
University of West Bohemia
Faculty of Applied Sciences

Department of Computer Science and Engineering

Master Thesis

Creating advanced GUI for desktop
applications in Java

Pilsen, 2013 Jan Kolena

2

I hereby declare that this master thesis is completely my own work and that I used only
the cited sources.

Pilsen, 4.5.2013

Jan Kolena

3

Abstract
This master thesis describes development of a new framework, which provides very

simple creation of GUI, based on predefined template, applicable to great number of

common applications. It will be suitable for both teachers and students, who want to

develop a user – friendly application with focusing on the functional side and want to

build the GUI quickly but efficiently.

In the thesis, there are analysis of current GUI building situation, the framework

design, its implementation and testing.

4

Content
Abstract .. 3

Content .. 4

1 Introduction .. 8

2 Requirements for framework ... 9

2.1 Application template .. 9

2.2 Form layout .. 9

2.3 Action binding ... 9

2.4 Data binding ... 9

2.5 Factories ... 9

2.6 Memory filesystem ... 9

2.7 EXIF ... 10

2.8 File downloader .. 10

2.9 Text/file encrypter .. 10

2.10 ZIP handler .. 10

3 Swing and its alternatives ... 11

3.1 Advantages ... 11

3.2 Disadvantages ... 11

3.3 Alternatives... 12

3.3.1 AWT ... 12

3.3.2 JavaFX .. 12

3.4 Reasons for Swing ... 12

4 Existing solutions .. 13

4.1 SWT ... 13

4.2 Pivot .. 13

4.3 JGoodies.. 14

4.4 ZEUS .. 15

4.5 Buoy .. 15

4.6 CookSwing .. 16

5

4.7 Competition resume ... 16

5 Design of framework... 17

5.1 Name convention ... 17

5.2 Components and application template .. 17

5.2.1 Template layout .. 18

5.2.2 Interfaces draft .. 18

5.2.3 Components .. 21

5.3 Drag-and-drop .. 22

5.4 Action binding ... 22

5.4.1 Actions ... 23

5.5 Data binding ... 23

5.6 Content verification .. 24

5.7 Tooltip formatter .. 24

5.8 Factories ... 24

5.8.1 Factories in general ... 24

5.8.2 Dialog factory .. 25

5.8.3 Icon factory.. 25

5.8.4 Border factory ... 25

5.8.5 Button factory ... 25

5.8.6 Font factory ... 25

5.8.7 Sound factory .. 25

5.9 Utilities .. 26

5.9.1 Memory file system – MFS .. 26

5.9.2 ZIP files .. 26

5.9.3 Encryption ... 26

5.9.4 File utilities .. 26

5.9.5 Download .. 27

5.9.6 EXIF .. 27

5.9.7 JSON converter .. 27

5.9.8 Sound factory .. 27

6

5.9.9 Czech comparator ... 27

5.9.10 Console .. 28

5.10 Testing of project .. 28

5.10.1 Testing in general .. 28

5.10.2 Project testing ... 28

6 Implementation .. 30

6.1 Preamble... 30

6.2 Application template .. 30

6.2.1 Events .. 30

6.2.2 Content verification .. 31

6.2.3 Template layout .. 32

6.2.4 ZKFrame, ZKMainFrame .. 33

6.3 Components ... 34

6.3.1 Basic methods ... 34

6.3.2 Simple components ... 35

6.3.3 Composed components .. 37

6.3.4 New components .. 38

6.4 Drag-and-drop .. 41

6.5 Action binding ... 41

6.6 Data binding ... 42

6.6.1 Binding for simple components .. 42

6.6.2 Binding for complex components ... 43

6.7 Tooltip formatter .. 44

6.8 Factories ... 44

6.8.1 Dialog factory .. 44

6.8.2 Icon factory.. 44

6.8.3 Border factory ... 45

6.8.4 Button factory ... 45

6.8.5 Font factory ... 45

6.9 Utilities .. 46

7

6.9.1 Memory file system – MFS .. 46

6.9.2 ZIP files .. 48

6.9.3 Encryption ... 49

6.9.4 File utilities .. 51

6.9.5 Localization .. 51

6.9.6 Download .. 51

6.9.7 EXIF .. 53

6.9.8 JSON converter .. 53

6.9.9 Sound factory .. 54

6.9.10 Czech comparator ... 54

6.9.11 Console .. 55

7 Project testing ... 56

7.1 Utilities testing .. 56

7.2 GUI testing .. 56

7.3 MFS load test .. 57

8 Conclusion ... 59

References ... 60

List of acronyms ... 61

Creating advanced GUI for desktop applications in Java

8

1 Introduction
In Java programming language there is a GUI provider Swing. Programmers use it

when they need to build their GUI. Unfortunately, some important functions, which

are frequently needed, are missing in Swing. Furthermore, the programmer often

wants to focus only on functionality of his/her program and does not want to bother

himself with GUI building.

It is the main goal of this thesis to describe development of a small framework1

based on Swing, named KIV framework. The KIV framework should provide the

possibility of simple creation of GUI, based on predefined template, suitable for most

of common application. It will be suitable for both teachers and students, who want to

develop a user–friendly application with focusing on the functional side of the

application and want to build the GUI very quickly but efficiently. On the other hand, it

has no ambitions to compete long–term developed frameworks in their functionalities.

It takes the best and most important ideas from a few existing solutions and solves the

problems in its own way.

The framework is developed in pure Java and on a top of Swing, but opened to re-

implement it in some other way.

The first part of this thesis consists of requirements for the framework. Next chapter

is about analysis of current situation in GUI building. There are Swing possibilities

described in this chapter and afterwards there is a comparison between some existing

solutions, which have partially the same functionality as designed framework.

The third part is focused on the frameworks design, based on the previous parts. All

parts of the framework are described briefly, together with their diagrams. The next

part deals with the implementation of the framework. Each part of the framework is

described there in depth both from implementation and API point of view.

The next–to–last part describes testing of the project – JUnit2 tests as well as manual

tests and one performance test were implemented.

The conclusion at the very end of this thesis summarizes achieved results and

sketches out plans to the future.

1 Universal, reusable software library used to develop applications, especially by other programmers

than by author of the framework.
2 JUnit is a unit testing framework. It is used for automatic testing of software written in Java.

Creating advanced GUI for desktop applications in Java

9

2 Requirements for framework

2.1 Application template
Application template provides very quick and simple method to create GUI

(Graphical user interface). It consists from template and set of components, which are

inserted into the template.

2.2 Form layout
It is often required to arrange components to a form. The framework provides a form

layout or a component, which can arrange inserted components to a form.

The form layout/component should provide components input validation.

2.3 Action binding
The framework makes it possible to use actions binding instead of (or together with)

listeners. Different components have different types of actions allowed. Actions should

be bindable to different components repeatedly.

2.4 Data binding
The framework allows to bind some data source to a table component or list

component. The binding makes it easy to synchronize data in the source and in the

component. The framework contains default use data source for both of table and list

component. The binding package contains an interface to simple implement any other

data source than the implemented ones.

2.5 Factories
The framework includes factories for creating buttons, borders, fonts and icons.

These factories provide an option to get standard looking buttons, use non-standard

fonts or use common icons. The framework contains new fonts and icons packed in

framework distribution file.

2.6 Memory filesystem
The framework includes implementation of filesystem, compatible with other

filesystems and stored in memory. The main point of this filesystem is to keep private

data safe from other processes. The speed of this system is not one of top

requirements.

Creating advanced GUI for desktop applications in Java

10

2.7 EXIF
The framework contains class (or package) for reading EXIF data from JPEG files. EXIF

data writing is not necessary. The class offers methods for getting common entries

directly (like exposure time, focal length, aperture, etc.)

2.8 File downloader
File downloader is usable for downloading of file from computer net. It provides rich

process control but does not bother the programmer with streams and such things.

The downloader should run asynchronously (in own thread) to not block the rest of

application.

2.9 Text/file encrypter
The framework allows to encrypt/decrypt texts and files with miscellaneous methods

(AES, DES, …) but without deep knowledge of the problematic. The encrypting class

should provide also methods creating hash or CRC of text/file. Encrypted files and texts

do not have to be decryptable by any other tool.

2.10 ZIP handler
ZIP handler is class representing single ZIP file. It offers all common operations for

files within the ZIP. It can cooperate with the file encrypter described above. Created

ZIP files have to be fully compatible with ordinary ZIP handling tools outside the

framework.

Creating advanced GUI for desktop applications in Java

11

3 Swing and its alternatives
Swing is an API for providing GUI for Java programs. It was developed to provide a

more sophisticated set of GUI components than the earlier AWT. Swing provides a

native look and feel that emulates the look and feel of several platforms, and also

supports a pluggable look and feel that allows applications to have a look and feel

unrelated to the underlying platform. Unlike AWT components, Swing components are

not implemented by platform-specific code. Instead they are written entirely in Java

and therefore are platform-independent.

Swing is part of JFC3, which is set of GUI components and services for GUI

development. It is included in basic JDK, so the developer does not need to download

any additional library. (1)

3.1 Advantages
 The biggest advantage of Swing API is its platform independency. The

developer can be sure that his/her software will look the same on all

supported platforms.

 The work with Swing is quite simple and there are lot of examples and

tutorials on the Internet, including the website of Oracle. (2)

 Swing includes many components for common usage.

 Swing supports many visual themes (called look’n’feels). Everyone can create

his/her own, but there are many of them available on the Internet.

3.2 Disadvantages
Many often used functions are not available in Swing. For example:

 Form layout – the form building is quite hard but often needed

 Quick building – although the building is simple, developer has to burden

himself with the building

 Data binding – communication between a data layer and GUI has to be

programmed by each developer who needs it

 Validation – validation of text inputs against pattern

3 Java Foundation Classes.

Creating advanced GUI for desktop applications in Java

12

3.3 Alternatives
There are several interface toolkits with similar functions as Swing provides. Two of

them are from Oracle (more precisely from Sun that developed the Java programming

language before its Oracle takeover) – AWT and JavaFX.

3.3.1 AWT
The AWT (Abstract Windows Toolkit) is a predecessor of Swing. It provides a few

widgets (components) based on native libraries for all supported platforms. The

biggest advantage and also the disadvantage at the same time is only native look at all

platforms. Another disadvantage is occasional problems with components behavior

through different platforms. The AWT was released in 1995 (as Java was).

3.3.2 JavaFX
JavaFX is the newest platform for GUI building developed by Oracle. It is designed to

be run across many different devices. It currently supports desktop computers and

web browsers. It is expected that JavaFX will fully replace Swing, like Swing replaced

AWT. On the other hand, now it is a new platform with relatively small support.

3.4 Reasons for Swing
According to the previous paragraphs, the KIV framework could be based on Swing or

on JavaFX (AWT is unsatisfactory). Because of better support and widely knowledge

(1), Swing was chosen.

Creating advanced GUI for desktop applications in Java

13

4 Existing solutions
There are libraries which solve some issues introduced in chapter 3.2. They have

been released under different licenses and usage terms.

4.1 SWT
The Standard Widget Toolkit is an alternative of AWT. Similarly to AWT and on

contrary to Swing, the SWT uses native libraries (written in GTK+ etc.) via JNI (Java

native interface).

Another similarity to AWT is that SWT does not support any look and feel except the

platform specific. Its functionality is almost at the same level as AWT (3).

1. Display display = new Display();
2. Shell shell = new Shell(display);
3. Label label = new Label(shell, SWT.NONE);
4. label.setText("Hello World");
5. label.pack();
6. shell.pack();
7. shell.open();
8. while (!shell.isDisposed()) {
9. if (!display.readAndDispatch ()) display.sleep ();
10. }

11. display.dispose ();

Code 1: SWT usage example

As shown in Code 1, the SWT usage is quite similar as the AWT or Swing. SWT does not

extend functionality of the Swing provider and therefore is not suitable as a solution

satisfying all described requirements.

4.2 Pivot
Apache Pivot is a modern development platform for GUI building, developed as an

open source by Apache Software Foundation. It is designed for building installable

Internet applications (IIAs). It combines the enhanced productivity and usability

features of a modern user interface toolkit with the robustness of Java platform.

1. public class HelloBXML implements Application {
2. private Window window = null;
3. public void startup(Display display, Map<String, String> properties){
4. BXMLSerializer bxmlSerializer = new BXMLSerializer();
5. window = (Window)bxmlSerializer.readObject(Hello.class,

"hello.bxml");
6. window.open(display);
7. }

8. }

Code 2: Apache pivot BXML layout loading

Creating advanced GUI for desktop applications in Java

14

The Pivot library allows developers to easily construct visually-engaging, cross-

platform, connected applications in Java or any other JVM language, such as

JavaScript, Groovy, or Scala. (4)

1. <Window title="Hello BXML!" maximized="true"
2. xmlns:bxml=”http://pivot.apache.org/bxml” xmlns="org.apache.pivot.wtk">
3. <Label text="Hello BXML!"
4. styles="{font:'Arial bold 24', color:'#ff0000',
5. horizontalAlignment:'center', verticalAlignment:'center'}"/>
6. </Window>

Code 3: Apache Pivot BXML layout definition

Pivot offers also the possibility to create GUI, based on XML documents, as shown in

Code 2. The XML (Extensible markup language) layout definition shown in Code 3 is

similar to Android platform.

The Pivot library satisfies some requirements, introduced above, but only a few of

them. This library is therefore not suitable as final solution.

4.3 JGoodies
JGoodies is one of the best and widely known frameworks for GUI development. It

consists of commercial and freeware parts. Freeware JGoodies library is a very big

competitor of the KIV framework. It includes Binding, Forms, Validation and some

other libraries. Its functionality mostly surpasses the KIV framework, but it has a lot of

unnecessary functions from the other point of view.

JGoodies solves most of introduced issues and the development is quite simple and

quick. Its problem lies in license, which can be modified from day to day and it can

bring some license problem to derived applications.

1. public JPanel createSettingsPanel() {
2. FormLayout layout =
3. new FormLayout("5dlu,pref,5dlu,pref,pref:grow,3dlu,pref,3dlu,pref,5dlu",
4. "pref,5dlu,pref,1dlu,pref,1dlu,pref,1dlu,pref,10dlu,pref,5dlu," +
5. "pref,10dlu,pref,5dlu,pref,10dlu,pref,5dlu,pref,10dlu," +
6. "pref,5dlu,pref,3dlu,pref,10dlu,pref,5dlu,pref");
7. PanelBuilder pb = new PanelBuilder(layout, new ScrollableJPanel());
8. pb.setDefaultDialogBorder();
9.
10. CellConstraints cc = new CellConstraints();
11. final String[] extArr = { ".wav", ".aif", ".rmf", ".au", ".mid" };
12. String soundFName=mSettings.getProperty("soundfile","/");
13. String msg = mLocalizer.msg("soundFileFilter", "Sound file ({0})",

14. "*.wav, *.aif, *.rmf, *.au, *.mid");

Code 4: JGoodies Forms example

Creating advanced GUI for desktop applications in Java

15

Another imperfection of JGoodies is an absence of mechanism for quick building –

something like the application template introduced in section 2.1. The JGoodies GUI

building is quite difficult as you can see in Code 4. The JGoodies usage is best with

some WYSIWYG UI builder.

However, JGoodies has served as one of the inspirations for the KIV framework

design.

4.4 ZEUS
Zeus is a Java Swing Components Library. It provides useful Swing components for

easier GUI development. Likewise JGoodies also ZEUS offers a few components, which

are suitable for integration to the KIV framework – such as Console, TableSorter or

SplashScreen. (5)

Figure 1: ZEUS TableSorter screenshot

There are a lot of described problems, which the ZEUS does not solve and therefore

is not suitable as a complete solution. However, it can be used as an inspiration for

some functionality.

As shown in Figure 1 ZEUS can sort table columns according to miscellaneous data

types.

4.5 Buoy
Buoy (A Better User Interface Toolkit) is a toolkit for creating user interfaces in Java

programs. You can think of it as a replacement for Swing and AWT, although that is not

entirely correct. Buoy is built on top of Swing, so when you use Buoy to create a user

interface, Swing components are still being created behind the scene. (6)

1. public class BLabelDemo extends BFrame{
2. public BLabelDemo(){
3. super("BLabelDemo");
4. BorderContainer bc = new BorderContainer();
5. FormContainer fc = new FormContainer(3, 3);
6. ImageIcon icon = new ImageIcon("icon.png");
7. fc.add(new BLabel("North", icon, BLabel.CENTER, BLabel.NORTH), 1, 0,
8. new LayoutInfo(LayoutInfo.SOUTH,LayoutInfo.NONE,new Insets(0,0,0,0),

null));

9. fc.add(new BLabel("East", icon, BLabel.CENTER, BLabel.EAST), 2, 1,

Code 5: The BUOY example

Creating advanced GUI for desktop applications in Java

16

According to the description the Buoy is based on very similar idea as the KIV

framework is, but the KIV framework needs a few additional functionalities and

(primarily) the GUI template. As shown in Code 5 the BUOY has quite complicated

positioning definition. Another issue is that Buoy is quite an old release (2009) and it

seems to be an inactive project.

4.6 CookSwing
CookSwing is a library which builds Java Swing GUI from XML documents. It is under

continuously active development. Unlike many other XUL toolkits, Swing is complete in

its capability dealing with Swing and beyond. (7)

CookSwing can be used for creation of unified GUI via a template. CookSwing

templates are written in XML and it partially solves the main goal of the KIV

framework. Unfortunately, it does not satisfy any other requirement described in

chapter 2. Another issue is that common usage requires knowledge of XML structure

and it might be harder to use in final consequences.

1. <buttongroup>
2. <idref ctor="menu_2" />
3. <idref ctor="menu_3" />
4. </buttongroup>
5. <buttongroup>
6. <idref ctor="button_2" />
7. <idref ctor="button_3" />

8. </buttongroup>

Code 6: The CookSwing XML example

There is an example of ButtonGroup in Code 6. It presents synchronization between

a menu button and a RadioButton.

4.7 Competition resume
There are several platforms/libraries described above. All of them solve some

introduced problems, but no one solves all of them. One possible solution is to

combine more of them – for example combination of Buoy with JGoodies and

CookSwing would solve almost all of the introduced problems, except the utilities like

MFS. On the other hand, this method would lead to fragmentation of the final solution

and in final consequences it would be very hard to work with it.

Much better approach is to get inspired by all of described solutions and create own

one, standing on strong base of Swing and including some extra features like

mentioned GUI template, data binding, form layout and other functions described in

chapter 2.

Creating advanced GUI for desktop applications in Java

17

5 Design of framework

5.1 Name convention
Each created class in the KIV framework will have name prefix ZK, what is derived

from the faculty department name – ZČU KIV. Additionally all interfaces will include

the I letter in their name – it means interfaces prefix will be ZKI.

5.2 Components and application template
As mentioned above, it is the principal idea of the framework to allow programmer

to create a GUI with a minimal effort. To fulfill this, a new set of components has to be

implemented and as well as a new way to handle them. On the other hand, it would be

advantageous to have some well – known system behind the new one, to enable the

programmer to handle the components in the old way too. In chapter 3.4 there is an

explanation, why Swing is the best choice.

Figure 2: The template layout

FUNCTION

Creating advanced GUI for desktop applications in Java

18

5.2.1 Template layout
Figure 2 shows the template layout. The application window (frame) contains a

function panel (hereinafter FP). The FP contains one or more functions. Each function

is pair of a content panel and a button, which shows a related content. All buttons are

placed in the button bar on the left side of the FP.

Figure 3: Function with TabbedPane

Figure 3 shows a function, which has a tabbed pane inside (function with a few tabs).

5.2.2 Interfaces draft
According to current trends in software engineering, interfaces are to be created

first. The interfaces serve for accessing the components. Because of Swing, it is

advantageous to use as many existing method as possible – usage of same method

names could lead to automatic implementation of many methods (overtaken from

extended Swing component).

This is a complete list of designed general (not component-specific) interfaces:

 ZKIComponent

− used by every component
 ZKIContainerComponent

− components, which can contain other components, such as panel etc.

Creating advanced GUI for desktop applications in Java

19

Figure 4: Tree of interfaces

 ZKIInnerComponent

− inner components (almost all except a frame)
 ZKIBindableComponent

− component, which can be used as binding target

− does not extending ZKIComponent – used in ZKTableColumn, which

is not a component
 ZKIBindableSourceComponent

− component, which can be used as a binding source (and target)

− extends the ZKIBindableComponent interface (therefore not

extends ZKIComponent)
 ZKIActionComponent

− all components which have some kind of default action (e.g. after a

click)

Creating advanced GUI for desktop applications in Java

20

 ZKIInputComponent

− all components with some kind of input
 ZKIListComponent

− all components displaying list of values
 ZKITextComponent

− components holding some text
 ZKITextEditableComponent

− components with editable text
 ZKIVerifiableComponent

− used by some input components (form validation etc.)
 ZKITextVerifiableComponent

− used by some text components with input pattern
 ZKISelectableComponent

− selectable components like checkbox, radiobutton etc.
 ZKIResizableComponent

− almost all components, except tab panel and few others
 ZKIIconedComponent

− all components with icon
 ZKITitledComponent

− component with title
 ZKITitledInnerComponent

− inner components with title (ZKIInnerComponent +

ZKITitledComponent + showTitle(boolean) method)
 ZKIScrollable

− component with scrollable content
 ZKIDragSourceComponent

− components which support their dragging
 ZKIDropTargetComponent

− components which support dropping some dragged component on

them

As you can see in Figure 4, each component will implement only one interface, but the
interface can extend various other interfaces.

Example:

ZKIFunction will extend ZKIInnerComponent, ZKIContainerComponent,

ZKITitledComponent and add some own methods.

Creating advanced GUI for desktop applications in Java

21

5.2.3 Components
All common used Swing components will be extended to fit the KIV Frameworks

requirements. Additionally there will be a few new components, derived from the

standard or integrated from third party library.

The extended Swing components list:

− ZKButton

− ZKCheckBox

− ZKComboBox

− ZKEditorPane

− ZKFormattedField

− ZKFrame

− ZKLabel

− ZKList

− ZKPanel

− ZKPasswordField

− ZKProgressBar

− ZKRadioButtonGroup, ZKRadioButton

− ZKSpinner (handles only numbers, see ZKObjectSpinner below)

− ZKSplitPane

− ZKTabbedPane

− ZKTable

− ZKTextPane

The following list contains new components with brief description:

− ZKCalendar – from 3rd party library (8), will display given date and enable to
choose a new one

− ZKCanvas – derived from ZKPanel, will provide functionality to direct draw
by calling standard Graphics methods

− ZKDateField – from 3rd party library (8), will enable to edit date value by
direct editing or by choosing from a floating calendar

− ZKForm – derived from ZKPanel, will arrange given input components to a
form layout

− ZKFunction – the function (is described in 5.2.1)
− ZKFormFunction – composite of ZKFunction and ZKForm
− ZKFunctionPanel – the function panel, as described in 5.2.1
− ZKIcon – derived from ZKLabel, will wrap the standard Icon instance, with

all necessary methods for direct usage, including drag-and-drop as described
in 5.3

Creating advanced GUI for desktop applications in Java

22

− ZKObjectSpinner – as standard JSpinner, can handle miscellaneous
objects

− ZKMainFrame – derived from ZKFrame, designed as main window of the
application, will contain few ZKFunctionPanel instances and a
ZKStatusBar

− ZKStatusBar – derived from ZKPanel, will be used for displaying some
information in frame footer

− ZKTab – derived from ZKPanel, will serve as one single tab in ZKTabbedPane
− ZKTabbedFunction – composite of ZKFunction and ZKTabbedPane
− ZKWrapLayout – derived from FlowLayout, will allow component wrapping

Detailed information about the components is provided in the implementation part

of this thesis.

5.3 Drag-and-drop
The drag-and-drop (with shortcut D’n’D) function is a mouse gesture in which we can

drag some object onto another and invoke some action with that. The D’n’D simple

gesture is very popular by users, because it can replace a few clicks and is quite

intuitive.

Implementation of D’n’D can be complicated in some cases. Although Java provides

support for D’n’D for most components, not all the components support is

comfortable. This is the problem which the KIV framework wants to solve. The KIV

framework will make implementation of D’n’D easier for some components and will

also make possible to use D’n’D with components not originally supported by Oracle.

5.4 Action binding
In standard Swing there are several listeners, which can help the programmer to

catch several user actions, like mouse move or click. This possibility will be preserved

but a new alternative to assign a predefined action to the component will be added.

There will be a few actions implemented and the programmer will have possibility to

assign action instance to the object. Depending on the type of the action the object

will map the action to a proper listener and the programmer will not have to care

about it.

Creating advanced GUI for desktop applications in Java

23

5.4.1 Actions

Figure 5: Actions diagram

All the predefined actions will extend a ZKAction or ZKInputAction, which are

abstract classes, implementing ZKIAction or ZKIInputAction interface, as shown in

Figure 5. The interfaces ensure the action class has an action() method, which the

programmer will have to implement and a start() method, which will invoke the

action() method. The action() method will not be called directly, because there

will be a possibility (via constructor) to run the action in its own thread and the

start() method will handle it.

All designed actions are visible in Figure 5. Their names are proposed to be self–

explainable.

5.5 Data binding
It is often required to display some data from various sources. The programmer

usually needs to create a loader for the data and also implement a listener, which will

update the data in the GUI. The worse case is when the end user can change the data

and the program should save the data back to the original source. Another situation is

when he/she wants to simply change the section header depending on some user

choice.

Situations described above are very difficult and stressful to solve. This is the reason

why the data binding exists. The programmer says what the data source and the target

are, a binding strategy (whether the binding should by only from source to target or

two–way also back to the source) and the binder will synchronize the source and the

target automatically.

In the KIV framework there will be a simple binder. It will be possible to synchronize

some properties of components (like the section header described above) or to

synchronize some data source to the table etc.

Creating advanced GUI for desktop applications in Java

24

5.6 Content verification
Every programmer needs a user input verification from time to time. This is

important especially in form, when the user should enter some text according to a

pattern. The KIV framework text components ZKFormattedTextField, ZKTextField

and ZKTextPane will implement ZKITextVerifiableComponent, which secures that

the programmer is able to set an allowed pattern for the component and the

component will automatically validate the input against the pattern.

The components will have methods for validity detection and they will automatically

change their appearance according to the current validity status.

5.7 Tooltip formatter

Figure 6: Tooltip example

The standard Swing tooltips4 layout is simple and strictly functionalistic, as shown in

Figure 6. The programmer cannot change its appearance or format the text. The only

possibility to format the tooltip is to use a HTML code, but that is quite difficult and

time consuming.

The KIV framework will offer a tool named ZKTooltipFormatter, providing an

option to format the text very quickly, because the formatter will do the real

formatting internally. There will be several classes representing most frequently used

HTML tags and the programmer will have to do minimum for having nice and

structured tooltips.

5.8 Factories

5.8.1 Factories in general
There will be several factories implemented in the KIV framework. A factory is an

object that creates an unrelated object on behalf of another unrelated object. The

intent of using a Factory is to reduce the coupling between classes, and to make class

more reusable by making it independent on other classes. (9)

4 The tooltip is a floating hint, which will appear after pointing with a mouse to some component. Each

component typically has its own tooltip. The tooltip should explain function of the component more to
the depth than the component title (if it has any).

Creating advanced GUI for desktop applications in Java

25

5.8.2 Dialog factory
The dialog factory should provide the programmer even more simplified dialog

creation then Swing offers. It will contain methods with less options then Swing has,

such as showErrorMessage(Throwable throwable) or showMessage(String

message), which should lead to more comfort usage.

5.8.3 Icon factory

Figure 7: Example of icons

The icon factory should offer the programmer a set of commonly used icons and

small pictures as “OK” or “CANCEL” (as in Figure 7) icon or picture used to represent

loading process. There will be also icons for MS documents, for images or for PDF

documents.

5.8.4 Border factory
Although there is a quite simple border factory in Swing, it can still be simplified,

which is a task of ZKBorderFactory. It will contain methods like

roundedBorder(Color) or plainBorder(Color).

5.8.5 Button factory
The button factory will have methods to quickly get some predefined buttons (with

related icons) – “OK” button, “CANCEL” button and few others. It will use

ZKIconFactory for the icons loading and have a method for each of the available

icons.

5.8.6 Font factory
Although Java can use almost every font installed in the PC, there are only few fonts

which the programmer can rely on their presence.

The font factory will make easier to choose from the trusted fonts. It will also provide

some new fonts and predefined colors – the programmer will be able to choose from

some non–standard fonts, which will be included in JAR (Java archive) with the

framework.

5.8.7 Sound factory
This factory will be a part of utilities and is described in chapter 5.9.8.

Creating advanced GUI for desktop applications in Java

26

5.9 Utilities
An independent part of the KIV framework will be utilities. It will not depend on

anything in the rest of the framework so the programmer will have a chance to get a

“light release”5 and use only the utilities.

The utilities will include miscellaneous things which are not related to the GUI

building but are useful in every application the programmer makes.

5.9.1 Memory file system – MFS
The MFS will allow the programmer to copy a file to a memory (RAM) and handle it

almost like an ordinary file (through the Path pointer). The advantage against the disk

holding method is a protection of the file from all other processes and also from the

user. For example, when some important configuration file is stored in encrypted ZIP

archive6, the program has to extract it to the disk to access it. At this very moment the

file is accessible by the rest of the system, including some harmful processes which can

damage the file or change important values inside. On the other hand, if the program

extracts the file from the ZIP directly to the memory file, no decrypted data are stored

on the disk and the file is accessible only from the one program7.

5.9.2 ZIP files
The framework will include functionality for basic operations with files in the ZIP

archive. The programmer will be able to create/open archive; add files/directories,

delete them, extract them to the disk/to a memory file. The ZIP files will have an

option to be encrypted with a password.

5.9.3 Encryption
There is an occasional requirement to encrypt some text or file. The framework will

contain functionality to encrypt/decrypt of the mentioned above. The ZKCrypt class

will include method to create a hash of some String or file too.

5.9.4 File utilities
The file utilities class named ZKFileUtils will have a few methods for file handling,

like getting file content to a String or calculating the file CRC.

5 A release where will not be all parts of the framework.
6 Also one of the functions of the framework – see 4.8.2.
7 Memory protecting is one of the basic functionalities of the OS.

Creating advanced GUI for desktop applications in Java

27

5.9.5 Download
In modern applications, there is often a requirement to download some file from the

Internet (or from the computer net in general). The KIV framework will contain an

abstract class giving the programmer a possibility to simply download the file. The

programmer will have to implement his/her own derivate of ZKFileDownloader,

because the class will have a few methods serving as a process callback and they will

have to be implemented.

5.9.6 EXIF
All the modern photo cameras include a special metadata named EXIF to the photos

they make. The EXIF contains information about the camera, the photo exposure

(shutter speed, aperture, etc.) and sometimes a GPS coordinates too. The ZKExif class

will allow the programmer to read EXIF (version 2.2) metadata from a JPEG file.

5.9.7 JSON converter
The JSON is a format for describing an object. It is used mainly in web programming,

especially in Javascript.

The ZKJsonConverter tool will be able to convert a standard Java properties file to

a standard JSON format. This is useful e.g. when the programmer in Java EE has an

internationalization properties file and he/she needs to access it from client–side

programming language (like mentioned Javascript).

The class will be prepared to be used in ANT script.

5.9.8 Sound factory
The programmer often needs to play some sound, which should point out some

action or notify an error. The classic example is the end of long action running on the

background of application (e.g. download).

ZKSoundFactory will provide methods to play some often used sounds (included in

JAR) and also a method for playing any WAV/MP3 file.

5.9.9 Czech comparator
Although Java can determine the default Locale instance from the computer which

it is running on, there is a problem with sorting of String set with all Czech letters,

including the accents. The programmer has to use a manually created Locale and

Comparator instance to sort the set properly. The KIV framework will include the

correct comparator named ZKCzechComparator.

Creating advanced GUI for desktop applications in Java

28

5.9.10 Console
Java has a very inconsistent method to access the console. Although there was the

Console class introduced in JDK1.6, it still does not have all functions to make reading

and writing from/to the console comfortable.

The KIV framework will have a ZKConsole class, which will offer all commonly used

methods for reading and writing the console. There will be also a ZKCommandParser

class implemented, which will offer commands parsing.

5.10 Testing of project

5.10.1 Testing in general

5.10.1.1 Automatic testing
There are 4 basic types of SW tests:

1) Unit test – the programmer writes a test for his/her own code to find possible

errors

2) Integration test – a SW tester writes a test for verifying cooperation of

individual components

3) System test – a SW tester writes tests to verify that the system meets its

requirements

4) Load test – test which should measure performance of some module

All described tests are automatic. The programmer or tester writes them once and

they can be run repeatedly to be sure it did not stop working. (10)

5.10.1.2 Manual testing
Unfortunately, there are some cases which cannot be tested automatically or the

testing is very complicated. There is a simple solution of this situation: manual testing

by the programmer or tester. An example of this case is the control of visual

components – automatic tests cannot verify correct display of the component

satisfyingly but a person can verify it visually.

5.10.2 Project testing
According to the previous paragraphs, some parts of KIV framework are suitable for

automatic and some for manual testing.

A utilities package can be tested by JUnit tests. JUnit tests can be written for almost

every class or package from the utilities to verify correct functionality of the program.

ZKSoundFactory is an exception from the rule mentioned above. It cannot be tested

Creating advanced GUI for desktop applications in Java

29

automatically. The manual testing described in chapter 5.10.1.2 is used for this and a

few others classes.

As explained above there is a problem with GUI testing. It do exist solutions for GUI

testing, but they are all focused on existing GUI provider such as Swing. It could be a

problem to use it in this framework. Another issue is that creation of these tests would

be very time consuming. After evaluation of all aspects it was decided to use

particularly manual testing (JUnit tests only for a few cases described below). Unlike a

classic code (like the utilities) the GUI can be tested to the depth only few times and

then only checked some key points repeatedly.

On the other hand, some parts of the GUI can be tested automatically. It is e.g.

management of tabs, columns in table or behavior of date parsing in ZKDateField. It

can be implemented tests for these cases.

Creating advanced GUI for desktop applications in Java

30

6 Implementation

6.1 Preamble
The framework is released under the LGPL (Gnu Lesser General Public License)8.

The framework needs JDK 7 to be used. All parts of the framework are

interconnected together, so although some parts may be re-compiled under the JDK 6,

the complex framework will never work. The JDK 7 brought many significant changes

to Java development (11). Some of these improvements were used for better

efficiency of implementation; some functionality strongly depends on classes

introduced in JDK 7 (e.g. 6.9.1).

The project has its own page at http://sourceforge.net/projects/kivframework/

where a GIT repository is also available.

6.2 Application template

6.2.1 Events

6.2.1.1 Visibility events
All implemented components have two pairs of methods related to their visibility –

boolean beforeShow() + void afterShow() and boolean beforeHide() + void

afterHide().

1. ZKIPasswordField passwordField = new ZKPasswordField("The password")
2. {
3. @Override
4. public void afterShow()
5. {
6. System.out.println("The password field has been shown!”);
7. }
8. };

Code 7: Events overriding example

These methods are invoked while changing visibility of related component. Each

component has all of these methods implemented with empty body (or returns TRUE),

prepared to be overridden by the programmer as it is shown in Code 7. The second

obvious possibility is to extend the class and implement the method(s) for all instances

of it.

8 Available at http://www.gnu.org/licenses/lgpl-3.0.txt.

http://sourceforge.net/projects/kivframework/
http://www.gnu.org/licenses/lgpl-3.0.txt

Creating advanced GUI for desktop applications in Java

31

1. ZKIPasswordField passwordField = new ZKPasswordField("The password")
2. {
3. @Override
4. public void beforeHide()
5. {
6. return (canBeHidden);
7. }

8. };

Code 8: A beforeHide event function

The before* methods return a boolean value. These methods determine, whether

the component can be show/hidden and stop the visibility change by returning FALSE

or allow it by returning TRUE. This can be seen in Code 8.

6.2.1.2 Other events
Another event which components implement is afterInit(). This event is invoked

from constructor of each component, immediately after all variables and properties

initialization. This event can be overridden too, for example for setting own properties

or changing the components appearance. In most cases, this can be done also by

calling the code after a creation command, but the afterInit() method could be

advantageous is some cases.

Most components have their own events, invoked in various situations. For example

ZKISelectableComponent (used in ZKCheckBox and ZKRadioButton) contains

other two pairs of events in addition to the visibility events: boolean

beforeSelected() + void afterSelected() and boolean

beforeUnselected() + void afterUnselected(). The meaning of these methods

is quite similar to the visibility events, but there is a deeper consequence here.

There is a problem with ZKRadioButton, because only one button from a related

group can be selected at one moment. Both the selected buttons

beforeUnselected() method and the selecting buttons beforeSelected()

method can stop the change of selection.

There are a few more events in the components package, like beforeDrop() and

afterDrop() in ZKIDropTagretComponent etc.

6.2.2 Content verification
As described above in section 5.6, some components implementing the

ZKITextVerifiableComponent interface offer a user input validation. The pattern is

realized by the Pattern class. It means the input is verified by a regular expression.

The content change listeners are used for automatic behavior and, moreover, when

Creating advanced GUI for desktop applications in Java

32

the components are inserted into the ZKForm instance, the form can react to the

components status change and change its appearance too.

6.2.3 Template layout
Both ZKFunctionPanel and ZKFunction extend an ordinary ZKPanel.

6.2.3.1 Function
ZKFunction is an ordinary ZKPanel with associated button. It has taken over all

properties of ZKPanel, including a scrollable option, as described in 6.3.1.6.

There are ZKFormFunction and ZKTabbedFunction implemented in the

framework. ZKFormFunction is simple ZKFunction containing instance of ZKForm.

Only ZKIInputComponent instances can be added into it. ZKTabbedFunction is

ZKFunction containing ZKTabbedPane and only ZKITab instances can be added into

it.

Figure 8: The ZKFunctionPanel component

The common ancestor of ZKFunction, ZKFormFunction and ZKTabbedFunction is

the ZKIAbstractFunction interface. This is because ZKIFunction extends also the

ZKIContainerComponent interface, which contains methods like add(Component)

which is not permissible for ZKFormFunction and ZKTabbedFunction.

6.2.3.2 Function panel
As ZKFunction, ZKFunctionPanel extends ZKPanel too.

ZKFunctionPanel contains a list of inserted functions (instances of

ZKAbstractFunction). It has also three subcomponents as shown in Figure 8. The

label on the top shows a title of currently shown function. The function is shown in

Creating advanced GUI for desktop applications in Java

33

content panel, placed on the right side. On the left side, there is a button panel

containing buttons from all associated functions.

6.2.4 ZKFrame, ZKMainFrame

6.2.4.1 ZKFrame
ZKFrame extends the JFrame Swing component and adds some extra features like

scrolling (as described below in 6.3.1.6). It has also methods for positioning. The menu

bar and status panel are contained in all ZKFrame instances automatically. Their layout

is visible in Figure 2.

1. public static boolean assignAction(ZKIComponent component, ZKIAction action)
2. {
3. switch (action.getType())
4. {
5. ...
6. case SELECT:
7. {
8. if (!(component instanceof ZKISelectableComponent))
9. return false;
10.
11. ((ZKISelectableComponent) component).addActionListener(
12. new ActionListener()
13. {
14. @Override
15. public void actionPerformed(ActionEvent e)
16. {
17. action.start();
18. }
19. });
20. return true;
21. }
22. return false;
23.

24.

Code 9: ZKBasicActionHandler

6.2.4.2 ZKMainFrame
ZKMainFrame is a successor of ZKFrame, adding the function panels management. It

also contains a list of the panels and a few methods to manage them.

Likewise the functions has ZKIAbstractFunction as an ancestor interface, frames

has the ZKIAbstractFrame interface. The reason is similar to the functions too –

ZKMainFrame should not have add(Component) and similar methods, on the contrary

of ZKFrame, which should accept all types of components.

Creating advanced GUI for desktop applications in Java

34

6.3 Components

6.3.1 Basic methods
All implemented components have several methods in common. Some of them are

introduced in the following paragraphs.

6.3.1.1 assignAction
The assignAction(Action) method calls ZKBasicActionHandler, which should

bind a given action to related listener, as shown in Code 9.

6.3.1.2 getUnderlyingComponent

This method is important for backward compatibility with Swing. Every container

component in the framework calls this method in final consequences, because this is

the only way to connect all the components together.

6.3.1.3 getRealComponent
There are some composed components (see chapter 6.3.3) implemented where the

main component is surrounded by ZKPanel or similar component. The

getRealComponent() method always returns the main component.

6.3.1.4 setVisible
This method is in standard Swing too but it is overridden in all frameworks

components because it handles the visible events, as described in 6.2.1.1.

1. public void setVisible(boolean visible)
2. {
3. if (visible)
4. {
5. if (!beforeShow()) return;
6. } else {
7. if (!beforeHide()) return;
8. }
9. super.setVisible(visible);
10. if (visible)
11. {
12. afterShow();
13. } else afterHide();
14. }

Code 10: The setVisible method

In Code 10 there is the setVisible(boolean) method calling the events according

to the description.

Creating advanced GUI for desktop applications in Java

35

6.3.1.5 setConstSize
1. public void setConstSize(Dimension size)
2. {
3. setSize(size);
4. setPreferredSize(size);
5. setMinimumSize(size);
6. setMaximumSize(size);
7. }

Code 11: The setConstSize method

There is an implementation of the setConstSize(int,int) method in Code 11.

The miscellaneous methods calls are important because of the fact that different

layout managers reflect different method result. For example the FlowLayout takes

the preferred size but the GridLayout does not.

6.3.1.6 setScrollable
Compared to other components ZKPanel includes one important method in

addition. The method sets the panels content scrollable or static. The component

extends the JPanel and it contains another JPanel as a content panel. Depending on

setScrollable(boolean) parameter value, it puts the content panel into or outside

from a JScrollPane.

6.3.2 Simple components
Some components (ZKPanel, ZKButton, ZKLabel, ZKCheckBox, ZKList,

ZKObjectSpinner, ZKProgressBar, ZKRadioButton, ZKTabbedPane, ZKTable) are

simply extended Swing components with a few new methods implemented (as

described in 6.3.1) and therefore it is useless to describe each component to the

depth.

A more sophisticated component is ZKTable.

6.3.2.1 ZKTable
ZKTable extends the JTable and adds some important functionality. Beside the

events, which all the components have, the JTable has more advanced management

of data source and columns.

Columns

The columns management is quite confusing in JTable in standard Swing. The KIV

framework has a class name ZKTableColumn, which solves some common issues as a

cell rendering or data sorting.

Creating advanced GUI for desktop applications in Java

36

The programmer can easily set whether the column should have editable cells, or

how to display the cells content. ZKTableColumn has a few successors:

1) ZKColoredTableColumn

− has a colored cells, where the color represents the value

− an abstract class, the getColor(String) method has to be implemented

2) ZKFormattedTableColumn

− displays value according to defined format, the cell editor can have some

Pattern set

3) ZKNumberTableColumn

− displays a number in a defined format

− ZKSpinner is used as an editor

4) ZKCheckBoxTableColumn

− displays a colored or selectable cells (colored by default)

− ZKCheckBox is used as an editor

5) ZKDateTableColumn

− displays date in defined format

− ZKDateField is used as an editor

Data source

Standard Swing uses the TableModel interface implementations such as

DefaultTableModel as data source. Working with DefaultTableModel is easy, but

it is suitable for simple data display only.

The KIV framework contains the ZKITableDataSource interface which serves as a

replacement of TableModel (which ZKITableDataSource extends). There is also the

ZKIWritableTableDataSource interface (extends ZKITableDataSource), which is

used for sources which supports writing and not only reading. Currently there is only

one usage of these interfaces. It is ZKDefaultTableDataSource which implements

the ZKIWritableTableDataSource interface. It has a very similar functionality as

DefaultTableModel has, adding some events and offering functionality to sort or set

data.

The main reason for implementation of these classes is the data binding. Another

data source e.g. that connected to a database can be implemented quite easily, as well

as one connected to any other physical data source like XML.

Creating advanced GUI for desktop applications in Java

37

6.3.3 Composed components
There are some composed components in the framework: ZKComboBox,

ZKFormattedTextField, ZKSpinner, ZKPasswordField, ZKRadioButtonGroup,

ZKTextField, ZKTextPane and ZKList.

Figure 9: The composed component layout

All the components listed above are composed together with a title label and

inserted into ZKPanel, as shown in Figure 9. They support standard methods (like they

were simple components) but also have methods for working with title (set/get/show).

6.3.3.1 ZKList
ZKList is implemented very similarly as ZKTable, except there are no cell renderers

implemented. ZKList is in fact ZKTable with only one column, so there is no

neccesity to solve the columns management as for ZKTable. On the other hand the

data sources can be used in very similar way (except the genericity can be used).

Data sources

The ListModel class is used in standard Swing. The most commonly used

implementation is DefaultListModel, which is created automatically in JList, when

we do not provide our own instance of ListModel.

Similarly to ZKTableDataSource there were ZKIListDataSource and

ZKIWritableListDataSource designed, with ZKDefaultListDataSource

implementation. The ZKDefaultListDataSource class extends the

DefaultListModel and adds some functionality to it. ZKList has methods

bindDataSource and unbindDataSource for working with the source binding.

Figure 10: ZKCalendar component

Creating advanced GUI for desktop applications in Java

38

6.3.1 New components
Except the template layout components described in 6.2.3 and 6.2.4 and the complex

composed components, there are 8 new components, which will be described in the

following paragraphs.

6.3.1.1 ZKCalendar
ZKCalendar is a component derived from JCalendar (8). It can be classified as a

composed component, because it is surrounded by ZKPanel and there was a title

added.

ZKCalendar makes it possible to select date. It looks like an ordinary datepicker, as

it is visible in Figure 10.

6.3.1.2 ZKCanvas
1. public void drawLine(int x1, int y1, int x2, int y2)
2. {
3. addAction(new Class[]{int.class, int.class, int.class, int.class},
4. new Object[]{x1, y1, x2, y2});

5. }

Code 12: ZKCanvas drawing method example

The programmer in Java often faces a problem that he/she wants to draw on some

component surface (typically JPanel). Unfortunately unlike e.g. in Delphi, Java does

not support direct drawing. The programmer has to override the

paintComponent(Graphics) method. In the body of the method he/she can use the

Graphics instance and draw whatever he/she wants, but this is suitable only for static

drawing. There is a problem when he/she wants to draw something dependent e.g. on

users behavior.

1. StackTraceElement elem = Thread.currentThread().getStackTrace()[2];
2. Method method = Graphics.class.getMethod(elem.getMethodName(), types);

3. actions.add(new ZKCanvasAction(method, values));

Code 13: ZKCanvasAction creation

1. for (ZKCanvasAction action : actions)
2. {
3. Method method = action.getMethod();
4. try
5. {
6. method.invoke(g, action.getParams());
7. } catch (Exception e)
8. {
9. throw new RuntimeException(e);
10. }

11. }

Code 14: ZKCanvas drawing actions invocation

Creating advanced GUI for desktop applications in Java

39

The KIV framework offers a new component ZKCanvas, which supports direct

drawing, like components in other programming languages. The component itself

contains an ordinary ZKPanel, but there are standard drawing methods (from the

Graphics class) implemented.

While calling any of these methods (like in Code 12), a new ZKCanvasAction

instance is added to the list of actions, which ZKCanvas contains.

There is a passage of addAction(Class[],Object[]) method in Code 13.

ZKCanvas uses a method reflection for the drawing. There is a method instance

created from given parameters (Class array) and stored in the ZKCanvasAction

instance together with the parameters values.

While the JVM calls the paintComponent(Graphics) method, the list is gone

through and each stored action is invoked; it leads into direct drawing effect. The

invocation process is shown in Code 14.

6.3.1.3 ZKDateField
ZKDateField is a combination of ZKFormattedField and ZKCalendar. By default,

the field and the button are displayed. The date can be written into the field manually

or it can be selected from the floating calendar, which appears after the button click.

6.3.1.4 ZKForm
It is often required to arrange components in a form. A simple example of the form is

a login dialog, which contains only two fields and one button. The login dialog can be

created quite easily, but more complex forms are very difficult to be build, because

Java does not offer anything like a form layout. This is the reason why many

developers have implemented such a thing, and also the KIV framework has a simple

form layout implemented.

It is implemented like a component named ZKForm. ZKForm extends ZKPanel but

has different methods implemented, because only the components implementing

ZKIInputComponent can be inserted. The layout is realized by GridBagLayout and

all the rows of the form are enclosed in the ZKFormRow instance.

6.3.1.5 ZKIcon
In standard Swing there is a problem with pictures handling. The Icon interface (and

its most common implementation ImageIcon) has to be inserted into JLabel (or

some other suitable component) to be displayed on the GUI form. Unfortunately,

there is often a requirement to use the icon in drag-and-drop process, which Java also

does not support. The drag-and-drop is closely related to a copy-paste mechanism,

which is also problematic.

Creating advanced GUI for desktop applications in Java

40

The KIV framework has a component ZKIcon which solves the problems described in

the previous paragraph. ZKIcon extends JLabel but also implements the Icon and

the Transferable interfaces. JLabel has to be used instead of ZKLabel because

access to the standard labels icon is needed and ZKLabel offers access only through

the ZKIcon class, which would lead to infinite recursion. The Transferable interface

serves for the copy-paste and drag-and-drop services.

Because ZKIcon is extended JLabel, it can be used as a component directly,

without putting it into any other component. On the other hand, all other components

(implementing ZKIIconedComponent) accept the ZKIcon instance as

setIcon(ZKIcon) method parameter.

6.3.1.6 ZKStatusBar

Figure 11: The status bar example (12)

The component ZKStatusBar should serve as a footer panel with a few cells

displaying pieces of information like current time, status etc. as visible in Figure 11.

ZKStatusBar extends ZKPanel too and have method to set/get current cells count

and their content.

6.3.1.7 ZKTab
The ZKTab class is a simple encapsulation of a single tab, prepared for inserting into

ZKTabbedPane. The class extends ZKPanel and contains a title, tooltip and the

ZKIcon instance. While inserting ZKTab into ZKTabbedPane, the pane extracts all

necessary data from ZKTab object and display the tab correctly without any following

adjustments.

6.3.1.8 ZKWrapLayout
ZKWrapLayout is a simple enhancement of standard Swing FlowLayout. It is

adopted from 3rd party library (13) and it makes components wrapping possible.

FlowLayout straightens inserted components into a single row, not wrapping an

invisible component to a new row, while some component ran out from the visible

area of the window. ZKWrapLayout can handle this situation and it also reacts to the

parent panel resizing and handles the components position.

Creating advanced GUI for desktop applications in Java

41

6.4 Drag-and-drop
Because the drag-and-drop is implemented for most components in Java Swing, it

had to be implemented D’n’D only for ZKLabel, which also includes the ZKIcon class.

There are two interfaces implemented ZKIDragSourceComponent for components,

which can be source of the D’n’D, and ZKIDropTargetComponent used by all

components, which can be a D’n’D target.

The ZKIDragSourceComponent interface includes methods for manual managing

DragSourceListener and events beforeDragStart(…) and

afterDragStart(…)both of them having parameter with the Transferable object.

 ZKIDropTargetComponent is very similar: it contains methods for managing

DropTargetListener and events beforeDrop(…) and afterDrop(…). The

beforeDrop(…) method returns FALSE by default, so every drop above this

component is rejected. The programmer has to handle the Transferable object

given as parameter manually and decide whether to accept or reject the drop.

There is a problem with the D’n’D for ZKTable and ZKList. It cannot be predicted

what data types will be used in these components and ZKIDragSourceComponent

cannot be implemented because of that. If the D’n’D is requirement for these

components, the programmer has to extend the component and implement the

interface by himself. On the other hand, both components can serve as D’n’D target so

they implement the ZKIDropTargetComponent.

6.5 Action binding
Action binding was described in chapter 5.4. All the designed actions were

implemented.

There are two interfaces ZKIAction and ZKIInputAction (which extends the first

one). The second one is used by all actions which has to deal with a component input,

the first one is used in every non-input actions.

1. final ZKIProgressBar progressBar = new ZKProgressBar();
2. progressBar.assignAction(new ZKClickAction()
3. {
4. @Override
5. public void action()
6. {
7. progressBar.increaseValue(10);
8. }

9. });

Code 15: The ZKClickAction usage example

Creating advanced GUI for desktop applications in Java

42

All the specific action classes (e.g. ZKClickAction) are abstract classes with

unimplemented action() method. The programmer assigns the action to related

object by calling assignAction(ZKIAction) method, as shown in Code 15.

The ZKBasicActionHandler class secures the action binding on lower level,

because it binds the specific actions to Swing listeners. ZKBasicActionHandler code

was shown in Code 9.

6.6 Data binding
The sense of data binding was described in 5.5. The implementation can be divided

into two parts – for simple and for complex components.

6.6.1 Binding for simple components
There were ZKIBindableComponent and ZKIBindableSourceComponent

interfaces introduced in section 5.2.2.

Every component implementing ZKIBindableComponent can be a target of binding.

It means that, for example, its title can be changed automatically based on other

components text. ZKIBindableSourceComponent is implemented by components,

which can be source components. Other components can change their titles according

to these ones.

This binding should be called a properties binding. The properties binding is handled

by a few classes from the binding package. The most important class is

ZKBindingManager. Its main method bind(ZKIBindableSourceComponent,

ZKIBindableComponent, String, String, ZKBindingStrategy) adds a new

ZKBindingRelation to the relations list.

The binding uses an observer-observable pattern. ZKBindingManager implements

the Observer interface, because it catches update events from binding clients. On the

contrary ZKBindingClient extends the Observable class and generates the update

events based on property listeners of related component. Every bindable component

includes instance of this class.

The update(Observable, Object) method in the observer is invoked whenever

some property of bound object is changed, even if the actual property is not watched.

The method searches a local database for related ZKBindingRelation. If the relation

is found, the setter method for the property is gained and invoked with a given value.

Creating advanced GUI for desktop applications in Java

43

Figure 12: The binding diagram

There is a reflection used for the setter method invocation, likewise in ZKCanvas in

chapter 6.3.1.2. The existence of the setter method is checked out in the bind(…)

method for the first time. When the setter method does not exist, the bind(…)

method returns FALSE.

There is a binding diagram example in Figure 12, showing how the binding sends the

data.

6.6.2 Binding for complex components
Only three components from the framework belong to this group.

6.6.2.1 ZKTable data binding
There were ZKTable data sources described in chapter 6.3.2.1. Except of the source

binding the table offers some properties binding (e.g. title) too, alike almost all other

components.

6.6.2.2 ZKList data binding
ZKList offers the same data binding principle as ZKTable. The data sources for

ZKList were introduced in 6.3.3.1.

Creating advanced GUI for desktop applications in Java

44

6.7 Tooltip formatter
The tooltip formatter package includes the ZKTooltipFormatter class and also

some tags classes. ZKTooltipFormatter includes methods for global tooltips setting

– background, border, delay etc. The tooltip formatter tool is independent to the rest

of the package and can be used for general HTML code creation.

All the implemented tag classes implement the ZKITooltipTag interface. There is

also another interface ZKITooltipContentTag, which extends ZKITooltipTag.

Most of the implemented tags (e.g. ZKRawTag, ZKTextTag, ZKListTag) implement

ZKITooltipTagContent, but ZKBreakTag and a few others do not have any content

and implement the ZKITooltipTag interface only.

All the implemented tags are:

1) Break

2) Horizontal line <HR>

3) Text

4) List

5) Numbered list

The ZKGeneralTag class constructor has the name parameter, which makes possible

to use it as an arbitrary tag. There is tag class ZKMainTag, which has to be used as a

parent tag of whole tooltip content. It can be created directly by constructor or get by

the static getHtmlTooltip() method in ZKTooltipFormatter.

6.8 Factories

6.8.1 Dialog factory
ZKDialogFactory currently has only five methods, which serve for showing an

ordinary message or error message.

6.8.2 Icon factory
ZKIconFactory has a few methods for most common icons, as closer described in

5.8.3. All the icons are stored in the JAR with the framework and ZKIconFactory

contains a method, which loads them into the ZKIcon instances.

Creating advanced GUI for desktop applications in Java

45

6.8.3 Border factory
There are only few methods in the ZKBorderFactory class. This is because it should

only supplement BorderFactory in standard Swing. All currently implemented

methods are:

− roundedBorder(Color)

− plainBorder(Color)

− titledBorder(Color)

… and their overloaded variants.

1. public static CompoundBorder titledBorder(String title, Color color)
2. {
3. return BorderFactory.createCompoundBorder(new TitledBorder(
4. new LineBorder(color, 1, true), title), new EmptyBorder(1, 1, 1,

1));
5. }

Code 16: The ZKBorderFactory method example

As you can see in Code 16, all methods in ZKBorderFactory combine few methods

from BorderFactory (e.g. add padding to standard LineBorder).

6.8.4 Button factory
ZKButonFactory works similarly to ZKIconFactory. All implemented methods

such as getOKButton(String) takes the String as a parameter for the button title.

The buttons icons are got from ZKIconFactory.

6.8.5 Font factory
As declared above in chapter 5.8.6, ZKFontFactory makes an effort to provide the

programmer more fonts than the standard set. All new fonts are included in JAR file

with the framework, the same as the icons are.

1. ClassLoader cl = new ZKFontFactory().getClass().getClassLoader();
2.
3. URL url = cl.getResource("resources/fonts/" + name.toLowerCase() + ".ttf");
4.
5. if (url == null) throw
6. new FileNotFoundException("Cannot find file with font '" + name + "'!");
7.
8. GraphicsEnvironment ge = GraphicsEnvironment.getLocalGraphicsEnvironment();
9. return ge.registerFont(Font.createFont(Font.TRUETYPE_FONT,

url.openStream()));

Code 17: The ZKFontFactory.registerFont(…) method

Creating advanced GUI for desktop applications in Java

46

ZKFontFactory contains an important method registerFont(String) which

loads a font with specified name. The method extract is visible in Code 17.

This is the list of fonts, which are included in the framework:

 Am Sans light
 Eurofurence light

 Share regular
 Times sans serif
 Ritalin

 Gunny Handwriting

 GFS Bodoni
 GFS Artemisia
 Flatform

 TeXGyreCursor

All these fonts have been downloaded from http://www.ceskefonty.cz/ and are

released under a royalty free license9. They all support Czech characters.

The ZKFontFramework contains String constants for every font mentioned above

and also for standard fonts like Arial, Verdana or Times New Roman. There are also

constants for font size (such as SIZE_BIGGER) and for a few colors.

6.9 Utilities

6.9.1 Memory file system – MFS

6.9.1.1 Basis of the filesystem
The MFS is based on classes FileSystem, FileSystemProvider, Path and a few

others from java.nio package. These classes were introduced in JDK 7, together with

the example (but fully functional) implementation of ZIP/JAR filesystem10. This allows

the developer to implement a new FS with maximum compatibility with the current

existing ones, so the operations can be processed easily.

All common operations supported are in MFS. It is fully compatible with any other

filesystem implementing java.nio.file.Filesystem and related classes. It was

advantageous to use abstract classes rather than interfaces while implementing

ZKMemoryEntry and its successors – ZKMemoryFile and ZKMemoryDirectory.

ZKMemoryDirectory contains the HashMap of its entries. There is no limit of entries

9 It means it can be used for everything including commercial usage.
10 The ZIP FS implementation is basis of the ZIP functions of this framework – see ZIP files.

http://www.ceskefonty.cz/

Creating advanced GUI for desktop applications in Java

47

in one directory, so it should not be a problem while copying from any existing

filesystem. The maximum level of entry is not set too.

ZKMemoryFile contains the ZKMemoryFileContent instance, which is holding the

current file content. The data are stored in the DirectByteBuffer instance with

default size of 5MB. When the buffer size is not satisfying, its size is doubled. It can

lead to a pointless memory usage but it is an action against frequent resizing too.

ZKMemoryFile supports basic InputStream/OutputStream, which simply goes

through the content array and reads/writes the data.

6.9.1.2 Basic functions
The FS allows the programmer to do the classical CRUD operations with all files

stored in the memory. Files can be stored in directories; the programmer can get their

input/outputstream, size or CRC. He/she can go through the file tree too.

While creating a new MFS instance, the programmer can determine max size of the

FS. The default size is 50MB. The size is maximum size and it will not be allocated

immediately after filesystem creation, but progressively as needed. IOException is

thrown when setting new filesystem size and there is not enough space in the RAM.

1. Socket socket;
2.
3. //inputstream from the socket
4. InputStream in = socket.getInputStream();
5. //outputstream to file
6. BufferedOutputStream out = new

BufferedOutputStream(Files.newOutputStream(mFile));
7.
8. /* copy: */
9. byte[] buffer = new byte[1024];
10. int numRead;
11. while ((numRead = in.read(buffer)) != -1)
12. {
13. out.write(buffer, 0, numRead);
14. }
15. out.close;

16. in.close;

Code 18: The ZKMemoryFileSystem example 2

In Code 18 the program receives data from socket (typically some Internet

connection) and saves them into the memory file. Afterwards the programmer can

also get the CRC and validate it against the source.

Creating advanced GUI for desktop applications in Java

48

1. Map<String, Object> env = new HashMap<>();
2. env.put("size", 100 * 1024 * 1024);
3.
4. //create new filesystem, name 'test'

5. FileSystem fs = FileSystems.newFileSystem(URI.create("mem:test"), env);

Code 19: The ZKMemoryFileSystem example 3

In Code 19 is set the maximum size of the filesystem to 100MB.

6.9.1.3 Pitfalls
1) The programmer should not forget about once he/she call the fs.close()

method, all contained data are erased and the operation cannot be undone,

because allocated memory is released.

2) The programmer should not forget to set max size of the filesystem. He/she

can change the size additionally, but he/she cannot exceed the current max

size.

3) When the programmer does not use the MFS from included JAR file, the mem

scheme is unknown. In this case, he/she has to use method

newFileSystem() directly from the ZKMemoryFileSystemProvider class.

6.9.2 ZIP files

6.9.2.1 Basis of the system

Like the Memory file system – MFS, the ZIP tool stands on classes FileSystem,

FileSystemProvider, Path from java.nio package. Oracle released an

implementation of the ZIP/JAR filesystem, so it can be used freely now. Of course the

programmer has an option to use this system directly, without this framework. On the

other hand, the FW gives him an option to handle the ZIP files very simply and it also

solves some difficulties.

The ZKZipFile class is an instance of ZIP file. It provides common operations for

working with the file.

1. File file = randomFile();
2. ZKZipFile zip = ZKZipFile.create(file);
3. File randomFile = randomFile();
4. String pass = ZKCrypt.getHash(new Random().nextLong() + "");
5.

6. zip.enableEncrypting(pass);

Code 20: The ZKZipFile example 2

In Code 20 there is shown creation of encrypted ZIP archive. The
ZKZipFile.createEncrypted(File file, String password, boolean

overwrite) method can be used for this too.

Creating advanced GUI for desktop applications in Java

49

6.9.2.2 Pitfalls

1) The programmer should not forget to close the ZIP after his/her work, or the

changes will not be written to a disk. In special case, the ZIP can be even

damaged. The closed ZIP can be reopened later.

2) Encrypted ZIP files can be reopened only by this FW, because it uses a specific

encryption method. On the other hand, non-encrypted ZIP archives are fully

compatible with standard ZIP format (it can be opened by WinZip and other

similar programs).

The programmer should notify difference between create() and open() methods:

create() will create a new archive in any case; on the contrary open(filename,

true) will create a new archive only if it does not exist. The open() method without

createIfNecessary parameter will fail, when the archive does not exist. The

openOrCreate() method can also be used.

6.9.3 Encryption
All functions use classes from javax.crypto and java.security packages. These

packages give the programmer an option to use different types of ciphers, but usage is

very difficult and requires knowledge of the issue. The framework makes it possible to

use these functions without any knowledge, only by calling such a method.

1. inFile = Files.newInputStream(file);
2. outFile = new FileOutputStream(tempFile);
3.
4. byte[] salt = Arrays.copyOf(encodeBase64(password).getBytes(), 8);
5.
6. SecretKeyFactory factory =

SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");
7. KeySpec spec = new PBEKeySpec(password.toCharArray(), salt, 65536,

STRENGTH);
8. SecretKey tmp = factory.generateSecret(spec);
9. SecretKey secret = new SecretKeySpec(tmp.getEncoded(), ALGORITHM);
10.
11. Cipher cipher = Cipher.getInstance(ALGORITHM);
12. cipher.init(cryptMode, secret);
13.
14. byte[] input = new byte[64];
15. int bytesRead;
16. while ((bytesRead = inFile.read(input)) != -1){
17. byte[] output = cipher.update(input, 0, bytesRead);
18. if (output != null) outFile.write(output);
19. }
20.
21. byte[] output = cipher.doFinal();
22. if (output != null) outFile.write(output);

Code 21: The encrypting algorithm extract

Creating advanced GUI for desktop applications in Java

50

There is the encrypting algorithm shown in Code 21. This algorithm is used for

encrypting/decrypting files – the way depends on value of cryptMode parameter. This

is an example of so-called stream ciphering, because it can encrypt/decrypt an

InputStream/OutputStream directly, which is usable e.g. for socket communication.

6.9.3.1 Basic functions
The programmer can encrypt/decrypt files and strings.

There are also methods for creating hash of String (a one-way cipher) and for

Base64 scheme encoding in ZKCrypt. The encrypting was also implemented for ZIP

files, so the programmer does not have to encrypt/decrypt his/her ZIP archive

separately. Of course, he/she can combine ZKCrypt with others parts of the FW – e.g.

he/she can decrypt some file directly to the memory file and stay safe.

6.9.3.2 Text and files encryption method
The encryption/decryption uses by default the AES-128 algorithm. Unfortunately, the

standard Java release does not allow using stronger keys for the AES11. If the

programmers computer has the JCE (Java cryptography extension) unlimited strength

configured, he/she can use the AES-256 too.

All possible standard options are: AES-128, DES-64, 3DES-192. The AES method is

recommended.

6.9.3.3 Base64
The Base64 can be used when the programmer has an array with raw data and

he/she needs to use it as a String (sent through a text oriented socket etc.) – all data

are converted to basic ASCII (7bit encoding). Retrieved String can be converted back

to the original byte[], of course.

1. Socket socket;
2. BufferedWriter writer =
3. new BufferedWriter(new OutputStreamWriter(socket.getOutputStream()));
4. writer.write(ZKCrypt.encryptString("very secret text!", "the password"));
5. ...
6. BufferedReader reader =
7. new BufferedReader(new InputStreamReader(socket.getInputStream()));

8. String message = ZKCrypt.decryptString(reader.readLine(), "the password");

Code 22: The ZKCrypt example 2

The example in Code 22 (very simplified compared to real usage) shows how to send

an encrypted message through text-oriented channel.

11 Standard Java restrictions are very strong. Stronger keys can be enabled only by downloading and

installing a special JAR file from Oracle to every single machine, where the encrypting should start to
work. There is no way how to distribute it with the framework.

Creating advanced GUI for desktop applications in Java

51

6.9.3.4 Pitfalls

1) The password must be >=8 chars, to secure power of the encryption.

2) The programmer can use even more algorithms, but its functionality depends

on his/her JDK distribution (JCE configuration).

6.9.4 File utilities

6.9.4.1 Basic functions
The file utilities class currently contains only two methods:

 CRC calculation of files (including memory files).

 Getting file content (including memory files) as a String.

6.9.5 Localization

6.9.5.1 Basis of the system
The ZKLocalization class uses standard Java ResourceBundle class.

6.9.5.2 Basic functions
The ZKLocalization class contains the following methods:

 getString(String key, Object… params) – this method calls the
String.format() method internally

 getCurrentLocale() – gets current set Locale instance

 setCurrentLocale(Locale locale) – sets current Locale and loads
related language file

The class also contains constants for the following languages: CZECH, ENGLISH,

GERMAN and SLOVAK.

6.9.6 Download
The download tool was described in chapter 5.9.5. The buffer size is set to 1kB.

6.9.6.1 Basic function
The main function of this class is very simple. Main advantage of this class is in 4

events methods, which are invocated in certain situations:

1) onStart(bytesTotal) – gives a size of downloaded file. There is a small

catch in here – see 6.9.6.2.

2) onProgress(bytesDownloaded, percent) - invoked when some progress

(1kB) is done.

3) onFinish(bytesDownloaded) - invoked when the file is already

downloaded.

4) onFail(exception, bytesDownloaded) – when something went wrong.

Creating advanced GUI for desktop applications in Java

52

1. ZKFileDownloader downloader = new ZKFileDownloader(new URL(addr)){
2. @Override
3. protected void onStart(long bytesTotal){
4. }
5.
6. @Override
7. protected void onFinish(long bytesDownloaded){
8. System.out.println("AVG: " +

ZKFileDownloader.formatSpeed(this.getAverageSpeed()) + " MAX: " +
ZKFileDownloader.formatSpeed(this.getMaxSpeed()));

9. }
10.
11. @Override
12. protected void onProgress(long bytesDownloaded, double percent){
13. }
14.
15. @Override
16. protected void onFail(Exception exception, long bytesDownloaded){
17. }
18. };
19. downloader.start();

Code 23: The ZKFileDownloader example

Code 23 is an example of inline usage. The programmer should use it this way

exceptionally, only when he/she has to download a single file.

1. new ZKFileDownloader(new URL(addr))
2. {
3.

4. }.start();

Code 24: The ZKFileDownloader inline usage

Of course he/she does not have to keep the instance of the downloader and he/she

can call the start() method directly, as shown in Code 24.

The formatSpeed() and formatSize() methods (used in onFinish()) should

help the programmer to format the received values properly.

6.9.6.2 Pitfalls
1) Unfortunately, the server does not have to provide the size of downloading

file. Rarely the programmer can get int -1 in events onStart() (as bytesTotal)

and onProgress() (as percent).

2) The programmer should remember, that if he/she throws an exception from

any of events method, the exception is distributed through the start()

method and it will cause failure of download process.

Creating advanced GUI for desktop applications in Java

53

6.9.7 EXIF

6.9.7.1 Basis of the system
Because the EXIF reading is a hard discipline, the framework uses a third party library

(14) for this purpose. The original library can read EXIF from JPEGs, TIFFs and also some

RAW formats. It contains support for all widely used camera brands.

The FW allows using only JPEGs but the programmer can use also the original library

directly, if necessary.

6.9.7.2 Basic functions
The first instance of the ZKExif class is created and then the programmer can use

getters (getModel(), getExposureTime(), getAperture(), getFocalLength(),

etc.). He/she can also read the metadata by a universal getter getTag() with public

constants such as TAG_EXPOSURE_TIME, TAG_APERTURE etc.

6.9.7.3 Pitfalls
1) The ZKExif class was tested with photos from Canon, Nikon, Sony, Pentax,

Samsung, Casio, Fujifilm, Kodak and Panasonic and also with photos from

smartphones from Apple, Sony Ericsson and LG. Unfortunately, not all of

manufacturers put the EXIF to its JPEGs, so (especially for smartphones) the

program cannot rely on existence of any EXIF data in the photo.

2) The programmer can read the EXIF from JPEG, which has no EXIF data stored.

In that case every getter will return null value and toString() method will

return only the name of the file.

6.9.8 JSON converter

6.9.8.1 Basic functions
The class can load the properties file and save it into JSON file or back to properties

file (but alphabetically sorted).

1. Path source = new File("trunk/testdata/messages-en.properties").toPath();
2. Path dest = randomFile().toPath();
3.
4. ZKJsonConverter converter = new ZKJsonConverter(source, dest);
5. converter.execute();

Code 25: The ZKJsonConverter example 1

Code 25 converts the properties file to the JSON format. The program can also use

saveAsProperties() and saveAsJson() methods, but the load() method has to

be called first in that case!

Creating advanced GUI for desktop applications in Java

54

1. <property name="srcFilename" value="messages_en.properties" />
2. <property name="destFilename" value="messages-en.json" />
3.
4. <taskdef name="convert"

classname="cz.zcu.kiv.framework.utils.jsonconverter.ZKJsonConverter"
classpath="lib/fw_0.1.jar" />

5. <target name="convertToJSON"
6. <convert srcfile="${srcFilename" destfile="${destFilename}" saveasjson="true

7. </target>

Code 26: The ZKJsonConverter example 2

Code 26 is an example of use in ANT script.

6.9.9 Sound factory

6.9.9.1 Basis of the system
The ZKSoundFactory class is based on 3rd party library Javazoom JLayer library (15).

The class uses a small subset of the library abilities and can only start playing a

selected sound.

The example of usage is very simple.

1. ZKSoundFactory.alarm();

Code 27: The ZKSoundFactory example

Code 27 shows how to play an “ALARM” sound. All available methods are non-

blocking so the program execution continues immediately after the playback starts.

6.9.9.2 Pitfalls
1) The JLayer library (15) is quite old. Although the tests confirmed its

functionality, the malfunction with some special modern MP3 cannot be fully

eliminated.

2) ZKSoundFactory does not offer playback control or callbacks. It just simply

plays the file.

6.9.10 Czech comparator
1. new Locale(“cs”, “CZ”)

Code 28: The Czech Locale creation

The ZKCzechComparator class uses Locale created like in Code 28.

1. TreeSet<String> set = new TreeSet<>(ZKCzechComparator.getInstance());

Code 29: The ZKCzechComparator example

By Code 29 the programmer can set the comparator of new TreeSet to a Czech one.

All inserted strings are then sorted properly.

Creating advanced GUI for desktop applications in Java

55

6.9.11 Console

6.9.11.1 Basis of the system
The ZKConsole class is based on direct work with streams (InputStream and

PrintStream). It uses the Scanner and Console classes for some operations too.

6.9.11.2 ZKConsole
The class offers overloaded methods for reading and printing to console, such as

print(), println(), read(), readLine(). It contains methods for users

answering, such as waitFor() and waitForEnterKey() too.

The class is prepared for the program arguments handling. The programmer can use

the setProgramArgs() method if he/she needs to use the program arguments in

other place then the main() method. The getProgramArgs() will return
List<ZKCommand>.

6.9.11.3 ZKCommandParser
This class offers a command parsing. It’s useful both for both program arguments

parsing and console input parsing.

1. String line = "comm1 comm2 \"comm3_1 comm3_2\" comm4 comm5 \"comm6_1
comm6_2\" comm7 comm8\" comm9 ";

2.
3. ZKCommandParser parser = new ZKCommandParser(System.in);
4.
5. List<String> res = new ArrayList<>();
6. for (ZKCommand command : parser.parseLine(line))
7. {
8. res.add(command.getText());
9. }

Code 30: The ZKCommandParser example

Code 30 parses a given line into a list of commands.

6.9.11.4 Pitfalls
The readPassword() method unfortunately still depends on the Console class.

When the console is unavailable, the method throws RuntimeException. This is

caused by Java has not an option to read chars from console without displaying them

(except the readPassword() method in Console).

Creating advanced GUI for desktop applications in Java

56

7 Project testing

7.1 Utilities testing
Utilities’ testing was described in 5.10.2.

There were 42 tests methods implemented for the utilities package. The test code

coverage of package is 72% of classes and 69% of code lines.

Figure 13: Utilities tests result

All tests passed successfully as shown in

Figure 13. The table columns contains name of the test, time from start to an end of

the test, memory usage during the test and its result.

7.2 GUI automatic testing
Automatic testing of GUI was described in 5.10.1.1.

Figure 14: GUI unit tests result

There were implemented tests as described in 5.10.2. All test passed successfully as

shown in Figure 14.

Creating advanced GUI for desktop applications in Java

57

7.3 GUI manual testing
Most of the GUI was tested manually, as described in 5.10.1.2. A demo application

was implemented and all created components were used. The application was able to

simulate real usage of application template and components.

The manual tests were performed by author of this thesis and two other people.

Each component has defined functionality and the testers were checking defined

points. All tests were successful.

7.4 MFS performance test
The MFS described in 5.9.1 is one of the most interesting parts of the framework. It is

also designed for very specific usage and it has to be known its performance before

programmer uses it.

Designed performance test compares speed of few operations sequence between

hard drive (Windows filesystem) and MFS. Test sequence consists of:

1) Create file of defined size, write byte by byte

2) Move created file to another location in the filesystem

3) Copy the file to another location in the filesystem

Size of created file is variable. Every sequence is done 10 times and then an average

time is calculated. Every test is repeated 3 times and then the final coefficient for

current file size is calculated as an average of three partial results.

Graph 1: Dependency of slowness coeficient to size of file

1,2

1,3

1,4

1,5

1,6

1,7

1,8

1,9

2

2,1

2,2

1 3 5 7 10 12 15 20 30 50 70

Sl
ow

ne
ss

 c
oe

f.
[-]

Size of file [MB]

Dependency of slowness coeficient to size of file

Creating advanced GUI for desktop applications in Java

58

The orange line in Graph 1 shows an impact of MFS indirect costs. For files smaller

than 5MB the writing is very quick and the indirect costs are relatively big part of result

time. Allocating buffer is quite expensive operation. For buffer size set to 10MB, MFS

has good results for files exceeding this buffer size.

The blue line shows us performance of MFS with default buffer size set to 5MB. Good

results are achieved even for small files, because allocation of smaller buffer does not

take so long time. On the contrary, for file sizes about 30MB, the buffer size 10MB

gives us better results.

The green line in Graph 1 shows the optimal performance of MFS. The filesystem was

created with parameter of default file size, which has caused that no memory

reallocation was necessary while writing to the file. On the other hand, this method

can be used only when we know size of the file in advance.

The conclusion is the MFS is not suitable for quick files operations, because it is

about 1.5 times slower (in best case) than standard disk FS. On the other hand, the

reason to use the MFS is different from the speedup (described in 5.9.1) and it fulfills

its mission. We can optimize performance of MFS by setting size of copied file in

advance.

Creating advanced GUI for desktop applications in Java

59

8 Conclusion
In the frame of this thesis, I created list of required functions. According to that, I

analyzed current situation on the field of GUI building and I compared proposed

functionality with existing libraries. I decided to build new framework named KIV

framework, which will satisfy all described requirements. I chose the Swing library as a

basis of my framework.

I designed and described details of all parts of the framework. All designed parts

were implemented and discussed afterwards. The whole framework was tested,

partially by JUnit tests and partially by manual (visual) testing. MFS tools performance

was tested and compared to an ordinary filesystem.

All requirements were satisfied and fully usable solution was implemented. The

framework was released under the GNU LGPL license and it can be used by everyone.

There are many ideas that can be implemented in the future, such as integration of

some useful components (e.g. JSyntaxPane, JFreeChart), implementation of new

components (e.g. login dialog, about dialog) or implementation of XML to GUI

generator.

Creating advanced GUI for desktop applications in Java

60

References

1. Walrath K, Campione M, Huml A, Zakhour SB. The JFC Swing Tutorial: A Guide to
Constructing GUIs: Sun corporation; 2004.

2. Oracle. The Swing tutorial. [Online]. [cited 2013 feb 20. Available from:
http://docs.oracle.com/javase/tutorial/uiswing/start/about.html.

3. Darwin IF. Java Cookbook: O'Reilly; 2007.

4. Foudation A. Apache Pivot. [Online]. [cited 2013 mar 25. Available from:
http://pivot.apache.org/about.html.

5. ZEUS. ZEUS Java Swing Component Library. [Online]. [cited 2013 mar 26. Available
from: http://sourceforge.net/projects/zeus-jscl/.

6. BUOY. BUOY. [Online]. [cited 2013 mar 26. Available from:
http://buoy.sourceforge.net/AboutBuoy.html.

7. CookSwing. CookSwing: XML to Java Swing GUI. [Online]. [cited 2013 mar 26.
Available from: http://cookxml.yuanheng.org/cookswing/index.html.

8. Tödter K. JCalendar Java Bean. [Online]. [cited 2013 22 04. Available from:
http://www.toedter.com/en/jcalendar/.

9. Factory Patterns. [Online]. [cited 2013 04 23. Available from:
http://delphi.about.com/od/course/a/delphi_oop26.htm.

10. Patton R. Software testing: Pearson Education; 2005.

11. Schildt H. Java The Complete Reference: Oracle Press; 2011.

12. Tenouk.com. [Online]. [cited 2013 05 04. Available from:
http://www.tenouk.com/visualcplusmfc/visualcplusmfc8_files/image023.png.

13. Tips4java. Wrap Layout. [Online]. [cited 2013 03 20. Available from:
http://tips4java.wordpress.com/2008/11/06/wrap-layout/.

14. Noakes D. Metadata extractor. [Online]. [cited 2013 04 22. Available from:
http://drewnoakes.com/code/exif/.

15. Javazoom. [Online]. [cited 2013 22 04. Available from:
http://www.javazoom.net/javalayer/javalayer.html.

http://docs.oracle.com/javase/tutorial/uiswing/start/about.html
http://pivot.apache.org/about.html
http://sourceforge.net/projects/zeus-jscl/
http://buoy.sourceforge.net/AboutBuoy.html
http://cookxml.yuanheng.org/cookswing/index.html
http://www.toedter.com/en/jcalendar/
http://delphi.about.com/od/course/a/delphi_oop26.htm
http://www.tenouk.com/visualcplusmfc/visualcplusmfc8_files/image023.png
http://tips4java.wordpress.com/2008/11/06/wrap-layout/
http://drewnoakes.com/code/exif/
http://www.javazoom.net/javalayer/javalayer.html

Creating advanced GUI for desktop applications in Java

61

List of acronyms
GUI – Graphical user interface

API – Application interface, an interface which the others use to access the library

JFC – Java Foundation Classes, see (1) for details

JDK – Java Development Kit, a set of tools for Java Development

JNI – Java Native Interface

XUL – XML User interface Language

JAR – Java archive, a file with the framework release

HTML – Hypertext Markup Language, formatting language, mostly used at Internet

pages

CRC – Cyclic Redundancy Check, a unique calculated code, used for error – detecting

EXIF – Exchangeable Image file Format

GPS – Global Positioning System, a system for determining position on the Earth

surface

JSON – Javascript Object Notation, a text-based standard for human-readable data

Java EE – Java Enterprise edition, a Java edition used in server applications (incl. the

web app)

ANT – a software tool for automated building of Java applications

WAV – Waveform Audio File Format, an uncompressed audio format

MP3 – MPEG audio layer 3, a compressed audio format

CRUD – Create, Read, Update, Delete

WYSIWYG – What You See Is What You Get, class of UI designers, where the result is

shown immediately

JVM – Java Virtual Machine, a virtual machine, which executes a Java program

Attachment 1: Content of included CD

Attachment 1: Content of included CD
− this document in PDF and DOCX format

− complete sources of the project

− JAR file with compiled project, ready to be used

− demo application, contained in the JAR file (run the JAR)

	Abstract
	Content
	1 Introduction
	2 Requirements for framework
	2.1 Application template
	2.2 Form layout
	2.3 Action binding
	2.4 Data binding
	2.5 Factories
	2.6 Memory filesystem
	2.7 EXIF
	2.8 File downloader
	2.9 Text/file encrypter
	2.10 ZIP handler
	2.11

	3 Swing and its alternatives
	3.1 Advantages
	3.2 Disadvantages
	3.3 Alternatives
	3.3.1 AWT
	3.3.2 JavaFX

	3.4 Reasons for Swing

	4 Existing solutions
	4.1 SWT
	4.2 Pivot
	4.3 JGoodies
	4.4 ZEUS
	4.5 Buoy
	4.6 CookSwing
	4.7 Competition resume

	5 Design of framework
	5.1 Name convention
	5.2 Components and application template
	5.2.1 Template layout
	5.2.2 Interfaces draft
	5.2.3 Components

	5.3 Drag-and-drop
	5.4 Action binding
	5.4.1 Actions

	5.5 Data binding
	5.6 Content verification
	5.7 Tooltip formatter
	5.8 Factories
	5.8.1 Factories in general
	5.8.2 Dialog factory
	5.8.3 Icon factory
	5.8.4 Border factory
	5.8.5 Button factory
	5.8.6 Font factory
	5.8.7 Sound factory

	5.9 Utilities
	5.9.1 Memory file system – MFS
	5.9.2 ZIP files
	5.9.3 Encryption
	5.9.4 File utilities
	5.9.5 Download
	5.9.6 EXIF
	5.9.7 JSON converter
	5.9.8 Sound factory
	5.9.9 Czech comparator
	5.9.10 Console

	5.10 Testing of project
	5.10.1 Testing in general
	5.10.1.1 Automatic testing
	5.10.1.2 Manual testing

	5.10.2 Project testing

	6 Implementation
	6.1 Preamble
	6.2 Application template
	6.2.1 Events
	6.2.1.1 Visibility events
	6.2.1.2 Other events

	6.2.2 Content verification
	6.2.3 Template layout
	6.2.3.1 Function
	6.2.3.2 Function panel

	6.2.4 ZKFrame, ZKMainFrame
	6.2.4.1 ZKFrame
	6.2.4.2 ZKMainFrame

	6.3 Components
	6.3.1 Basic methods
	6.3.1.1 assignAction
	6.3.1.2 getUnderlyingComponent
	6.3.1.3 getRealComponent
	6.3.1.4 setVisible
	6.3.1.5 setConstSize
	6.3.1.6 setScrollable

	6.3.2 Simple components
	6.3.2.1 ZKTable
	Columns
	Data source

	6.3.3 Composed components
	6.3.3.1 ZKList
	Data sources

	6.3.1 New components
	6.3.1.1 ZKCalendar
	6.3.1.2 ZKCanvas
	6.3.1.3 ZKDateField
	6.3.1.4 ZKForm
	6.3.1.5 ZKIcon
	6.3.1.6 ZKStatusBar
	6.3.1.7 ZKTab
	6.3.1.8 ZKWrapLayout

	6.4 Drag-and-drop
	6.5 Action binding
	6.6 Data binding
	6.6.1 Binding for simple components
	6.6.2 Binding for complex components
	6.6.2.1 ZKTable data binding
	6.6.2.2 ZKList data binding

	6.7 Tooltip formatter
	6.8 Factories
	6.8.1 Dialog factory
	6.8.2 Icon factory
	6.8.3 Border factory
	6.8.4 Button factory
	6.8.5 Font factory

	6.9 Utilities
	6.9.1 Memory file system – MFS
	6.9.1.1 Basis of the filesystem
	6.9.1.2 Basic functions
	6.9.1.3 Pitfalls

	6.9.2 ZIP files
	6.9.2.1 Basis of the system
	6.9.2.2 Pitfalls

	6.9.3 Encryption
	6.9.3.1 Basic functions
	6.9.3.2 Text and files encryption method
	6.9.3.3 Base64
	6.9.3.4 Pitfalls

	6.9.4 File utilities
	6.9.4.1 Basic functions

	6.9.5 Localization
	6.9.5.1 Basis of the system
	6.9.5.2 Basic functions

	6.9.6 Download
	6.9.6.1 Basic function
	6.9.6.2 Pitfalls

	6.9.7 EXIF
	6.9.7.1 Basis of the system
	6.9.7.2 Basic functions
	6.9.7.3 Pitfalls

	6.9.8 JSON converter
	6.9.8.1 Basic functions

	6.9.9 Sound factory
	6.9.9.1 Basis of the system
	6.9.9.2 Pitfalls

	6.9.10 Czech comparator
	6.9.11 Console
	6.9.11.1 Basis of the system
	6.9.11.2 ZKConsole
	6.9.11.3 ZKCommandParser
	6.9.11.4 Pitfalls

	7 Project testing
	7.1 Utilities testing
	7.2 GUI automatic testing
	7.3 GUI manual testing
	7.4 MFS performance test

	8 Conclusion
	References
	List of acronyms
	Attachment 1: Content of included CD

