which could improve and

replace current Oracle relational database system used in EEG/ERP portal application database

layer. As the most suitable OrientDB document/graph NoSQL system was chosen (selection is

described in [23]). The OrientDB suitability for EEG/ERP domain was evaluated on the base of

performance testing both database systems and on the base of working convenience with both

database systems.

I provided comparison of relational database system and NoSQL database system in the

theoretical part. I mentioned advantages and disadvantages of these both database approaches.

In the last part of the theoretical part the main NoSQL database models were described. Finally, I

acquainted with OrientDB graph model concepts which were the main assumptions for the

practical part.

I focused on the realization of database systems testing in the practical part of this work.

The first phase of this part was focused on the customization and preparation of current EEG/ERP

portal database. I built graph database model from this customized relational database model in

OrientDB. The main customization content was to decompose the relational tables and

relationships on graph vertices and edges.

I chose the sub-model from the original EEG/ERP portal relational database for testing

purposes in the next phase. I build this sub-model in OrientDB graph database model too. Finally,

both databases contained the same data and relationships.

The test part followed. The same configuration was used for both databases. Both

databases were tested on the same set of database queries and database commands. I performed

ten measurements for each database query and five measurements for each database command.

I tested databases on different numbers of processed records. Each set of measured query and

command was averaged. I made the speed comparison of both databases on the base of

percentage difference between averages of measured sets.

The testing results confirmed basic assumptions. Relational database can better handle

with queries on single table. Relational table takes advantage of its fixed structure in this case. In

contrast to relational database, NoSQL graph database can better handle with queries over

multiple vertices. NoSQL database takes advantage of its robust graph database model which is

able to manage relations among vertices like direct links – queries are performed without

 4 CONCLUSION 4 CONCLUSION

79

demanding JOIN operations. Test of database commands showed that NoSQL dominates in

INSERT command but it is worse in DELETE and UPDATE commands than relational database.

Query and command execution speed depends on number of processed records in all cases. The

testing results showed that it depends on types of used queries and commands and from overall

view both databases are similar in this case.

I also tested NoSQL database handling with binary files. Binary files were stored efficiently

without taking up additional disk space.

In the overall perspective I cannot say which database system is better or faster. From my

point of view, EEG/ERP portal’s database model is not the typical case for graph database model

but I believe that OrientDB could bring certain advantages for EEG/ERP portal application.

OrientDB could especially simplify the whole database model. The database model would be

more flexible in terms of variability. I think that avoiding of ORM and third party drivers could be

also the significant advantage. OrientDB solution offers more natural syntax of queries too.

However, OrientDB does not offer so good working convenience concerning to database clients

like Oracle database. OrientDB’s tools for database managing need additional improvement. It is

because of OrientDB is open source project and it is still in the development process. Currently,

full tutorials are not also available yet but the community around OrientDB project is still bigger.

If we can accept all mentioned restrictions, OrientDB could be very useful for EEG/ERP

domain in terms of future development of EEG/ERP portal application.

 5 LIST OF ABBREVIATIONS 5 LIST OF ABBREVIATIONS

80

5 LIST OF ABBREVIATIONS

Table 5-1 Alphabetical list of abbreviations

Abbreviation Explanation

ACID Atomicity, Consistency, Isolation, Durability

AJAX Asynchronous Javascript and XML

API Application Program Interface

BLOB Binary Large Object

CLOB Character Large Object

CPU Central Processing Unit

CRUD Create, Read, Update, Delete

CSS Cascading Style Sheets

E-R Entity Relationship

EEG Electroencephalography

ERP Even-Related Potentials

HDD Hard Disk Drive

HQL Hibernate Query Language

HTTP HyperText Transfer Protocol

Java EE Java Enterprise Edition

JDBC Java Data Base Connectivity

JMX Java Management Extension

JSON JavaScript Object Notation

JSP Java Server Pages

JVM Java Virtual Machine

NoSQL Not Only Structured Query Language

oda OrientDB data

odh OrientDB data holes

OOP Object Oriented Programming

ORM Object Relational Mapping

PL/SQL Procedural Language/Structured Query Language

POJO Plain Old Java Object

RDBMS Relational Database Management System

RDF Resource Description Framework

RAM Random Access Memory

REST REpresentational State Transfer

TCP/IP Transmission Control Protocol/Internet Protocol

XML Extensible Markup Language

 6 BIBLIOGRAPHY 6 BIBLIOGRAPHY

81

6 BIBLIOGRAPHY

[1] A. Juozapavičius: Introducing the database. Vilnius University, Faculty of Mathematics and
Informatics [online], last visited 1.4. 2013. Available from:
<http://mif.vu.lt/cs2/en/courses/infsyst/files/infos2.pdf>

[2] Ben Stopford: Thoughts on Big Data Technologies (1) (20 Jun, 2012). www.BenStopfort.com
[online], last visited 29.4. 2013. Available from:
<http://www.benstopford.com/2012/06/30/thoughts-on-big-data-technologies-part-1/>

[3] Diana Lorentz: Oracle Database SQL reference, 10g Release 2 (10.2). Oracle [online], last
visited 1.4. 2013. Available from:
<http://docs.oracle.com/cd/B19306_01/server.102/b14200.pdf>

[4] Structure-Related Terms. eTutorials.org [online], last visited 1.4. 2013. Available from:
<http://etutorials.org/SQL/Database+design+for+mere+mortals/Part+I+Relational+Database+Desi
gn/Chapter+3.+Terminology/Structure-Related+Terms/>

[5] Daniel Bartholomew: SQL vs. NoSQL (01 Sep, 2010). Linux Journal [online], last visited 1.4.
2013. Available from: <http://www.linuxjournal.com/article/10770?page=0,0>

[6] NOSQL. NOSQL databases [online], last visited 1.4. 2013.
Available from: <http://nosql-database.org/>

[7] Tim Perdue: NoSQL: An Overview of NoSQL Databases. About.com New Tech [online], last
visited 1.4. 2013 Available from:
<http://newtech.about.com/od/databasemanagement/a/Nosql.htm>

[8] Why NoSQL? Couchbase [online], last visited 1.4. 2013. Available from:
<http://www.couchbase.com/why-nosql/nosql-database>

[9] Martin Brown: Document databases in predictive modelling (08 Oct, 2012). IBM [online], last
visited 1.4. 2013. Available from:
<http://www.ibm.com/developerworks/library/ba-docdbpmml/index.html>

[10] Ronald Bourret: Use cases for native XML databases. Roland Bourret [online], last visited 1.4.
2013. Available from: <http://www.rpbourret.com/xml/UseCases.htm>

[11] Paul Williams: The NoSQL Movement: Key-Value Databases (30 Oct, 2012). Dataversity
[online], last visited 1.4. 2013. Available from:
<http://www.dataversity.net/the-nosql-movement-key-value-databases/>

[12] What is a NoSQL Key-Value Store? Aerospike [online], last visited 1.4.2013.
Available from: <http://www.aerospike.com/what-is-a-nosql-key-value-store/>

[13] Renzo Angels, Claudio Guituerrez: Survey of Graph Database Models. Computer Science
Department, Universidad de Chile

[14] What is a Graph database? Neo4J [online], last visited 1.4.2013,
Available from: <http://www.neo4j.org/learn/graphdatabase>

 6 BIBLIOGRAPHY 6 BIBLIOGRAPHY

82

[15] Property Graph Model (2012). Github – TinkerPop/Blueprints [online], last visited 1.4.2013.
Available from: <https://github.com/tinkerpop/blueprints/wiki/Property-Graph-Model>

[16] Michael Domenjoud, Thomas Vlal: Graph databases: an overview (12 Jul, 2012). Octo talks
[online], last visited 1.4.2013.
Available from: <http://blog.octo.com/en/graph-databases-an-overview/>

[17] 35+ Use Cases For Choosing Your Next NoSQL Database (20 Jun, 2011). High Scalability
[online], last visited 1.4.2013. Available from:
<http://highscalability.com/blog/2011/6/20/35-use-cases-for-choosing-your-next-nosql-
database.html>

[18] Abel Avram: Transitioning from RDBMS to NoSQL. Interview with Couchbases’s Dipti Bokar
 (8 Sep, 2012). Infoq [online], last visited 29.4. 2013. Available from:
<http://www.infoq.com/articles/Transition-RDBMS-NoSQL>

[19] Avishkar Meshram: NoSQL Key-Value store (20 Feb, 2013). Business intelligence [online], last
visited 1.4.2013.
Available from: <http://avishkarm.blogspot.cz/>

[20] Marko Rodriguez: Pipes: The Data Flow Framework for Gremlin – GraphDB Traversal (02 Aug,
2012). DZone [online], last visited 27.4.2013. Available from:
<http://architects.dzone.com/articles/nature-pipes>

[21] Ankit Mathur: Up close and Personal with NoSQL (01 Feb, 2011). Linux for you [online], last
visited 1.4.2013.
Available from: <http://www.linuxforu.com/2011/02/up-close-and-personal-with-nosql/>

[22] Michael Kopp: NoSQL or RDBMS – Are we asking the right questions? (05 Oct, 2012)
Compuware [online], last visited 1.4.2013. Available from:
<http://apmblog.compuware.com/2011/10/05/nosql-or-rdbms-are-we-asking-the-right-
questions/>

[23] Mikayel Valdanyan: Picking the Right NoSQL Database Tool (22 May, 2011). Monitis [online],
last visited 1.4.2013. Available from:
<http://blog.monitis.com/index.php/2011/05/22/picking-the-right-nosql-database-tool/>

[24] Ladislav Janák: No-SQL databases in EEG/ERP domain – Thematic project (Pilsen, 2013).
University of West Bohemia, Faculty of applied sciences, Department of computer science and
Engineering.

[25] OrientDB Wiki pages: Concepts (24 Oct, 2012). OrientDB Google project [online], last visited
27.4.2013. Available from: <http://code.google.com/p/orient/wiki/Concepts>

[26] Nuvolabase/orientdb: Tutorial: Clusters (29 Feb, 2013). GitHub [online], last visited
29.4.2013. Available from: <https://github.com/nuvolabase/orientdb/wiki/Tutorial:-Clusters>

[27] OrientDB Wiki pages: Java APIs (08 Sep, 2012). OrientDB Google project [online], last visited
27.4.2013. Available from: <http://code.google.com/p/orient/wiki/JavaAPI>

 6 BIBLIOGRAPHY 6 BIBLIOGRAPHY

83

[28] TinkerPop Wiki pages: Blueprints (26 April, 2013). Github [online], last visited 27.4.2013.
Available from: <https://github.com/tinkerpop/blueprints/wiki>

[29] OrientDB Wiki pages: SQL (08 Sep, 2012). OrientDB Google project [online], last visited
27.4.2013. Available from: <http://code.google.com/p/orient/wiki/SQL>

[30] TinkerPop Wiki pages: Gremlin (27 March, 2013). Github [online], last visited 27.4.2013.
Available from: <https://github.com/tinkerpop/gremlin/wiki>

[31] OrientDB Wiki pages: BinaryData (08 Sep, 2012). OrientDB Google project [online], last
visited 27.4.2013. Available from: <http://code.google.com/p/orient/wiki/BinaryData>

[32] OrientDB Wiki pages: DBserver (28 Nov, 2012). OrientDB Google project [online], last visited
27.4.2013. Available from: <http://code.google.com/p/orient/wiki/DBServer>

[33] OrientDB Wiki pages: ConsoleCommands (03 Oct, 2012). OrientDB Google project [online],
 last visited 27.4.2013. Available from:
 <http://code.google.com/p/orient/wiki/ConsoleCommands>

[34] OrientDB Wiki pages: OrientDB_Studio (08 Sep, 2012). OrientDB Google project [online], last
visited 27.4.2013. Available from: <http://code.google.com/p/orient/wiki/OrientDB_Studio>

[35] GitHub: nuvolabase/spring-data-orientdb. GitHub [online], last visited 12.5.2013.
Available from: <https://github.com/nuvolabase/spring-data-orientdb>

[36] Gephi [online], last visited 13.5.2013. Available from: <https://gephi.org/>

 7 ATTACHMENTS 7 ATTACHMENTS

84

7 ATTACHMENTS

ATTACHMENT A

Semantics between all nodes of OrientDB EEG/ERP graph model

Table A.1 Semantics between vertices

Node type

(connected by out edge)

 Edge label

 [other property]

Target node

(connected by in edge)

ANALYSIS MADE_BY RESEARCH_GROUP

ARTEFACT DEFINED_BY RESEARCH_GROUP

ARTEFACT_REMOVING_METHOD USED_BY EXPERIMENT

USED_BY RESEARCH_GROUP

ARTICLES CREATED_BY PERSON

OWNED_BY RESEARCH_GROUP

SUBSCRIBED_BY PERSON

ARTICLES_COMMENTS COMMENTED ARTICLES

COMMENTED_BY ARTICLES_COMMENTS

COMMENTED_BY PERSON

DATA_FILE PERFORMED ANALYSIS

HAS EXPERIMENT

DEFINED

[METADATA_VALUE]

FILE_METADATA_PARAM_DEF

DIGITIZATION OWNED_BY RESEARCH_GROUP

DISEASE OWNED_BY RESEARCH_GROUP

OWNED_BY EXPERIMENT

EDUCATION_LEVEL DEFINED_BY RESEARCH_GROUP

ELECTRODE_CONF HAS DATA_FILE

CONFIGURED ELECTRODE_SYSTEM

 7 ATTACHMENTS 7 ATTACHMENTS

85

CONFIGURED ELECTRODE_LOCATION

ELECTRODE_FIX USED_BY RESEARCH_GROUP

ELECTRODE_LOCATION FIXED_BY ELECTRODE_FIX

IS_TYPE ELECTRODE_TYPE

HAS ELECTRODE_CONF

LOCATED_BY RESEARCH_GROUP

ELECTRODE_SYSTEM DEFINED_BY RESEARCH_GROUP

ELECTRODE_TYPE USED_BY RESEARCH_GROUP

EXPERIMENT DEFINED ARTEFACT

OWNED DIGITIZATION

 DEFINED ELECTRODE_CONF

CREATED_BY PERSON

MEASURED PERSON

OWNED_BY RESEARCH_GROUP

USED SCENARIO

OWNED SUBJECT_GROUP

HAS WEATHER

USED ARTERFACT_REMOVING_METHOD

COOPERATED_BY PERSON

HAS DISEASE

USED HARDWARE

HAS PHARMACEUTICAL

IS_IN_PROJECT PROJECT_TYPE

USED SOFTWARE

DEFINED

[PARAM_VALUE]

EXPERIMENT_OPT_PARAM_DEF

EXPERIMENT_OPT_PARAM_DEF DEFINED_BY RESEARCH_GROUP

DEFINED_BY

[PARAM_VALUE]

EXPERIMENT

FILE_METADATA_PARAM_DEF DEFINED_BY RESEARCH_GROUP

DEFINED_BY

[METADATA_VALUE]

DATA_FILE

GROUP_PERMISSION_REQUEST REQUESTED_BY PERSON

 7 ATTACHMENTS 7 ATTACHMENTS

86

REQUESTED_BY RESEARCH_GROUP

HARDWARE USED_BY RESEARCH_GROUP

USED_BY EXPERIMENT

HISTORY BELONGS_TO DATA_FILE

BELONGS_TO EXPERIMENT

BELONGS_TO PERSON

BELONGS_TO SCENARIO

KEYWORDS DEFINED_BY RESEARCH_GROUP

PERSON REACHED EDUCATION_LEVEL

ART_SUBSCRIBED RESEARCH_GROUP

IS_MEMBER_OF

[AUTHORITY]

RESEARCH_GROUP

SUBSCRIBED ARTICLES

 COOPERATED EXPERIMENT

DEFINED_BY

[PARAM_VALUE]

PERSON_OPT_PARAM_DEF

OWNED RESEARCH_GROUP

PERSON_OPT_PARAM_DEF DEFINED_BY RESEARCH_GROUP

HAS

[PARAM_VALUE]

PERSON

PHARMACEUTICAL USED_BY RESEARCH_GROUP

USED_BY EXPERIMENT

PROJECT_TYPE HAS EXPERIMENT

OWNED_BY RESEARCH_GROUP

RESEARCH_GROUP IS_MEMBER

[AUTHORITY]

PERSON

MADE ANALYSIS

USED ARTEFACT_REMOVING_METHOD

ART_SUBSCRIBED_BY PERSON

HAS DIGITIZATION

HAS DISEASE

HAS EDUCATION_LEVEL

DEFINED EXPERIMENT_OPT_PARAM_DEF

 7 ATTACHMENTS 7 ATTACHMENTS

87

DEFINED FILE_METADATA_PARAM_DEF

USED HARDWARE

DEFINED PERSON_OPT_PARAM_DEF

HAS PHARMACEUTICAL

USED_BY SOFTWARE

HAS WEATHER

USED STIMULUS_TYPE

OWNED_BY PERSON

DEFINED ARTEFACT

FIXED ELECTRODE_FIX

LOCALTED ELECTRODE_LOCATION

DEFINED ELECTRODE_SYSTEM

USED ELECTRODE_TYPE

OWNED PROJECT_TYPE

RESERVATION RESERVED_BY PERSON

RESERVED_BY RESEARCH_GROUP

SCENARIO OWNED_BY PERSON

OWNED_BY RESEARCH_GROUP

USED STIMULUS

USED STIMULUS_TYPE

SCENARIO_TYPE_NONXML DEFINED_BY SCENARIO

SERVICE_RESULT BELONGS_TO PERSON

SOFTWARE USED_BY RESEARCH_GROUP

USED_BY EXPERIMENT

STIMULUS USED_BY SCENARIO

DEFINED_BY STIMULUS_TYPE

STIMULUS_TYPE USED_BY SCENARIO

 DEFINED STIMULUS

USED_BY RESEARCH_GROUP

WEATHER OWNED_BY RESEARCH_GROUP

 7 ATTACHMENTS

90

ATTACHMENT C

OrientDB test database statistics

Table C.1 OrientDB graph database statistics - OrientDB default classes are marked, they show the total number of vertices and edge in the database

Class name superClass Alias Cluster number Default cluster number Number of records
ARTEFACT OGraphVertex 10 10 220000
ARTICLES OGraphVertex 11 11 220000
ART_SUBSCRIBED OGraphEdge 52 52 220000
ART_SUBSCRIBED_BY OGraphEdge 53 53 220000
CONFIGURED OGraphEdge 39 39 440000
COOPERATED OGraphEdge 47 47 220000
COOPERATED_BY OGraphEdge 46 46 220000
CREATED OGraphEdge 57 57 220000
CREATED_BY OGraphEdge 29 29 660000
DEFINED OGraphEdge 38 38 660000
DEFINED_BY OGraphEdge 26 26 440000
EDUCATION_LEVEL OGraphVertex 12 12 220000
ELECTRODE_CONF OGraphVertex 13 13 220000
ELECTRODE_FIX OGraphVertex 14 14 220000
ELECTRODE_LOCATION OGraphVertex 15 15 220000
ELECTRODE_SYSTEM OGraphVertex 16 16 220000
EXPERIMENT OGraphVertex 17 17 220000
FIXED_BY OGraphEdge 40 40 220000
HARDWARE OGraphVertex 18 18 220000
HAS OGraphEdge 37 37 1100000
IS_IN_PROJECT OGraphEdge 48 48 220000
IS_MEMBER OGraphEdge 55 55 220000
IS_MEMBER_OF OGraphEdge 54 54 220000
LOCATED OGraphEdge 44 44 220000
MEASURED OGraphEdge 45 45 220000
OFunction 6 6 0
OGraphEdge E 9 9 9635463
OGraphVertex V 8 8 3300000
OIdentity -1 -1 6
ORIDs 7 7 4054725
ORestricted -1 -1 0
ORole OIdentity 4 4 3
OUser OIdentity 5 5 3

 7 ATTACHMENTS

91

OWNED OGraphEdge 31 31 440000
OWNED_BY OGraphEdge 30 30 1495463
PERSON OGraphVertex 19 19 220000
PROJECT_TYPE OGraphVertex 20 20 220000
REACHED OGraphEdge 51 51 220000
RESEARCH_GROUP OGraphVertex 21 21 220000
SCENARIO OGraphVertex 22 22 220000
SUBJECT_GROUP OGraphVertex 23 23 220000
USED OGraphEdge 28 28 1100000
USED_BY OGraphEdge 27 27 660000
WEATHER OGraphVertex 24 24 220000

Table C.2 OrientDB indexes

Name Type Class Records
OrientDB indexes (for OrientDB SQL)
ARTICLES.TIME NOTUNIQUE ARTICLES 220000
ARTICLES.TITLE NOTUNIQUE ARTICLES 175586
ELECTRODE_CONF.IMPEDANCE NOTUNIQUE ELECTRODE_CONF 220000
ELECTRODE_LOCATION.TITLE NOTUNIQUE ELECTRODE_LOCATION 220000
EXPERIMENT.TEMPERATURE NOTUNIQUE EXPERIMENT 175439
PERSON.GIVENNAME NOTUNIQUE PERSON 175693
PERSON.SURNAME NOTUNIQUE PERSON 220000
Blueprints indexes (for Gremlin)
OGraphVertex.SURNAME NOTUNIQUE OGraphVertex 220000
OGraphVertex.TITLE NOTUNIQUE OGraphVertex 2155613
OGraphVertex.TYPE NOTUNIQUE OGraphVertex 1980000
Total = 11 5762331

 7 ATTACHMENTS

92

ATTACHMENT D

Tabular results of measurement (Green percentages – OrientDB is faster, Red percentages – OrientDB is slower)

Table D.1 Results of measurements for queries on single table/one vertex type

 Time in sec – average of 10 measurements (less is better) OrientDB vs. Oracle

Test Description Oracle database 11g OrientDB 1.3.0 graphed (+) faster, (-) slower

[1] Simple SELECT query with retrieving all values

1000 retrieved records 0,275 0,135 102,78%

10 000 retrieved records 0,872 1,328 -52,22%

100 000 retrieved records 8,109 12,989 -60,19%

220 000 retrieved records (All) 18,788 28,414 -51,23%

[2] Simple SELECT query with WHERE condition no. 1
OrientDB: notunique index on property TEMPERATURE

1000 retrieved records 0,132 0,164 -23,83%

10 000 retrieved records 0,846 1,495 -76,65%

87 563 retrieved records (All) 6,715 12,992 -93,45%

[3] Simple SELECT query with WHERE condition no. 2
OrientDB: notunique index on property GIVENNAME

1000 retrieved records 0,221 0,641 -189,57%

12 568 retrieved records (All) 1,540 8,756 -468,32%

[4] Simple SELECT query with ORDER BY
OrientDB: notunique index on property TIME

1000 records retrieved 0,080 0,050 58,92%

10 000 records retrieved 0,541 0,382 41,64%

100 000 records retrieved 4,768 3,461 37,77%

220 000 retrieved records (All) 10,184 7,500 35,79%

[5] Simple SELECT query with GROUP_BY
OrientDB: notunique index on property TITLE

13 242 retrieved records (All) 0,573 9,086 -1483,89%

[6] Simple SELECT query with BETWEEN
OrientDB: notunique index on property IMPEDANCE

1000 retrieved records 0,082 0,084 -3,30%

10 000 retrieved records 0,287 0,821 -186%

128 486 retrieved records (All) 3,225 9,905 -207,10%

 7 ATTACHMENTS

93

Table D.2 Results of measurements for queries on multiple tables (JOINs)

Time in sec – average of 10 measurements (less is better) OrientDB vs. Oracle

Test Description Oracle 11g OrientDB 1.3.0 graphed (+) faster, (-) slower
[1] Join query no. 1,
Oracle: unique index on foreign keys ,
OrientDB: notunique index on property SURNAME,

613 retrieved records 0,925 0,131 602,96%

[2] Join query no. 2,
Oracle: unique index on foreign keys,
OrientDB: notunique index on properties TITLE and TYPE,

641 retrieved records 1,925 1,233 56,09%

[3] Join query no. 3,
Oracle: unique index on foreign keys,
OrientDB: notunique index on properties TITLE,

3173 retrieved records 1,003 1,296 -29,20%

[4] Join query no. 4,
Oracle: unique index on foreign keys,
OrientDB: notunique index on properties TITLE and TYPE,

768 retrieved records 10,700 0,487 2095,90%

[5] Join query no. 5,
Oracle: unique index on foreign keys,
OrientDB: notunique index on properties SURNAME and TYPE,

1196 retrieved records 1,407 0,567 148,31%

 7 ATTACHMENTS

94

Table D.3 Results of measurements for commands INSERT, UPDATE, DELETE

Time in sec - average of 5 measurements (less is better) OrientDB vs. Oracle

Test Oracle 11g OrientDB 1.3.0 graphed (+) faster, (-) slower

Insert of 1000 records 1,425 0,778 83,18%

Insert of 10 000 records 19,614 8,820 122,39%

Insert of 100 000 records 251,464 26,535 847,65%

Insert of 220 000 records 638,618 50,939 1153,68%

Update one column on 1000 records 0,412 0,165 149,94%

Update one column on 10 000 records 0,481 0,716 -48,73%

Update one column on 100 000 records 1,406 4,100 -191,59%

Update one column on 220 000 records 4,026 8,991 -123,32%

Delete of 1000 records 0,312 0,235 33,05%

Delete of 10 000 records 0,500 2,139 -327,92%

Delete of 100 000 records 1,420 13,443 -846,32%

Delete of 220 000 records 4,642 28,222 -507,94%

7 ATTACHMENTS

95

ATTACHMENT E

Graph comparison of query time executions averages of both tested database systems for all

tested queries and commands

Graph E.1 Average time of query execution depending on number of retrieved records

Graph E.2 Average time of query execution depending on number of retrieved records (query
contains WHERE clause)

0,275 0,872

8,109

18,788

0,135
1,328

12,989

28,414

0,000

2,500

5,000

7,500

10,000

12,500

15,000

17,500

20,000

22,500

25,000

27,500

30,000

1000 retrieved
records

10 000 retrieved
records

100 000
retrieved
records

220 000
retrieved

records (All)

[sec]

[number of records]

Simple query - SELECT all records [1]

Oracle 11g

OrientDB 1.3.0 graphed

0,132
0,846

6,715

0,164

1,495

12,992

0,000

2,000

4,000

6,000

8,000

10,000

12,000

14,000

1000 retrieved
records

10 000 retrieved
records

87 563 retrieved
records (All)

[sec]

[number of records]

Simple query - WHERE [2]

Oracle 11g

OrientDB 1.3.0 graphed

7 ATTACHMENTS

96

Graph E.3 Average time of query execution depending on number of retrieved records (query
contains WHERE clause)

Graph E.4 Average time of query execution depending on number of retrieved records (query
contains ORDER_BY clause)

0,221

1,540

0,641

8,756

0,000

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

1000 retrieved records 12 568 retrieved records (All)

[sec]

[number of records]

Simple query - WHERE [3]

Oracle 11g

OrientDB 1.3.0 graphed

0,080
0,541

4,768

10,184

0,050 0,382

3,461

7,500

0,000

2,000

4,000

6,000

8,000

10,000

12,000

1000 records
retrieved

10 000 records
retrieved

100 000 records
retrieved

220 000 records
retrieved (All)

[sec]

[number of records]

Simple query - ORDER BY [4]

Oracle 11g

OrientDB 1.3.0 graphed

7 ATTACHMENTS

97

Graph E.5 Average time of query execution depending on number of retrieved records (query
contains GROUP BY clause)

Graph E.6 Average time of query execution depending on number of retrieved records (query
contain BETWEEN clause)

0,573

9,086

0,000

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

13 242 retrieved records (All)

[sec]

[number of records]

Simple query - GROUP BY [5]

Oracle 11g

OrientDB 1.3.0 graphed

0,082 0,287

3,225

0,0845
0,821

9,905

0,000

2,000

4,000

6,000

8,000

10,000

12,000

1000 retrieved records 10 000 retrieved
records

128 486 retrieved
records (All)

[sec]

[number of records]

Simple query - BETWEEN [6]

Oracle 11g

OrientDB 1.3.0 graphed

7 ATTACHMENTS

98

Graph E.7 Average time of query execution depending on number of browsed tables/node types
(queries over multiple tables and vertices types)

Graph E.8 Average time of command execution depending on number of retrieved records
(command contains INSERT clause)

0,925

1,925
1,003

10,700

1,407

0,131

1,233 1,296
0,487 0,567

0,000

2,000

4,000

6,000

8,000

10,000

12,000

613 retrieved
records

641 retrieved
records

3173 retrieved
records

768 retrieved
records

1196 retrieved
recodrs

Join query no. 1 Join query no. 2 Join query no. 3 Join query no. 4 Join query no. 5

[sec]

[query no.]

Queries with JOINs

Oracle 11g

OrientDB 1.3.0 graphed

1,425 19,614

251,464

638,618

0,778 8,820 26,535
50,939

0

100

200

300

400

500

600

700

1000 records 10 000 records 100 000 records 220 000 records

[sec]

[number of records]

Operation INSERT

Oracle 11g

OrientDB 1.3.0 graphed

7 ATTACHMENTS

99

Graph E.9 Average time of command execution depending on number of retrieved records
(command contains UPDATE clause)

Graph E.10 Average time of command execution depending on number of retrieved records
(command contains DELETE clause)

0,412 0,481

1,406

4,026

0,165
0,716

4,100

8,991

0

1

2

3

4

5

6

7

8

9

10

1000 records 10 000 records 100 000 records 220 000 records

[sec]

[number of records]

Operation UPDATE

Oracle 11g

OrientDB 1.3.0 graphed

0,312 0,500
1,420

4,642

0,235

2,139

13,443

28,222

0

5

10

15

20

25

30

1000 records 10 000 records 100 000 records 220 000 records

[sec]

[number of records]

Operation DELETE

Oracle 11g

OrientDB 1.3.0 graphed

7 ATTACHMENTS

100

ATTACHMENT F

OrientDB Studio – Samples of working with tested OrientDB graph database

Figure F.1 Main page with database statistics and options for managing the database

Figure F.2 Query page –query can be seen on class RESEARCH_GROUP (among fields it can be seen lists
with outgoing (out) and incoming (in) edges), if we choose some row (root node) we can show the

graph (see Figures F.3 – F.6)

7 ATTACHMENTS

101

Figure F.3 Generated graph model from root of type RESEARCH_GROUP with Rid #21:11, graph is
showed into the depth of connection 5 (in this case it is 683 vertices and 1423 edges)

Figure F.4 Detail of the graph – if we choose some node we can see its detailed description

7 ATTACHMENTS

102

Figure F.5 Circular layout

Figure F.6 Detail of circular layout

 6 ATTACHMENTS 7 ATTACHMENTS

103

ATTACHMENT G

Tabular list of OrientDB properties and features from different viewpoints

Table G.1 General information

License Apache

Level of documentation Good (Wiki pages, Github)

Community Active (Google group Orient-db, Google+)

Technical support Mailing list, issue tracker, paid support

Free to use Yes

Table G.2 Database design

Embeddable Yes

Model Document/Graph

Data storage model Embedded, in-memory, remote (client/server), distributed

Import files JSON, GraphML

Export files JSON, GraphML

Native programming language Java

Core language Java

Object row storage Cluster

Table G.3 System requirements

Operating system All Linux distributions, Mac OS X, MS WIN 95/NT onward,
Sun Solaris, HP-UX, IBM AIX

Java version Java SE 6 and higher (64 bit JVM recommended)

Needs for additional software No

 6 ATTACHMENTS 7 ATTACHMENTS

104

Table G.4 Integrity

Model ACID

Transactions Yes

Referential integrity Yes

Locks Yes

Atomicity Single document

Table G.5 Indexes

Automatic Yes

Manual Yes

Full-text Yes

Other (structural, value,

dictionary)

Yes

Table G.6 Restrictions

Maximal file size 2^78

Maximal number of records 2^63 per cluster

Maximal database size 2^78 (2^15 clusters per database)

Table G.7 Features and deployment options

Query language Extended SQL, Gremlin

APIs/Clients Java (native), JS, Scala, C, PHP, Ruby, .NET, Python, Clojure

RESTful Yes

WebDAV No

Scalable Yes (partially horizontally)

Replication Yes (multi-master)

Sharding Yes (Since 2013)

Multi-user Yes

 6 ATTACHMENTS 7 ATTACHMENTS

105

Security model Admin, writer, reader

Triggers Yes (Hooks)

Visualization Yes (OrientDB studio)

Extensions TinkerPop stack

Spring support Attempts (e.g. Orient-master project)

Data analysis Gremlin (graph query language)

Standalone server Yes

Web Application Yes

Java library Yes

 6 ATTACHMENTS 7 ATTACHMENTS

106

ATTACHMENT H

OrientDB manual

Software requirements:

 Microsoft Windows/Linux/UNIX/Mac OS, (x86, x64)

 JVM 1.6 32/64bit and higher

 Java SE 6 for development of client applications

I provide here basic steps to run OrientDB Graph Edition1.3.0:

1) download OrientDB Graph Edition1.3.0 from the official website3

2) extract OrientDB zip archive into arbitrary directory on the disk

3) to start server, go to the bin folder and run script server.sh (Unix environment) or

server.bat (Window environment)

4) to start console, go to the bin folder and run script console.sh or console.bat

5) put OrientDB EEG_ERP database from attached DVD into folder databases

6) now EEG_ERP database can be open from console, Gremlin console od OrientDB Studio

(default login credentials are admin for username and admin for password in OrientDB

Studio)

The way to connect, query and configure the OrientDB EEG_ERP database was described

in practical part of this work. For more detailed information to work with OrientDB see the

OrientDB’s reference documentation4.

3 OrientDB Graph Edition stable release is available from:

<http://code.google.com/p/orient/downloads/list>
4
 OrientDB’s reference documentation is available from:

<http://code.google.com/p/orient/wiki/Main?tm=6>

 6 ATTACHMENTS 7 ATTACHMENTS

107

ATTACHMENT I

DVD content

DVD is attached to this work. There can be found following materials:

 SQL scripts for schema rebuilding of Oracle test database model

 SQL scripts for importing test data into Oracle test database model

 OrientDB 1.3.0 database

 created OrientDB database of the whole EEG/ERP portal test database (including BLOBs

and CLOBs) which runs on the server students.kiv.zcu.cz

 SQL scripts for creation of vertices and edges classes

 SQL scripts for importing the data

 SQL scripts for deletion of useless IDs fields from relational database

 created OrientDB database model from the tested part of EEG/ERP portal database model

(without BLOBs and CLOBs)

 SQL scripts for vertices and edges classes creation

 SQL scripts for importing tested data

 SQL scripts for deletion of useless IDs fields from relational database

 SQL, OrientDB SQL and Gremlin testing queries

 figures which are used in this work

