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Abstract

is document deals with an optimization process of a light propagation for use in a digital
holography. At first a simple description of a light propagation is presented along with
a problem caused by a lack of available computer memory needed for a propagation of a high
quality hologram.

e search for fast Fourier transform library that meets our requirements follows. To
support the choice of a right implementation, benchmarks aimed at computation speed and
in parallel processing are provided. Afterwards the winning candidate is thoroughly tested in
a way of transformation speed and time needed for planning of transformations.

With all the tests and the benchmarks done an optimization program is created. e
program will try to find out the best settings for computation of the discrete Fourier transform
on the basis of given input parameters and result of previous tests.

Keywords: optimization, light propagation, digital holography, computation speed, com-
puter memory

Abstrakt

Tento dokument se zabývá optimalizací propagace světla pro použití v digitální holografii.
Nejprve je jednoduše popsán proces propagace světla spolu s problémem, kterým je nedostatek
volné paměti počítače potřebné pro propagaci hologramů vysoké kvality.

Následuje hledání takové knihovny rychlé Fourierovy transformace, která by vyhovovala
našim požadavkům. Pro podporu volby správné implementace jsou poskytnuty srovnávací
testy se zaměřením na rychlost výpočtu a paralelního zpracování dat. Poté je vítězný kandidát
testován se zaměřením na rychlost transformací a času potřebného pro naplánování transfor-
mací.

Po ukončení všech srovnávacích testů je vytvořen optimalizační program, který se bude
snažit zjistit na základě vstupních parametrů a výsledků předešlých testů nejlepší nastavení pro
výpočet diskrétní Fourierovy transformace.

Klíčová slova: optimalizace, propagace světla, digitální holografie, rychlost výpočtu, počí-
tačová paměť
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1 Introduction

One of very common operations in computer generated holography is to calculate a prop-
agation of a light between two parallel planes. A light propagation process has quite high
requirements for a computer hardware. To create a digital hologram of an everyday object the
data needed to recreate it in a form of a hologram can easily exceed units of terabytes. ose
quantities of data cannot be processed in today’s computer memory at once. erefore there
is a need for division of the data so they can be processed. To process such divided data we
need to apply an algorithm that is able to process the divided data as mutually independent
data sources.

As seen in figure 1.1 the light from every source point light is propagated in all directions.
We are interested in the amplitude and the phase of the light hitting every particular sample
of target (a sensor). Light changes its amplitude A and phase ϕ when travelling in space. In
particular, a point light S of source emits light described by the amplitude and the phase. is
light illuminates sample T of target – its amplitude changes due to propagation to α×A, its
phase to ϕ+∆ϕ. Values of α and ∆ϕ depend on the mutual position of point light S and
target sample T.

source

S

T

T: A 
    Φ

α×A,
Φ+ΔΦ

target

S: A, Φ

Figure 1.1: Propagation of a light from source to target

We will calculate a light propagation between two rectangular parallel areas, source (e.g. a spa-
tial light modulator (SLM)) and target (e.g. a camera sensor). We use linear optics where
it is assumed that light sources do not influence each other, share the same frequency (wave-
length) and every single point t(p,q) of target is affected by the light of all points s(m,n) of
source. is task can be solved with Rayleigh-Sommerfeld integral or other various approxi-
mations.

As already stated the light changes both amplitude A and phase ϕ by propagation. is change
can by described by multiplication with a convolution kernel, i.e. 2-D array Kc. Light
propagation is space invariant so only mutual position (and not their absolute positions)
of points on source and target matters. We can discretize source and target by equidistant
splitting into M×N and P×Q basic elements s[m×n] (0 ≤ m ≤ M − 1; 0 ≤ n ≤ N − 1)
and t[ p×q] (0 ≤ p ≤ P − 1; 0 ≤ q ≤ Q − 1) for a numerical calculation. By such splitting
source s is discretely uniformly sampled into monochromatic point light sources.
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Figure 1.2 describes such set. Source is divided into M×N basic elements, target into P×Q
basic elements. Source plane ξη is parallel with target plane xy meaning that areas can only
move in parallel with one another and in the z axis direction (change of mutual area distance).

M

P

N
ξ

η

Q

y x

z

Figure 1.2: Position of source and target

e calculation of all elements t[p,q] is most often done as a cyclic convolution and subsequent
use of the discrete Fourier transform [Lob12]. e cyclic convolution has a form:

t[p, q] = − 1
2π

2M−2∑
m=0

2N−2∑
n=0

s[m, n]× Kc[p − m(mod 2M − 1), q − n(mod 2N − 1)] (1)

where s[m,n]=0 for M ≤ m ≤ M+ P− 1 and N ≤ n ≤ N+Q− 1 (i.e., the s is zero-padded
to the size Kc). e important values of t[m,n] are those for 0 ≤ p ≤ (M + P − 1) − M,
0 ≤ q ≤ (N + Q − 1) − N. e others are damaged by the cyclic behaviour of indices in
arithmetic (mod 2N − 1 and mod 2M − 1). We can speed-up the computation significantly,
because

t = − 1
2π

IDFT(DFT(s) ⊙DFT(Kc)) (2)

where t, s and Kc are two dimensional matrices of complex numbers, DFT is the discrete
Fourier transform of a matrix, IDFT is the inverse discrete Fourier transform of a matrix
and⊙ is the Hadamard product (element-by-element multiplication). If we would use a naive
approach and computed the propagation by brute force, the algorithmic complexity would
be O(N4), if we assume both the source and the target to be discretized by N×N samples.
e speed-up is expected due to the fact that the calculation of 2-D DFT or IDFT can be
done in time O(N 2log2N ).

We will create a graphical representation of equation (2). In figure 1.3 we can see a discretized
input data; source M×N and six times larger target P×Q.

source M×N target P×Q

Figure 1.3: Graphical representation of input data source and required target
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To compute a light propagation we need two memory spaces of sizes (M+P−1)×(N+Q−1)
(see figure 1.4). Zero padded source is placed in the first space (fig. 1.4a). After the creation
of the memory space the source data are copied into it. In our example the data are copied
into left bottom corner. e rest of the memory space is filled with zeros (represented by grey
hatches). e second memory space is for convolution kernel (fig. 1.4b).

zero-padded source

M
N

(N+Q−1)×(M+P−1)

(a) e source copied into first
memory space

kernel (N+Q−1)×(M+P−1)

(b) e convolution kernel com-
puted into second memory space

Figure 1.4: Two filled memory spaces (M + P − 1)× (N + Q − 1)

After performing in-place DFTs of both memory spaces, results of element-by-element mul-
tiplication of both memory areas are saved into one of the areas, effectively replacing original
content (fig. 1.5). In this case I chose the source data to be replaced.

zero-padded source DFTDFT kernel replaced content kernel( ) ( )
Figure 1.5: Transformation of the source and the kernel into new data that replace
the source

Finally the IDFT is applied on the replaced content resulting in finished propagation (fig. 1.6).
From whole replaced area we can only use area P×Q because those are the target data. Rest of
the replaced area are unusable data damaged by cyclic behaviour (represented by grey hatches).

IDFT

(N+Q−1)×(M+P−1)target

replaced content Q
P( )

Figure 1.6: Application of IDFT and digestion of the target

We can see from equation (1) that the matrices s and t have to be padded to size Kc. Generally
and as seen in examples 1.4a and 1.6 this padding means that for M×N and P×Q, as much
as 75% of elements are held in memory uselessly. erefore, for big s and t we can expect a lack
of usable memory shortly, especially when using a GPU for DFT calculation. For example
a propagation of a microscopic source to extended target (detector) could require terabytes of
data.
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Two memory spaces of sizes≥ (M+P−1)×(N+Q−1)×Cn where Cn is one complex number
taking up 16 bytes of memory, are needed for the calculation of equation (2). Although in
practice such two spaces may not be available. I will explain such situation by a real life
example. Let us have a high quality hologram generated by a computer. e hologram
is made of 50 000×50 000 samples (a source M×N) which corresponds to 50×50 mm. We
are simulating its light propagation to a surface of an eye lens expressed in 5000×5000 samples
(a target P×Q) which corresponds to 5×5 mm. To compute such propagation we need

(M + P − 1)× (N + Q − 1)× 2 × Cn = 54 999 × 54 999 × 2 × 16 ≈ 90 GB

of available memory. Allocation of such large quantity of memory is impractical. But we
could split source into 10×10 parts (calling them “common tiles”), resulting into 5000×5000
samples (a source M’×N’) and make 10×10 calculations (figure 1.7). For those calculations,
we need only

(M + P − 1)× (N + Q − 1)× 2 × Cn = 9999 × 9999 × 2 × 16 ≈ 3 GB

of available memory. e same idea would apply with switched dimensions of source and
target. By generalization we can accept that source can be split into S parts, target into T
parts and then we have to calculate S×T propagations.

M’

M’

P

N’
N’

Q
r1

r2 +
+

Figure 1.7: Division of source into 10×10 common tiles

e goal of this document is finding the right number and shape of divisions of source and
target that will result in the fastest FFT computation times. e suggested technique focuses
on a light propagation between two rectangular areas with various independent sizes. We need
to find the minimum of a function with five parameters in the least practical time. We are
given dimensions of a discretized source as two integers, a discretized target as two integers
and a maximal allowed computer memory, that can be used in the process, as one integer.

rough this work I will test research results of Mr. Nedved [Ned12] who solved the same
problem of finding the right division of source and target that will result in fast FFT computa-
tion times. He begins his work with a mathematical theory about optimal shape of source and
target for the FFT. Outcome of the theory is that input of the FFT should have dimensions of
2M×2N where M, N ∈ N. After that a process of optimizing a division of source and target into
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smaller parts begins. In figure 1.8 we can se an area M×N divided into smaller parts PM×PN.
Lengths PM and PN are chosen so that a propagation of such part is the fastest and can be
different for source and target.

M

PM

PM

PN PN

N

Figure 1.8: Memory division of a source/target area

Mr. Nedved deduced two findings from dividing, both seen in figure 1.8. First is processing
of non-PM×PN parts located in right and bottom of the figure and marked in grey. An input
source/target area can have any dimensions and it’s not always possible to divide the area that
there are no remainders. Ideally, we would like to optimize those reminding areas so that
their light propagation would be as fast as a propagation of area PM×PN. e easiest way to
do so is by using properties of the cyclic convolution and complete the reminding areas with
zeros up to area PM×PN. ose expanded areas are implied by dashed lines.

Now Mr. Nedved needed to find out if he should either compute a propagation with re-
minding areas which take less memory but the computation for those dimensions are not
optimized for speed, or with expanded areas which take more memory and are larger, but
time of computation is optimized. After running some tests Mr. Nedved concluded that
expanding areas doesn’t have noticeable negative impact on computation speed. at means
that it’s not necessary to optimize reminding areas because we can expand areas.

Second is determination of the most efficient ratio of lengths PM and PN. Mr. Nedved assumes
that various PM×PN parts will have different FFT computation speed. ose properties shall
be measured with tests. If the differences will occur, it will be necessary to find lengths with
faster computation speeds. If there won’t be any differences in computation speeds, no ratio
determination will be necessary. e ratio 1:1 would mean that both sides of a part are equally
long and parts are square. Deviation from the ratio changes an area shape to rectangle. e
more diversified the ratio, the more is an area rectangular.

After several tests Mr. Nedved determined that compared to optimization of reminding areas
the effect of the ratio is important. In all cases where at least one part’s side is considerably
asymmetrical the FFT computation times are much longer than with regularly square or nearly
square parts.
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In the end Mr. Nedved writes that he succeeded in devising and implementing good enough
solution of choosing input parameters for the problem of light propagation when only re-
stricted amount of a computer memory is available. e confirmation of his theoretical
reasonings were confirmed by test results.

e reason for existence of this work is the fact that the assumptions used in Mr. Nedved’s
research are not complete. For example he didn’t consider all possibilities when choosing
dimensions 2M×2N where M, N ∈ N of FFT input. Various FFT libraries have beside 2N

optimized other prime numbers such as 3, 5 or 7. Other fact is that I didn’t want to base my
conclusion on Mr. Nedved’s dubious test results. e reason is that no measured values shown
in resulting figures were provisioned and graphical representation of the measured values was
overly simplified. As the last reason I would mention a lack of test results for very large
matrices with areas up to several GB. Mr. Nedved only tested matrices with sizes up to 216,
which is not enough for our needs.

In the section 2 we will write about an importance of the FFT and select acceptable candidates
of FFT implementations that will fulfil our selected requirements. e final candidates are
then tested in various benchmarks for their FFT computation speeds. After that the winning
candidate is selected and its properties described. Section 3 continues with testing of the
winning candidate. First is finding out the winner’s behaviour for 1-D and 2-D data FFTs
followed by measuring computation durations of rectangular areas of various sizes. Next test
set is aimed at various winner’s implementation settings and how their change manifest in
results. Finally in section 4 I will describe my program that will for given input data determine
divided “common tiles” dimensions of source and target. e determined dimensions will be
“FFT friendly”, meaning that the computation of the FFT should be optimized for speed.
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2 FFTW characteristics

A computation of the fast Fourier transform (FFT) is an important element in the process of
a light propagation. A propagation computation uses the FFT heavily and therefore trying to
optimize this usage can be very fruitful. In this chapter the choice of the most suitable library
with given parameters that computes the FFT is described. At first the library requirements are
selected and reasoned. After that suitable library candidates are located and mutually tested
for speed of FFT calculations. e library with the best tests results and the most favourable
parameters wins the selection. At last the behaviour of the winning library is characterized.

e Fourier transform converts time or space to frequency and vice versa. e fast Fourier
transform is an algorithm that rapidly computes such transformations. Many implementa-
tions of the FFT exist and we need to choose the one that will fulfil our requirements:

• Computation speed is a critical parameter because the propagation algorithm uses most
of its computation time by calculating the FFT. Even small time improvements can create
considerable speed-up.

• e implementation has to be able to compute Two dimensional FFT transformations
with complex numbers which is a natural way to compute a light propagation.

• e light propagation algorithm itself supports in parallel transforms because source-
target propagations are independent. From this fact we can choose two types of parallel
operations:

– By having the ability to run several FFTs at once (in parallel) we can handle the
propagation code ourself. is approach has one disadvantage. If we were to run
two FFTs parallelly each would need its own portion of a free computer memory
to operate.

– Or we can use parallel (multi-threaded) FFT implementation. One propagation
would use given processing power to compute one FFT operation in parallel. To
use this method a library should be able to support a parallel processing.

• e library’s implementation has to be multi-platform (C/C++ compatible) because of
already mentioned speed requirement. It should run on multiple operation systems,
mainly Microsoft Windows and GNU/Linux.

• For propagations of large dimensions it’s advantageous to have an option to choose from
non-power-of-two transform sizes as well. Firstly, we are limited by provided computer
memory and only power-of-two transform sizes grow very fast in higher indexes which
restricts us. Secondly, a real FFT implementation and a computer hardware decreases
the library’s performance with large dimensions.

• Additionally the library has to have some sort of a support. A forum where problems can
be posted and solved by a staff and an usable documentation. A big plus is an active
development of the library. Generally libraries older than ten years and with inactive
development are going to be disqualified.

• e library ought to be free for non-commercial use. ese days many free implementa-
tions exist. If none free would suffice, libraries with different licensing would be found.
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2.1 Selection of candidates

With requirements in place I needed to sort through implementations of the FFT libraries.
I have found and used a comprehensive list [fft06] of very old and new FFT implementations
along with a few others from [Rod09] and [Bla12]. In the following list the disqualified
implementations are written along with an appropriate reason:

• Non C/C++: JTransforms
• Non GNU/Linux, Windows: Apple vDSP, MatrixFFT
• Only 2n transforms: ffmpeg FFT, Ooura, FFTS
• Only real numbers: FFTReal
• Old release: FFTs for RISC 2.0 (1998), SciMark 2.0 (2000)
• Specialization – GPU: APPML-FFT, CUFFT, Nukada FFT library, OpenCL FFT
• Specialization – 3D transforms: OpenMM

• Other: GNU Scientific Library (GSL) – “For large-scale FFT work we recommend the
use of the dedicated FFTW library by Frigo and Johnson” [gnu11]

• Other: Sparse Fast Fourier Transform (SFFT) [Rev12] – By using information from
[Jas12] I came to conclusion that algorithms used in this library are not suitable for
a light propagation

• Other: Spiral – Free version supports generation of only an 1-D array sizes up to 215 in
single precision [Pro12]

After the selection a following list of candidates remained:

• A FFT Package (FFTE) (Open Source, Fortran)
• AMD Core Math Library (ACML) (Free, Fortran)
• Fastest Fourier Transform in the West (FFTW) (GNU GPL, C)
• FXT (GNU GPL, C++)
• Intel Math Kernel Library (Intel MKL FFT) (Commercial – Royalty-free, C, C++)
• Intel Integrated Performance Primitives (Intel IPP) (Commercial – Royalty-free, C, C++)
• Jean-Marie Teuler FFT (JMFFT) (GNU GPL, Fortran90)
• Kiss FFT (BSD, C)

2.2 Testing of candidates – benchFFT

ose candidates should be tested for the last requirement, speed. e easiest way is to
run benchmark(s) and compare results. Fortunately, the FFTW site hosts comprehensive
benchmarks together with released source codes of tests and graphical representation of tests
results.

e figure 2.1 [fft07c] shows data throughput during computation of 2-D data matrix, a typi-
cal operation for a light propagation. e horizontal axis represents lengths of a rectangle sides
of matrices. e vertical axis represents speed of the computation in mflops. e benchFFT
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[fft07a], a program to benchmark FFT software, describes this unit as

mflops =
5N log2(N)

time for one FFT in microseconds
(3)

We see that “mflops” is a scaled version of the speed, where N is number of data points (the
product of the FFT dimensions). For better comparison we would like to use real measure
times, preferably µs or ms. With this knowledge I will transform the equation (3) into

time for one FFT [µs] =
5N log2(N)

mflops
(4)

e result of the benchmark is shown in figure 2.1. e interpretation of the graph is as fol-
lows. Let us for example read values for 8×8 matrix for libraries fftw3 (in place calculation)
and ooura-4f2d. ey are 2 250 mflops for fftw3 in-place and 1 250 for ooura-4f2d. After
substitution to the equation I have

fftw3 in-place :
5 × 8 × 8 × log2(8 × 8)

2 250
=̇ 0.853 µs

ooura-4f2d :
5 × 8 × 8 × log2(8 × 8)

1 250
= 1.536 µs

erefore I can say that fftw3 in-place is approximately 2× faster than ooura-4f2d in compu-
tation of the FFT for matrix with dimensions of 8×8.

Figure 2.1: benchFFT, 2-D transformations benchmark of rectangular matrices. Test
parameters: gcc-4.0.2, g++-4.0.2, gfortran-4.0.2, 2.4 GHz Intel Pentium 4 Single
Core, 512 KB L2 cache. Linux 2.6.7, Intel Math Kernel Library Version 8.0.1
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From figures 2.1 and 2.2 [fft07b] we can see that FFTW libraries have noticeably faster trans-
forms for matrices with rectangle sides lengths up to 64×64. However in a light propagation
we need to compute much larger values. Useful areas begin at about 512×512. After those
sizes differences in speeds of contestants are greatly reduced.

From figure 2.2 it seems that computing fftw3 in-place library with dimensions 32×32
(10 850 mflops) is only ≈ 4× faster than the same library with dimensions 1024×1024 (2 400
mflops). erefore I will convert speed results from mflops to ms.

fftw3 in-place 32 :
5 × 32 × 32 × log2(32 × 32)

10 850
=̇ 4.719 µs (5)

fftw3 in-place 1 024 :
5 × 1 024 × 1 024 × log2(1 024 × 1 024)

2 400
=̇ 43 691 µs (6)

e results of equations (5, 6) are much more believable. Fftw3 in-place 32×32 is =̇ 9 259×
faster than fftw3 in-place 1024×1024. It follows that one can easily compare just performance
of various libraries for a particular transform size. To compare various transform sizes, it
is necessary to perform mflops to µs transform in a way we have shown.

Figure 2.2: benchFFT, 2-D transformations benchmark of rectangular matrices. Test
parameters: Intel C/C++ Compiler 9.1.043, Intel Fortran Compiler 9.1.037, 3.0
GHz Intel Xeon Core Duo, 4MB L2 cache, 64-bit mode. Linux 2.6.17, Intel Math
Kernel Library Version 8.1.1
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In figure 2.3 [fft07b] sizes with lengths that are not powers of two are used. e range
of rectangular dimensions between 1 000 and 10 000 shows that all candidates have good
speeds even for non-power-of-two values. I will explain how to read the graph for the values
of the library Intel MKL FFT in-place. Computing the FFT of a matrix with dimensions
1 000×1 000 has speed of 2 750 mflops. A matrix 10 368×10 368 has speed of 1 700 mflops
for the same library. It is necessary to confirm those result in real time:

MKL FFT 1 000 :
5 × 1 000 × 1 000 × log2(1 000 × 1 000)

2 750
=̇ 36 239 µs (7)

MKL FFT 10 368 :
5 × 10 368 × 10 368 × log2(10 368 × 10 368)

1 700
=̇ 8 436 717 µs (8)

e results of equations (7, 8) have huge differences. Intel MKL FFT 1 000×1 000 is in
round figures 233× faster than Intel MKL FFT 10 368×10 368.

Figure 2.3: benchFFT, 2-D transformations benchmark of square matrices. Test
parameters: Intel C/C++ Compiler 9.1.043, Intel Fortran Compiler 9.1.037, 3.0
GHz Intel Xeon Core Duo, 4MB L2 cache, 64-bit mode. Linux 2.6.17, Intel Math
Kernel Library Version 8.1.1

rough our course of the benchmarking we could see that computation times of FFTs quickly
increases with larger matrices. It would be well to check how much distinct are recorded FFT
speeds from theoretical speed of the FFT. For an 1-D array a computation of the FFT we need
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O(N log2(N)) arithmetical operations where N is number of elements of the array. In case of
a 2-D matrix, computing the FFT means calculating an 1-D FFT for each row and column.
A mathematical representation of this statement is shown in following equation

FFT operations : number of rows × row length× log2(row length) +
number of columns × column height× log2(column height)

(9)

Figure 2.4 show such an example. I transformed speed results of fftw3 in-place library from
figure 2.3 into µs using equation (4). Next I used the same matrix dimensions as in figure 2.3
and computed theoretical speed of the FFT using equation (9). To position the theoretical
FFT line along with the computed one I had to divide the theoretical results by magic num-
ber 1000. e horizontal axis represents total area of matrices. e vertical axis represents
duration of the FFT computation for given matrix area in real time milliseconds. From figure
2.4 we can see that measured values approximately follow O(N2 log2(N)) complexity. I will
read an example of measured values from figure 2.4. e FFT duration of the matrix with
total area 100 is 0.4 µs. Selection of additional computed results are shown in table 2.1.
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Figure 2.4: Deviation of the FFT computation speed of fftw3 in-place library in
figure 2.3 from theoretical speed of O(N2 log2(N))

Matrix
dimensions

fftw3 in-place
[mflops]

fftw3 in-place [µs]

10×10 8200 0.41
25×24 4260 6.50
96×96 5000 121.37

240×240 5150 884.34
5832×5832 2200 1 934 023

10368×10368 2200 6 518 058

Table 2.1: Selection of computed FFT speed results from figure 2.4
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2.3 Testing of candidates – independent

Since the benchFFT program is maintained by same people as FFTW the results can be biased.
erefore some other independent test should be used to test the candidates.

e figure 2.5 shows test case used in benchFFT but ran at the computers of SGI-IZO by
staff of Campus de Excelencia Internacional [Exc09]. Resulting graphical representation of
this test is similar to the result shown in figure 2.1. Speeds of the contestants is generally
higher because the hardware used for the test is faster than the one used in figure 2.1.
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Figure 2.5: SGI-IZO, 2-D transformations benchmark of square matrices. Test
parameters: Dual core Itanium2, CPU 1.6 Ghz, 18 MB L3 cache

Table 2.2 shows benchmarks for the transformation of 64×64 64-bit real arrays on an com-
puter 833MHz Alpha EV6, obtained using benchFFT from the FFTW website in 2005. e
timings in the table were reproduced at University of Tasmania [Phi06, p. 89] in mflops.
I have transformed the times using formula

time for one FFT [µs] :
2.5N log2(N)

mflops
=

2.5 × 64 × 64 log2(64 × 64)
mflops

=
122 880
mflops

into µs. Resulting values show the superior performance of FFTW.
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Package Author / Vendor Forward
transforms [µs]

Backward
transforms [µs]

FFTW 2.X FFTW 74.5 77.72
CXML Hewlett-Packard 123.56 130.89

Ooura FFTs Takuya Ooura 128.03 128.03
FFTs for RISC 2.0 John Green 161.05 163.91

JMFFT Jean-Marie Teuler 325.68 325.44

Table 2.2: FFTW benchmarks ran on the hardware on which Mk3L [Phi06] was
developed, 2005

Last figure 2.6 from [Bau10] shows speed comparison of FFTW and Intel MKL libraries.
e horizontal axis represents dimensions of a 2-D matrix ranging from matrices 8×8 to
8 192×8 192. e vertical axis plots result times of FFT computation but the representation
of the axis is in “speedup” multiplier. With those units the figure can be read as follows. For
example the difference between FFTW 8 cores and Intel MKL 8 cores for the matrix 23×23

has the speed-up of one, meaning Intel MKL 8 cores FFT was computed two times faster
than FFTW 8 cores. Alternatively we can say that time needed for the FFT computation was
halved. Another example is for matrix 29×29 with 8 cores of Intel MKL and FFTW. Mutual
speed-up multiplier is 4 (5.25− 1.25) meaning FFTW was five times faster than Intel MKL.

Figure 2.6: Parallel speed up of parallel FFT of four interwoven two-dimensional
matrices of size N×N with FFTW library version 3.2.2 and Intel MKL library
bundled with Intel compiler suite version 11.1.056. Test parameters: two Quad
Core Intel Xeon CPUs (E5345) at 2.5GHz
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From figure 2.6 can be concluded that

• the Intel MKL FFT routines show a very poor parallel speed-up. Even with eight cores,
the speed-up never exceeds two, whereas FFTW library reaches a reasonable speed-up.

• FFTW library also excels Intel MKL in terms of absolute computing time.
• Only for very small matrices, Intel MKL is superior.

From results of benchmarks and other requested parameters the library fftw3 (Fastest Fourier
Transform in the West version three) was chosen as best candidate for a light propagation.

2.4 Fastest Fourier Transform in the West

FFTW is an implementation of the discrete Fourier transform (DFT) that adapts to the
hardware in order to maximize performance [FJ05]. e FFT computes the DFT and pro-
duces exactly the same result as evaluating the DFT definition directly. e only difference
is that the FFT is faster. Important characteristic of this library is a way of creating an
optimization plan for execution of the FFT. e planning algorithm generates plans according
with rules that repeatedly simplify a problem into simpler sub-problems. When the problem
becomes “sufficiently simple”, FFTW produces a plan that uses generated optimal line of
processing instructions that solves the problem directly. ese fragments are called codelets
in FFTW’s jargon. For example, a codelet might be specialized to compute the DFT of real
data (as opposed to complex). FFTW’s speed depends therefore on two factors [FJ05]:

• e decomposition rules must produce a sufficient number of plans that is rich enough
to contain “good” plans for most machines. e standard FFTW distribution contains
a set of about 150 pre-generated codelets that cover most common uses.

• Codelets must be fast because they perform all the essential work.

Codelets are written in C language and the more is a codelet optimized the higher is an
efficiency of the codelet. Creating a codelet is easy but optimizing it is very error-prone [FJ98].
erefore we can use a special compiler for their generation. e generator is written in Caml
Light (dialect of ML functional language). It is not desirable for me to write my own codelets,
because the code is then not portable into other FFT implementations. Also codelets are
mainly for specialised cases that happen often and not for my broad use of any input and
output data.

It’s necessary to describe how to use FFTW because different operational parameters can
greatly change a characteristic of a computation. One-dimensional and multi-dimensional
transforms [fft12b] work much the same way:

1. Allocate arrays of type fftw_complex (16 bytes, 8 for real and 8 for imaginary part)
preferably using fftw_malloc (for an automatic data aligning),

2. create an fftw_plan (combination of codelets),
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3. execute it arbitrarily with fftw_execute(plan) (launching the DFT),
4. and clean up with fftw_destroy_plan(plan) and fftw_free (cleaning memory).

All of the planner routines in FFTW accept an integer argument called flags (for our use of
2-D complex planning the command is fftw_plan_dft_2d(ROWS,COLUMNS,…,FLAGS)).
ese flags control the rigour (and time) of the planning process [fft12c]. A final computation
time of the DFT can be greatly modified by the used flag. From all available flags I will try
(and use) those four:

• FFTW_ESTIMATE specifies that, instead of actual measurements of different algorithms,
a simple heuristic is used to pick a (probably sub-optimal) plan quickly.

• FFTW_MEASURE tells FFTW to find an optimized plan by actually computing several
FFTs and measuring their execution time. Depending on a machine, this can take some
time (often a few seconds).

• FFTW_PATIENT is like FFTW_MEASURE, but considers a wider range of algorithms and
often produces a “more optimal” plan (especially for large transforms), but at the expense
of several times longer planning time (especially for large transforms).

• FFTW_EXHAUSTIVE is like FFTW_PATIENT, but considers an even wider range of al-
gorithms, including many that we think are unlikely to be fast, to produce the “most
optimal” plan but with a substantially increased planning time.
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3 FFTW testing

By running a set of benchmarks we have chosen the best suited FFT library candidate, Fastest
Fourier Transform in the West. In this chapter we will further our testing of the library. At first
the environment used for testing will be described. After that various tests aimed at diverse
properties of FFTW will be run. Our objective is to learn the library’s behaviour and draw
conclusions that will help us increase an efficiency of the library.

In some test cases I will run a test several times and write only one set of result or average
of results into this document. e whole computed data with all test results and figures are
saved on the enclosed CD.

To fully test FFTW I will perform tests on various computers with different configurations:

1. Windows 7 Enterprise SP1 x64, Intel Core i5-2400S, x64 CPU 2.5 GHz, 4 Cores,
4 threads, 8 GB physical memory. is set will be used in absolute majority of tests.

2. Windows 7 Professional SP1 x64, Intel Core2 Duo, x64 CPU 2.26 GHz, 2 Cores,
2 threads, 4 GB physical memory. Used mainly for confirmation of measured results
of configuration 1.

3. Windows XP Professional SP3 x86, AMD, x86 CPU 1.91 GHz, 1 Core, 1 thread,
1.5 GB physical memory. Used specifically for one test because HW settings in this
set allowed the processor cache to be disabled.

Additionally to ensure that the tests are the least influenced by other programs and computer
hardware parts, I modified all testing environments with following changes:

• Disabled disk swapping

+ No I/O disk activity (stable test results, faster computation times mainly for larger
data matrix)

− Maximal data sizes up to a computer physical memory

• Disabled the indexing, the superfetch, anti-virus systems, firewalls
• Disabled all Internet connections, physically unplugged computer from a network
• Closed all other running programs

As I ran an operation system Windows as my target platform I needed to measure running
times of the FFT. I had to use two different counters described in table 3.1. e cycle-
counter was used to count durations of very fast operations from range of µs to tens of
seconds. After exceeding the upper time interval the counter overflowed. e discovery of
this problem forced me to find an alternative, which is the second tool for measuring time,
Query Performance Counter. QPC allows measuring time from ms to days.
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FFTW
cycle-
counter
(CC)

e high-precision timer provided by FFTW that uses hardware cycle counter
available in modern CPUs. e cycle counter works on various processors and
most common compilers. e elapsed time is in arbitrary units, not seconds
or anything similar. When using measured values of this counter in figures’
axes, I marked the times as CPU cycles. e only use for this counter is for
performance comparison.

I have tried to find out if there is any way to transform those cycles into time.
On one computer and the unchanging settings (computer settings 1) I stably
measured that

2 000 000 000 CPU cycles ≈ one real time second (10)

rough this document I will be using conversion (10) to roughly compare
speeds of various test results.

WINAPI
Query
Performance
Counter
(QPC)

e high-resolution performance counter provided by Microsoft. I have used
this counter for measuring speeds from several milliseconds up to few real
time hours. Because the resolution is system-dependent, there are no standard
units that it measures. I had to divide the difference by the parameter Query
Performance Frequency to determine the number of milliseconds elapsed.

Table 3.1: Counter types used in all tests

Unless stated otherwise all test have run in four threads with a FFTW plan created by the
planner with flag ESTIMATE. Combination of four threads and flag ESTIMATE was chosen
because measurement of FFT durations with such setting produced the fastest results from
all options. Reason for using four threads is justified in figure 2.6 and verified in section 3.7.
Comparison of different planner flags is tested in section 3.4.

3.1 Codelets influence in 1-D arrays

We already know that FFTW uses codelets to create a FFT plan and right choice of the codelets
is a key element in FFT computation speed. So as a next step I wanted to know how much
codelets influence the computation speed of the FFT. By testing FFT computations durations
of an 1-D array with variable lengths, I expected the results to look similarly to figure 2.4 but
with lower computation duration.

Figure 3.1 shows results of FFT computation with an 1-D array. e horizontal axis represents
lengths of an array filled with random generated complex numbers, whereas the vertical axis
stands for a number of CPU cycles needed to compute the FFT of the array with specific
length. For example computing the FFT of an array length 101 took 10 400 CPU cycles.
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Figure 3.1: Selections of lengths where FFTW computes the FFT of an 1-D array
filled with random complex numbers

We can see that unlike in figure 2.4 the relief of figure 3.1 resembles “mountains”. After
some search I found the reason for this behaviour in the FFTW documentation [fft12a]. e
documentation states that arrays of sizes

2a × 3b × 5c × 7d × 11e × 13f (11)

where e+f is either 0 or 1, and the other exponents are arbitrary, will produce much faster
transform results. I will call numbers created from the formula as fftw-friendly. By picking
some array lengths from figure 3.1 I will test if the stated formula is right:

• 121 = 112

• 122 = no decomposition
• 123 = no decomposition
• 124 = no decomposition
• 125 = 53

• 126 = 21 × 32 × 71

• 127 = no decomposition
• 128 = 27

• 129 = no decomposition
• 130 = 21 × 51 × 131

• 131 = no decomposition
• 132 = 22 × 31 × 111

When comparing the picked lengths with measured CPU cycles in figure 3.1 we see that
the documentation was right. All chosen numbers that can be decompositioned have much
shorter FFT computation durations. e time difference between numbers 131 and 132
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is approximately sevenfold. ose tendencies continue analogously to times of higher lengths
which can be see in figure 3.2.
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Figure 3.2: e full 1-D array filled with random complex numbers where FFTW
computes the FFT

Figure 3.2 is the same as figure 3.1 but with longer 1-D array length interval. e durations
of FFT computations in the figure are fanned out into four “streams” highlighted in yellow
lines. e most important stream is the bottom one with the lowest cycle durations. All array
lengths in the bottom stream meet the formula (11); i.e. decomposition of a number into
prime numbers.

A last unexplained effect in figures 3.1 and 3.2 is very fast (seemingly linear) time needed for
computing an array lengths 1–16. As written in [FJ98, ch. 2], special codelets, that handle
integers in stated range, were specifically created for those array lengths.

We found out that not all numbers in FFTW are “equal”. Certain numbers that we will call
fftw-friendly have up to seven times faster computation speed. We will further focus on finding
and using fftw-friendly values.

3.2 Codelets influence in 2-D matrices

Testing 1-D arrays proved useful but a light propagation uses 2-D data. I needed to know
whether the result I measured in figure 3.1 for 1-D arrays will be similar for 2-D matrices. To
find out such results I will compute the FFT of 2-D matrices with various dimensions. On
basis of chapter 3.1 and the fact that a 2-D FFT is computed as set of an 1-D FFTs, I will be
expecting the results to be as follows:
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• Transforms of 2-D matrices with fftw-friendly sides lengths will be the fastest.
• Transforms of 2-D matrices with non-fftw-friendly sides lengths will be the slowest.

I ran approximately 11 000 FFT computations of 2-D matrices with various dimensions
ranging from 1000×1000 to 1023×1500 and saved the FFT durations. Table 3.2 show
excerpt from the saved durations.

M\N 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

1350 208 324 424 484 341 347 369 427 195 521
1351 298 424 514 593 431 433 459 531 281 621
1352 208 325 436 500 358 359 382 437 200 523
1353 329 465 559 647 475 488 513 576 322 666

Table 3.2: Duration of FFT computation of 2-D matrices measured in rounded
CPU cycles×106. Column length M and row length N are horizontal and vertical
lengths of a matrix

Computation times in table 3.2 varies greatly. For better idea I created figure 3.3 as a graphical
representation of FFT computation from table 3.2. Matrices have ten column lengths (M in
range from 1000 to 1009) and four row lengths (N in range from 1350 to 1353). I will use an
example of reading the measured values from the figure. Duration of the FFT for the matrix
1000×1350 is 208×106 CPU cycles.
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First I will locate fftw-friendly numbers in table 3.2 and write them into a list:

• N: 1350 = 21 × 33 × 52

• M: 1000 = 23 × 53

• M: 1008 = 24 × 32 × 71

As we predicted, the fastest times in figure 3.3 are with combinations of fftw-friendly numbers.
Particularly matrix 1350×1008 with 195×106 CPU cycles and 1350×1000 with 208×106

CPU cycles. Figure 3.3 revealed one additional characteristic of FFTW that we didn’t know.
Why has dimension 1352 very good computation times even when it’s not a fftw-friendly
number by equation (11)?

Equation (11) states that when an exponent e+f is either 0 or 1 a computation will be much
faster. I have found this statement not entirely true. e dimension 1352 that can be
decompositioned as 23×132 which doesn’t fulfil the equation’s conditions e+f 0 or 1, indi-
cating a non-fftw-friendly number. But the results claim the opposite. In all M dimensions
combinations the number 1352 is nearly on par with the legitimate fftw-friendly number
1350. Even more so when the M combination includes both fftw-friendly numbers. Because
of this discovery I included all numbers with any e or f exponent value into a fftw-friendly
category. With this change I will update the fftw-friendly list:

• N: 1350 = 21 × 33 × 52

• N: 1352 = 23 × 132

• M: 1000 = 23 × 53

• M: 1001 = 71 × 111 × 131

• M: 1008 = 24 × 32 × 71

With those information and results of figure 3.3 we can conclude following outcome. Com-
bination of:

• Two non-fftw-friendly values (e.g. 1353 and 1003) results in longest computation times.
• One non-fftw-friendly value and one fftw-friendly value (e.g. 1351 and 1000) results in

medium-term computation times.
• Two fftw-friendly values (e.g. 1350 and 1008) results in shortest computation times.

Results of this test – fftw-friendly values fastest and non-fftw-friendly values slowest – corre-
sponds with our expectations. Additionally we extended the fftw-friendly formula and gained
additional fftw-friendly numbers. In following chapters we will be using only arrays and
matrices of fftw-friendly lengths.
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3.3 FFT computation speed diversity in one matrix area

I will begin new test set containing 21 test cases that will tell whether FFT computation speed
of matrices with equivalent areas (e.g. 1×1024 (an area 1024) and 32×32 (same area, 1024))
are going to be similar or will differ greatly. Additionally if a speed differs, I will need to find
reason(s). Results of those tests are necessary to find out whether it’s advantageous to compute
the FFT of squarish or either horizontal or vertical rectangular areas and in what ratio. e
results measured up to now indicate that areas created by multiplying fftw-friendly values are
going to be approximately similar in computation speeds.

e test set contains matrices ranging from areas 5 308 416 to 10 617 750. I used such interval
because of sufficient amount of used memory (where 16 bytes stands for required memory
space for one complex number)

• 5 308 416×16 bytes = 81 MB
• 10 617 750×16 bytes =̇ 162 MB

and simultaneously low enough that computations won’t take unacceptable amount of time
on the testing machines. Additionally all chosen areas are fftw-friendly. e reason for this
is found out in section 3.2. I will list some of the test areas:

• 5 308 416 = 216 × 34

• 6 054 048 = 25 × 33 × 72 × 111 × 131

• 7 584 759 = 35 × 74 × 131

• 8 000 000 = 29 × 56

• 9 528 750 = 21 × 32 × 54 × 71 × 112

…

I will describe just two areas highlighted in bold print. e other tests had similar results.
In each test case I chose a test AREA from the list and created a matrix A with dimensions
M × N, where M represents column lengths and N row lengths. e final matrix is created with
conditions

• (N := 1..AREA) && (AREA % N == 0)
• M := AREA / N

Row length N is increased by one until a modulo with AREA returns zero. For example with
AREA 35, row length N will sequentially gain values 1, 5, 7 and 35. For every N the appropriate
M will be 35, 7, 5 and 1. Unsurprisingly, the values are in reversed order. A multiplication
M×N is therefore always equal to AREA. Table 3.3 shows every combination of column length
M and row length N and respectively created matrices with area 1024.
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M 1024 512 256 128 64 32 16 8 4 2 1
N 1 2 4 8 16 32 64 128 256 512 1024

Table 3.3: An interpretation of matrices with various side lengths M, N. A multiplica-
tion of column length M and row length N always returns 1024

e test with area 5 308 416 in figure 3.4 was run four times to confirm results from previous
runs. e horizontal axis represents row length N of the matrix. To gain column length M
it’s necessary to divide AREA with row length N. e vertical axis represents duration of FFT
computations for given matrix dimension.
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Figure 3.4: FFT speed test of a rectangular area 5 308 416

I will read an example of measured values. e matrix with row length N 2592 (the middle
spike) has its other length

column length M :=
AREA

N
=

5 308 416
2592

= 2048 (12)

FFT computation duration of the matrix 2048×2592 was measured three in a four times
as ≈ 1920×106 CPU cycles and single time as 1320×106 CPU cycles. e reason for this
difference is not obvious. In my opinion it’s caused by the planner that had chosen different
set of codelets resulting in better computation time. However, we will accept the worse time
because it’s more probable that the planner will choose “slower” codelets set three in a four
times.

e measured times were expected to be in central symmetry but as we can see in figure 3.4,
they aren’t. Reason for this is found in the FFTW documentation [fft12d]. It says that FFTW
doesn’t work similarly with matrix’s rows and columns. Its algorithms expect array to be stored
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as a single contiguous block in row-major order. e matrix A should have very long rows
(large row length N) and have only a few of them (small column length M). at is a reason
why row lengths N from 1 to 2592 have such slow computation times. Other half of the
graph from row length N 3000 has much lower and more regular computation times. e
lowest measured CPU cycles in figure 3.4 are located roughly between row lengths N 3000
and 100 000.

Figure 3.4 shows one additional anomaly. At the row length N ∼ 300 000 the computation
duration is deviating from other measured times by a great margin. e area was made from
a multiplication of column length M 18 and row length N 294 912, so a row-major order
is kept. An explanation for this phenomenon is that the planner that uses flag ESTIMATE has
chosen a bad set of codelets to compute the FFT of the given matrix. e anomaly occurred
through the tests of the test set randomly with non-specific matrix sizes. Because of those
random fluctuations I created a test in chapter 3.4 that is looking into various planner modes
and their impact on the FFT computation results.

To confirm the need of a row-major order and the lowest measured computation times I ran
next test with area 7 584 759. e test was reran three times. e results of the test are
displayed in figure 3.5 and were similar to test results 3.4. e horizontal axis represents row
length N of the matrix. e vertical axis represents duration of FFT computations for given
matrix dimension. I will read an example of measured values. FFT computation duration of
the matrix with row length N 3087 and computed column length M 2457 was measured three
times as 769×106 CPU cycles.
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Figure 3.5: FFT speed test of a rectangular area 7 584 759

e best measured times (lowest FFT computation durations) are again located between 3000
and 100 000 row length N. In every other FFT test of the test set such location with very low
computation durations also exists. I call those locations of low durations bathtubs because of
a graphical resemblance to cross-section of a bathtub. Now when I know such locations exist
I will try to define a principle that will choose such a row length N that will in most cases find
bathtub.
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I took results of all tests from the test set and calculated intervals of bathtubs’ minima and
maxima that were measured visually for each test from the test set. An example of bathtub’s
minimum in figure 3.5 is the row length N 3159. e maximum in the same figure is the row
length N 83 349. Put into one record, bathtub of figure 3.5 is in the row length N interval
[3159; 83 349].

Now I have row lengths N of bathtubs’ minima and maxima for all tests in the test set. It would
be useful to find common denominators of minima and maxima so we can determine where
usually minima starts and maxima ends. is is not feasible just by comparing measured
lengths because every matrix has different beginning and ending length of bathtub. What
is comparable are ratios of minima lengths and ratios of maxima lengths. e ratio represents
how much should be row length N longer than column length M before the minimum / maxi-
mum of the figure’s bathtub will be reached.

Ratio :=
row length N

column length M
(13)

As an example I will compute bathtub minimum ratio for the FFT computation time with
matrix area 7 584 759. We already know that bathtub’s minimum (figure 3.5) is in the row
length N 3159. Using substitution in equation (12) we gain

column length M :=
AREA

N
=

7 584 759
3159

= 2401

With both row length N and column length M known, we can substitute variables in equation
(13) as

Ratio7 584 759,min :=
row length N

column length M
=

3159
2401

=̇ 1.32

e gained ratio 1.32 means that to compute the FFT at the beginning of bathtub I need to
have a row length N 1.32× longer than column length M. Table 3.4 shows first ten minima of
the tests’ bathtubs.
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Matrix area column length M row length N Minimum
ratio

5 308 416 1728 3072 1.78
5 948 800 880 6760 7.68
5 976 432 693 8624 12.44
6 054 048 792 7644 9.65
6 141 096 729 8424 11.56

6 328 125 1125 5625 5
6 879 600 588 11 700 19.90
7 474 194 702 10 647 15.17
7 584 759 2401 3159 1.32
7 844 067 693 11 319 16.33

Table 3.4: First ten minima of the tests’ bathtubs

To better represent the computed values I created figure 3.6 that shows minima ratios of
the whole test set bathtubs. e horizontal axis represents each matrix’s area. e vertical axis
shows N:M ratio. An example of reading the figure is that for the matrix with area 7 584 759
the ratio is 1.32.
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Figure 3.6: N/M sides ratios of bathtubs’ minima

Last column in figure 3.6 shows average value of measured ratios. Because of high variance of
computed ratios I excluded 30 % of border values from the average ratio; 15 % from top and
15 % from bottom. Precisely I used method TRIMMEAN that takes two input arguments. First
is list of values to be processed, second is percentage of border values to be excluded from the
computations. From our 21 results of the test set I have decided that three values from top
and three from bottom will be excluded. Put into equation I find out needed

excluded percentage :=
3 (top) + 3 (bottom)

number of tests
=

6
21

=̇ 0.3 = 30 % (14)

27



With 30 % of ratios excluded, final minima average ratio is 18.39. As we already described
the gained ratio 18.39 means that to compute the FFT at the beginning of bathtub I need to
have a row length N approximately 19× longer than column length M.

I will apply the same procedure I used to find out average minima ratio to compute average
maxima ratio. Table 3.5 shows first ten maxima of the tests’ bathtubs.

Matrix area column
length M

row length N Maximum ratio

5 308 416 64 82 944 1296
5 948 800 1 5 948 800 5 948 800
5 976 432 36 166 012 4611.44
6 054 048 6 1 009 008 168 168
6 141 096 1 6 141 096 6 141 096

6 328 125 45 140 625 3125
6 879 600 45 152 880 3397.33
7 474 194 26 287 469 11 056.50
7 584 759 91 83 349 915.92
7 844 067 7 1 120 581 160 083

Table 3.5: First ten maxima of the tests’ bathtubs

As with minima I created figure 3.7 that shows maxima ratios of the whole test set bathtubs.
e horizontal axis represents each matrix’s area. e vertical axis N:M ratio. An example of
reading the figure is that for the matrix with area 7 584 759 the ratio is 915.92.
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Figure 3.7: N/M sides ratios of bathtubs’ maxima

Last column in figure 3.7 shows average value of measured ratios. As with minima I excluded
three border values from top and three from bottom from average ration. With 30 % of ratios
excluded (equation (14)) final maxima average ratio is 33 993.3. e gained ratio 33 993.3
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means that to compute the FFT at the end of bathtub I need to have a row length N approxi-
mately 34 000× longer than column length M.

Unfortunately the variance of the results is large and is not stable across the tests. With that
said, I will conclude following outcome based mainly on results of average ratios:

• Row length N should be at least 19× larger than column length M
• and row length N should be at most 34 000× longer than column length M.

3.4 Planner flags significance

From previous test results I found out that the FFT computation times for some dimensions
are much longer than they could be. After some reading I reached the opinion that this
behaviour is related to the planner. e planner (described along with FFTW flags in section
2.4) takes the FFTW flag as a parameter and generates a plan. Up to now we used flag
ESTIMATE which generates a plan in the fastest time.

I will create a new test set that will deal with settings of other various planner flags. By
using other flags we can achieve better FFT computation speeds and more predictable results
without computation durations fluctuations. If my estimation is correct, setting any other
planning flag but ESTIMATE (heuristic, no measuring) should create a “smoother” graphical
representation with overall faster FFT computation times.

3.4.1 Flags for area 216

As a first test I will compute the 2-D FFT of an area 216 with FFTW planning flags ESTIMATE,
MEASURE, PATIENT and EXHAUSTIVE. Such small area was chosen because of long computa-
tion time needed to create a plan for non-ESTIMATE flags as stated in chapter 2.4. Based on
computed results from section 3.3 I expect that FFT durations measured with flag ESTIMATE
will have bathtub. As for other flags we will see how much will be the computation results
faster than for ESTIMATE flag.

Graphical representation of measured durations are shown in figure 3.8. e horizontal axis
represents row length N of the matrices. e vertical axis represents duration of the FFT
computation for given matrix dimension. I will read an example of measured values for row
length N 1024 in descending order. FFT computation with flag ESTIMATE was finished in
680×103 CPU cycles, MEASURE in 560×103 CPU cycles, PATIENT and EXHAUSTIVE were
finished equally in 510×103 CPU cycles.
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Figure 3.8: FFT computation speed test of matrices with area 216

Non ESTIMATE durations in figure 3.8 are lower and my prediction was nearly correct. I say
nearly, because at the beginning and the end of the figure we can see that the planner with
any flag except for EXHAUSTIVE is not able to optimize FFT time completely. What’s more,
at row length N 215 (32.8×103) we can see PATIENT and EXHAUSTIVE FFT computation
times worse than with flag MEASURE. Other important fact is that measured bathtub with the
ESTIMATE flag is not present with other flags. We can state that the planner with ESTIMATE
flag creates plans with unfavourable performance.

e obvious question is why should we use the planner with the flag ESTIMATE at all and what
are other differences between the flags except for various computation results speeds. Figure
3.9 shows times the planner needs to create a plan with a flag. Measured area 216 is the same
as in figure 3.8. e horizontal axis represents row length N of the matrix. e vertical axis rep-
resents duration of the FFT computation for given matrix dimension in real time milliseconds
instead of CPU cycles. Reason for the change of units is described at the beginning of chapter
3. I will read an example of the figure’s values. e planner with ESTIMATE flag needed <1
ms for row length N 1024 to finish the plan. e planner computation with MEASURE flag
took 163 ms, PATIENT flag took 10 291 ms and EXHAUSTIVE flag 151 533 ms.
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Figure 3.9: Computation speed test of the planner of matrices with area 216

In figure 3.9 measured durations of a plan creation with flag ESTIMATE in range [27 (128);
215 (32.8×103)] are not exact, because the used counter has a standard millisecond devia-
tion. Measured time in row length N 216 (65.5×103, rightmost value) is interesting. e
reason the planner have similar very low times for all flags is because of measured dimensions
1 M×216 (65.5×103) N. FFTW recognized this as an 1-D array and the planner used this
information to speed-up the calculation.

To compare the result times of the FFT and the planner I will need to convert measured FFT
times into milliseconds with conversion procedure described in table 3.1. e highest CPU
cycle count from the whole test is ESTIMATE flag 16 384 M×4 N with 1 480 941 measured
CPU cycles. If 2 000 000 000 CPU cycles ≈ 1000 milliseconds, 1 480 941 cycles is under
one millisecond. According to this conversion I created table 3.6 with converted measured
FFT computations and planning durations.

FFT time [ms] Planner time [ms]

ESTIMATE ≈1 <1
MEASURE ≈1 163
PATIENT ≈1 10 291

EXHAUSTIVE ≈1 151 533

Table 3.6: Combination of the FFT and the planner times from results of figures 3.8
and 3.9 for row length N 1024

From the results of table 3.6 it’s clear that even though ESTIMATE flag has the worst perfor-
mance of all flags, it produced the FFT result in the shortest total time. If we would look
at it from the other side we would see that to produce FFT computation result that takes
one millisecond, the planner with PATIENT flag needed ten seconds and with EXHAUSTIVE
flag even more than two minutes. In such a small area as 216 (65.5×103) (216×16 bytes
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for complex number = 1 MB) the long planning times indicate that those two flags are
unusable for our needs. In order not to hastily exclude those flags I searched the FFTW
documentation [fft12c] which states that PATIENT and EXHAUSTIVE flags produce “more
optimal” plan especially for larger matrices. erefore I will run next test in section 3.4.2 for
large matrices.

3.4.2 Flags for areas 210 – 228

By following results of section 3.4.1 I will measure the FFT computation duration and times
of planning of areas ranging from 210 to 228 with FFTW planning flags ESTIMATE, MEASURE,
PATIENT and EXHAUSTIVE. My objective is to see whether computations with non ESTIMATE
flags will be noticeably faster for larger areas. 2N series was chosen because there is a low
number of FFT computations required (area 228 will be computed in only 29 computation
sequences) and results will be equidistantly divided in measured area. In this test I expect that
FFT computations measured with flags PATIENT and EXHAUSTIVE will have much lower
durations especially for very large areas. I obtained measured values for the tests as follows.

I have ran speed tests on a rectangular areas ranging from 210 to 228 similar to tests in section
3.3 for all four planner flags. e area 228 was the largest I could test. With 8 GB of a physical
memory and 16 bytes needed for a representation of a complex number I made use of 4 GB
of the memory. Other memory was either unused or reserved by the OS.

Finally after running all test I ended up with 60 test files with various areas and used planning
flags (60 total files with measured area 210 to 228, 19 ESTIMATE, 19 MEASURE, 14 PATIENT,
8 EXHAUSTIVE). To meaningfully compare the results I took one measured value from every
test result chosen with formula

RoundUpToNearestNValue(
√

MeasuredArea × MinRowLengthMultiplier) (15)

for comparison with the other chosen values. I chose the MinRowLengthMultiplier as 10
instead 19 (result of test 3.3) to simulate worse choice of the planner with ESTIMATE flag.
With this setup the measured values of the ESTIMATE flag should lie near a beginning of
bathtub so results shouldn’t be slowed down much. Other flags don’t rely on bathtubs but have
generally better results when respecting row-major order so multiplier 10 should be sufficient.

I will show an example of choosing measured value for area 215 (32.8×103) flag MEASURE. At
first I measured FFT and planning speeds and saved them into table 3.7.
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Column
length M

Row length N Planner time
[ms]

FFT duration
[CPU cycles ×103]

32768 1 1423 334
16384 2 1090 409
8192 4 604 383
4096 8 222 367

2048 16 168 370
1024 32 115 354
512 64 70 366
256 128 58 344

128 256 87 280
64 512 94 356
32 1024 104 286
16 2048 155 260

8 4096 287 252
4 8192 503 249
2 16384 1287 363
1 32768 3 331

Table 3.7: Combination of the FFT and the planning times for area 215 (32.8×103)
flag MEASURE

After that I needed to find out the measured value. I filled the formula

ChosenValue 215,MEASURE := ⌈
√

MeasuredArea × 10⌉NearestN

= ⌈
√

215 × 10⌉NearestN

= ⌈1810⌉NearestN

= 2048

and found out my searched row length N is 2048 and extracted computation times, i.e. 155 ms
planning time and 260×103 CPU cycles. I applied this procedure to all measured results
and gained final test data. Graphical representation of the data is shown in figure 3.10. e
horizontal axis represents areas of the matrices in 2N sequence where N∈[10; 28]. e vertical
axis represents duration of the FFT computation for given matrix dimension and all flags.
I will read an example of measured values for area N 210 (1024, leftmost value). Computation
of the FFT for flag ESTIMATE was finished in 49×103 CPU cycles, for MEASURE flag in
60×103 CPU cycles, for PATIENT flag in 11×103 CPU cycles and plan for flag EXHAUSTIVE
was finished in 10×103 CPU cycles.

33



10

100

1 000

10 000

100 000

1 000 000

10 000 000

1 000 10 000 100 000 1 000 000 10 000 000 100 000 000 1 000 000 000D
ur

at
io

n 
of

 c
om

pu
ta

tio
n 

[C
PU

 c
yc

le
s *

 1
E+

03
]

Matrix areas in values 2^i   i = 10..28 [-]

ESTIMATE MEASURE PATIENT EXHAUSTIVE

Figure 3.10: Measured FFT computation speeds of various FFTW flags of matrices
with areas 210 (1024) to 228 (268×106)

At the beginning of figure 3.10 we can see a bit of a performance distortion. We have already
dealt with such small number of CPU cycles in the first test of chapter 3.4. Next useful
information is that FFT durations of all flags excluding ESTIMATE have similar running times
through all tests. To show the times in linear way I changed representation of figure 3.10 partly
to figures 3.11 and 3.12.

Figure 3.11 shows half of the same data as in figure 3.10 but in durations of computations up
to 10×106 CPU cycles (≈ 5 ms). e horizontal axis represents areas of the matrices in 2N

sequence where N∈[10; 19]. e vertical axis represents duration of the FFT computation
for given matrix dimension and all flags. I will read an example of measured values for area
N 218 (262×103). FFT computation with planner flag ESTIMATE was finished in 3.4×106

CPU cycles, MEASURE and PATIENT in equally in 2.25×106 CPU cycles, and computation
with flag EXHAUSTIVE wasn’t for this area measured.
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Figure 3.11: FFT computation speed test of various FFTW flags of matrices with
areas ranging from 210 (1024) to 219 (524×103)
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e computation with EXHAUSTIVE flag ends at the area of 217 (131×103) because time
needed for planning with such area exceeded six minutes (see figure 3.13). With such high
required planning time and low CPU cycles the planner with EXHAUSTIVE flag was unfit for
our needs and was excluded from next tests.

Figure 3.12 shows the other half of the same data in a high computations durations area
beginning at 10×106 CPU cycles. e horizontal axis represents areas of the matrices in 2N

sequence where N∈[20; 28]. e vertical axis represents duration of the FFT computation
for given matrix dimension and remaining flags. I will read an example of FFT measured
values for area N 224 (16.8×106). FFT computation with planner flag ESTIMATE was finished
in 1110×106 CPU cycles, MEASURE in 400×106 CPU cycles, and computation with flag
PATIENT wasn’t for this area measured. e planner with flag PATIENT and planning time
over seven minutes suffered the same fate as the planner with EXHAUSTIVE flag and was
excluded from future tests.
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Figure 3.12: FFT computation speed test of various FFTW flags of matrices with
areas 220 (1 048 576) to 228 (268 435 456)

e FFT durations of the planner with ESTIMATE and MEASURE flags began to differer at area
222 (4.2×106) continuing up to 228 (268×106). Measured values are shown in table 3.8. e
rightmost column holds computed time differences between measured FFT durations of flags
ESTIMATE and MEASURE in milliseconds. To perform such conversion I used equation (10).
e ‘−’ sign at areas 226 (67×106) and 228 (268×106) symbolize that the ESTIMATE FFT
computation was faster than MEASURE computation.

We can see the stable grow of areas ranging from 222 (4.2×106) up to 226 (67×106) where
the first time change occurs. When looking at area 226 (67×106) in figure 3.12 we would be
expecting the measured ESTIMATE FFT duration to be located somewhere around 3300×106

CPU cycles. e fact that it is not there means that the planner with ESTIMATE flag was
“lucky” and chose exceptionally good set of codelets.
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Second and the largest time change occurs with area 227 (134×106). e FFT computation
difference is nearly two seconds. is time was “lucky” the planner with MEASURE flag and
chose codelets exceptionally well. On the other hand FFT duration with ESTIMATE flag
turned out as expected.

e last, third, time change happens with area 228 (268×106) and the results are similar to
the first time change.

Area M×N ESTIMATE FFT
duration

[CPU cycles ×106]

MEASURE FFT
duration

[CPU cycles ×106]

ESTIMATE −
MEASURE duration

difference [ms]

222 (4.2×106) 107 76 15
223 (8.4×106) 473 195 139
224 (16.8×106) 1123 415 354
225 (33.5×106) 2487 891 798

226 (67×106) 1234 2221 −493
227 (134×106) 4271 426 1923
228 (268×106) 1880 3217 −668

Table 3.8: Combination of the FFT durations for areas 222 – 228 flags ESTIMATE
and MEASURE

How much time was needed for computation of plans for all four flags is shown in figure 3.13.
e horizontal axis represents areas of the matrices in 2N sequence where N∈[10; 28]. e
vertical axis represents duration of planning for given matrix dimension. I will read an ex-
ample of measured values for area N 216 (65.5×103), the last area with all four FFTW flags.
Creation of a plan with planner flag ESTIMATE was finished in less than one millisecond,
MEASURE planning took 320 ms, PATIENT planning took 20 600 ms and planning with flag
EXHAUSTIVE was finished in 320 000 ms. We can see that all times grow in a similar shape
and direction.
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Figure 3.13: Planning speed test of matrices’ areas 210 to 228 with various FFTW
flags

To conclude the test set results I created table 3.9. Most interesting values were in higher areas
of the test so only the measured planning durations from flags ESTIMATE and MEASURE will
go in the table.

Area of
computation

Planner
ESTIMATE [ms]

Planner
MEASURE [ms]

225 (33.5×106) 6 11 179
226 (67×106) 9 19 085
227 (134×106) 11 29 064
228 (268×106) 18 41 191

Table 3.9: Combination of the most interesting planning durations for areas 225–228

flags ESTIMATE and MEASURE

To compare speeds of FFT computations and planning durations I converted the CPU cycles
to milliseconds into table 3.10. e planner with MEASURE flag should generally have better
FFT computation times (confirmed in figure 3.10) but has much slower planning (confirmed
in figure 3.13). From the final computation times in the converted table is clear that using
the flag ESTIMATE yields the FFT result multiple times faster than using the MEASURE flag.
is conclusion is confirmed up to computations using 4 GB of a computer memory. My
hypothesis is that when using more memory the planner’s times will grow accordingly with
figure 3.13.
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Area of computation Total computation
time ESTIMATE [ms]

Total computation
time MEASURE [ms]

225 1243 + 6 = 1249 446 + 11 179 = 11 625
226 617 + 9 = 626 1110 + 19 085 = 20 195
227 2136 + 11 = 2147 213 + 29 064 = 29 277
228 940 + 18 = 958 1608 + 41 191 = 42 799

Table 3.10: An excerpt from total computed results of the test section 3.4

Conclusion of the chapter 3.4 is that planner flags PATIENT and EXHAUSTIVE are not usable
for our needs and don’t have noticeably faster results than MEASURE flag as seen in figure 3.10.

Additionally in figure 3.12 we could see that for larger areas the difference between planner
flags is significant. e flag MEASURE yields faster plans than flag ESTIMATE but its planning
duration growth is too steep especially with larger areas. What we couldn’t control is the choice
of codelets resulting in unpredictability of the FFT computation duration. Unfortunately we
couldn’t test even larger areas because of a lack of usable free memory. And so with the available
result data I made the decision that following tests will use the planner flag ESTIMATE.

3.5 2n matrices

is test is based on deduction of Mr. Nedved who wrote that noticeable FFT computation
speed-up can be achieved with input matrix dimensions 2M×2N where M, N ∈ N. e FFTW
documentation [fft12a] contains the same information in exact wording, “transforms whose
sizes are powers of two are especially fast”. If the deduction is correct I’m going to prefer
powers of two to choose matrix sizes for FFT computations.

To prove the speed-up is present, I created the test where the goal is to compare FFT com-
putation speeds of matrices with total areas of three neighbour fftw-friendly numbers. For
middle number I chose area 224 = 16 777 216 because this area is large enough for longer
durations of FFT computations. I expect that FFT durations for matrix with area 224 will be
faster than for neighbouring matrices. Now I needed to choose the neighbour fftw-friendly
numbers, one that is lesser than 16 777 216 and other larger than 16 777 216. I found out
that nearest fftw-friendly numbers together with 224 are

• 16 773 120 = 212 × 32 × 51 × 71 × 131; labeled 2^24−1,
• 16 777 216 = 224; labeled 2^24 and
• 16 793 868 = 22 × 31 × 72 × 134; labeled 2^24+1.

After running the test I found out interesting facts about measured data. Even when not
intentional, every number has different properties.
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• I have computed 312 values for various combinations of column lengths M and row
lengths N for number 2^24−1. From those 312 values I equidistantly chose only 26
that will be put into a graphical representation. ose 26 measured values have either
row lengths N 2N or column lengths M 2M. e other value is always fftw-friendly but
neither 2N nor 2M. In other words every matrix has one dimension 2N or 2M and one non-
2M, non-2N dimension. An example can be measured matrix with dimensions M×N
8190×211.

• 2^24 has all 25 measured row lengths N as 2N and column lengths M as 2M. For example
a measured matrix has dimensions M×N 217×27.

• For the last number 2^24+1 I have computed 90 values from that I chose 84 that will be
put into a graphical representation and don’t have any dimension 2M or 2N. Put differently
every matrix has two non-2M non-2N lengths in any dimension. As an example we can
use a measured matrix with dimensions M×N 24 843×676.

Figure 3.14 shows results of the FFT computation duration for all three tested areas. e
horizontal axis represents row length N of the matrices. e vertical axis represents duration of
the FFT computation for given matrix dimension. I will read an example of measured values
for row length N approximately 1000 from fastest to slowest. 2^24+1 has FFT duration of
1070×106 CPU cycles, 2^24−1 1400×106 CPU cycles and 2^24 1715×106 CPU cycles.
at means the fastest time was computed with 2^24+1, 2^24−1 comes second and the
slowest was 2^24. is is in contradiction to the assumption of Mr. Nedved.

Additionally I computed average FFT computation duration for the all measured values of the
three areas. e fastest is 2^24−1 with average 1224×106 CPU cycles. Second is 2^24+1
with 1277×106 CPU cycles. e difference between those measured values of 2^24−1 and
2^24+1 is only 1277−1224 = 53×106 CPU cycles. e last is 2^24 with 1409×106 CPU
cycles. Difference between 2^24+1 and 2^24 is 1409−1277 = 132×106 CPU cycles which
is =̇ 2.5× larger than the result of first difference 53×106 CPU cycles.
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Figure 3.14: FFT computation time differences between fftw-friendly areas of
matrices 2^24−1, 2^24, 2^24+1

From figure 3.14 we can see that even though we would be expecting the 2^24 to be noticeably
faster or at least equally fast with other numbers, the opposite is true. e results were a bit
surprising. Area 2^24+1 without any 2N|M fftw-friendly values had the fastest FFT results
in row length N interval [26; 100 000] where 2^24−1 takes over. Only interval where 2^24
is better than others is in row length N [1; 16]. At last we can state that our expectation were
not met and FFT durations for matrix with dimensions 224 is slower than for neighbouring
matrices.

3.6 Speed-up of bathtub

is test is based on discovery of Mr. Nedved (see chapter 1) who wrote that in all cases where
at least one side of division part PM×PN is considerably asymmetrical, FFT computation times
are much longer than with regularly square or nearly square parts. I will transform such
statement into our terms. We have a rectangular area with dimensions: column length M and
row length N. If the column length M is approximately same as row length N the area is squarish
and its computation times should be much shorter than in cases where column lengths M are
much different from row length N.

With results of test set 3.3 and one additional test I will try to challenge such statement. I will
measure FFT computation speed of a matrix with area 40 435 200 ≈ 6359×6359. I have
chosen this area because

• it’s fftw-friendly and its decomposition 29×35×52×131 contains four prime numbers
and their various exponents,
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• takes up large enough memory space 40 435 200×16 =̇ 617 MB to compute the in-place
FFT and

• is at least four times larger than tests in chapter 3.3 so we will cover more areas.

I expected the results to be similar to test set results from chapter 3.3. Row length N with its
range [1; 40 435 200] will have in interval [1; 6359] slow measured FFT times and in interval
[6359; 40 435 200] we will find bathtub (the fastest measured FFT times). Other result will
be that squared or nearly squared area won’t have the fastest FFT computation results, because
we already know that the fastest results are located in bathtub, which is in our case minimally
19 × 6359 = 120 821 row length N.

Figure 3.15 shows results of FFT computation speed-up. e horizontal axis represents row
length N of the matrix. e vertical axis represents speed-up multiplier of FFT computation for
given matrix dimensions. e multiplier was created this way. FFT computation of matrix
6359×6359 (square) took 1955×106 CPU cycles. is result is not measured but had to be
interpolated from results of matrices 6400×6318 and 6318×6400 because number 6359 and
its adjacent numerical neighbours are not fftw-friendly. I have assigned base multiplier one to
this computed FFT duration. Other measured FFT durations have their multiplier computed
in proportion to the base multiplier. In other words if other measured FFT durations have
lower (better) result times, the multiplier is lower than one and vice versa. In table 3.11 we
can see some of the measured FFT durations and their respective multipliers.

computed area
dimensions (M×N)

FFT duration
[×106 CPU cycles]

Multiplier

6912×5850 1830 0.936
6656×6075 2132 1.090
6480×6240 2628 1.344

6400×6318 2171 1.110
6359×6359 1955 1
6318×6400 1739 0.890

6240×6480 1707 0.873
6075×6656 1929 0.986
5850×6912 3311 1.694

Table 3.11: Measured FFT durations for given areas and their respective multipliers

e combination of measured results and computed multipliers are shown in figure 3.15.
I will read an example of measured values. e matrix with row length N 6480 and computed
column length M 6240 has FFT duration multiplier of 1.34. It means that duration of
FFT computation was 1.34× longer than duration of FFT computation for square matrix
6359×6359 with multiplier one.
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e results of this test roughly turned out as expected. Figure 3.15 has standard shape with
measured values in its left half slower than in the right half with existing bathtub. Additionally
our results doesn’t confirm Mr. Nedved’s statement of best computation times with square
matrices. Square or nearly square matrices have speed-up multiplier 0.9, whereas speed-up
multiplier in bathtub is around 0.7.

Figure 3.15 shows one additional characteristic that hasn’t occurred in any other test result.
Some FFT durations with row length N in interval [1; 1152] have been computed outstand-
ingly fast. e fastest calculation was performed with row length N 27 gaining multiplier
0.001 37. Which means that duration of FFT computation for row length N 27 was 730×
faster than duration of FFT computation for square matrix with dimensions 6359×6359.
Same as in section 3.3, the reason for this difference in speed is not obvious. In my opinion it’s
caused by the planner that had chosen different set of codelets resulting in better computation
time. We cannot use this finding because its occurrence can not be guaranteed.
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Figure 3.15: FFT computation duration multiplier of the rectangular area
40 435 200. e figure is represented as various multipliers with a basis of the square
area of 6359×6359 that has a multiplier of value one
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3.7 Parallel calculation

In chapter 2 we discussed different ways of a parallel processing of input data and stated, that
the winning library should support at least one of the ways. In this section I will describe and
test options of a parallel processing available in FFTW. We emphasise the importance of an
in parallel processing because nowadays it’s common to have a computer hardware capable of
processing at least eight threads concurrently. It would be wise of us to use such opportunity
to considerably fasten FFT computations.

As we have seen in chapter 1, the process of a light propagation is heavily based on the use of
forward and backward FFTs. If we would run FFTs fully in parallel, we would speed-up the
whole light propagation process. Further parallelism wouldn’t have large impact on a speed-up
of a light propagation process.

Before searching for manual ways of processing threads, such as library pthreads or Intel
TBB, I looked into FFTW documentation and found a brief manual [fft12f] with a description
about a native support of an in parallel FFT processing in FFTW. e procedure of enabling
a parallel processing in FFTW consists of initializing the parallel FFTW pthreads engine and
after that setting a required number of threads with function fftw_plan_with_nthreads.
Apart from the initialization of threads at the beginning and freeing taken resources at the end
of a process, all other FFTW operations function the same way as when not using any thread
functions.

When reading more information I found a note that says, “unfortunately, the arrays being
transformed by different processors are interleaved in memory, resulting in more memory
contention than is desirable. We are investigating ways to alleviate this problem” [fft12e]. We
won’t look into this issue any longer because our implementation of threads would also have
to solve such problem. e issue will be dealt with in future versions of FFTW.

3.7.1 Native FFTW parallel processing

I’m going to run a test with a various number of FFTW threads measuring FFT computation
speeds of matrices with area 40 435 200 chosen for the same reasons already described in
section 3.6. My objective is to see how much performance I will gain when using one, two,
three or four threads. I expect that durations of FFT computations for one thread will be the
slowest (the longest needed time) and for four threads the fastest. During adding threads into
computation the general shape of computed values should stay the same, but the computation
time will decrease. All FFTW plans for computations will be created with flag ESTIMATE
so I expect bathtubs will be presented.
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Graphical representation of measured values for all numbers of threads are shown in figure
3.16. e horizontal axis represents row length N of the matrix. e vertical axis represents
durations of FFT computations for given matrix dimension and number of threads. I will
read an example of measured values. Duration of FFT computations for matrix with row
length N 5 for

• one thread is 1630×106 CPU cycles,
• for two threads is 2400×106 CPU cycles,
• for three threads is 620×106 CPU cycles and
• for four threads is 1180×106 CPU cycles.
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Figure 3.16: Duration of FFT computation of area 40 435 200 for one, two, three
and four threads

We can separate measured values from figure 3.16 into two areas. e first one is in lower left
half of the figure with measured values up to row length N 10 000. Measured durations in that
area are very diverse for all thread counts. Only discernible fact is that nearly all measured
times for three threads are located in row length N interval [1000; 5000] with very short FFT
durations.

Second area is in top right half of the figure in row length N interval [2000; 100 000 000].
Measured FFT durations for two, three a four threads are much more stable. ose threads
contain bathtubs with the centre in row length N 180 000. Results of one thread are rather
chaotic. It doesn’t seem that bathtub for one thread exists; the measured values don’t form
a solid shape and their mutual positions are too distant. What is even more interesting is that
measured FFT durations were computed in very short times that even the other test runs with
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more threads didn’t reach. For example duration of FFT with one thread for row length N
52 000 (located under bathtubs) took only 15×106 CPU cycles which is 100× faster than
for four threads. I will further investigate this behaviour in section 3.7.2.

After measuring the durations I wanted to compute a performance gain against durations of
one thread. But after seeing the unpredictability of its measured times I computed a perfor-
mance gain of three and four threads against measured FFT durations of two threads. Table
3.12 shows excerpt from the computed data.

row FFT duration [×106 CPU cycles] speed-up multiplier
length N 2 threads 3 threads 4 threads 3 threads 4 threads

1 2611 1964 1766 0.75 0.68
2 580 1134 848 1.96 1.46
3 1435 3308 1223 2.31 0.85
4 300 432 113 1.44 0.38

5 2419 619 1174 0.26 0.49
6 832 3808 1169 4.57 1.40
8 1506 2057 752 1.37 0.50
9 2674 656 1406 0.25 0.53

Table 3.12: Computed performance multipliers of three and four threads from
durations of FFT computations

I will show an example of how I got the two performance multipliers for row length N 1. e
multipliers were computed as

Multiplier3threads :=
Duration of 3 threads
Duration of 2 threads

=
1964
2611

=̇ 0.75

Multiplier4threads :=
Duration of 4 threads
Duration of 2 threads

=
1766
2611

=̇ 0.68

Result of Multiplier3threads represents the fact that the time needed to compute the matrix with
row length N 1 is 0.75× of time that would be needed for computation with two threads. For
Multiplier4threads is required time 0.68× of time that would be needed for computation with
two threads.

I have put all measured values into figure 3.17. e horizontal axis represents row length N of
the matrix. e vertical axis represents performance multiplier for given matrix dimension and
number of threads. e lower the multiplier, the shorter the duration of FFT and vice versa.
I will read an additional example of computed multipliers from figure 3.16 that is different
from the example for table 3.12. e multiplier for the matrix with row length N 10 for
three threads is 0.88× of FFT duration of two threads and for four threads is 0.42× of FFT
duration of two threads.
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Figure 3.17: Performance multipliers of three and four threads based on FFT
durations of two threads of area 40 435 200

Figure 3.17 provides us with the better representation of a performance multiplier than table
3.12. We can see that the figure can be divided into left and right part. In the left part the
measured values have a great spread. More than half the durations for three threads are located
in the lower part (multiplier <1) and more than half the durations for four threads are located
in the upper part (multiplier >1) of the figure. e right part have consistent durations for
both tests; the average multiplier is 0.77 for three threads and 0.65 for four threads.

We have seen in figures 3.16 and 3.17 that two, three and four threads contain bathtubs.
Because the bathtub of four threads has the lowest stable FFT durations, I wanted to know
how much can be the result enhanced by using a different planning flag. Figure 3.18 shows
durations of FFT computations for four threads with planning flags ESTIMATE and MEASURE.
e horizontal axis represents row length N of the matrix. e vertical axis represents durations
of FFT computations for given matrix dimension and planning flags with four threads. I will
read an example of measured values. Duration of FFT computations for matrix with row
length N 10 with flag ESTIMATE is 700×106 CPU cycles and for flag MEASURE is 4020×106

CPU cycles.
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Figure 3.18: Durations of FFT computations for four threads with planning flags
ESTIMATE and MEASURE of area 40 435 200

In chapter 3.4 we found that results of planning with flag MEASURE produced better compu-
tation speeds than with ESTIMATE flag. I would expect the results seen in figure 3.18 to have
similar outcome. at’s why measured results surprised me a bit. Differences of durations
between both flags in range [1; 1000] are very low. e range [1000; 1 000 000] contains
bathtub. As expected, in the first half of the bathtub flag MEASURE has better results. In the
second half the differences between measured times are very low again.

If we would try to find out best row length N with equation (15) and multiplier 19 (chosen
as the result of chapter 3.3) to be used in the planner, we would choose row length N 124 416
with ESTIMATE duration 1625×106 CPU cycles and MEASURE duration 1286×106 CPU
cycles, both located at the bottom of the bathtub amongst shortest FFT durations.

e outcome of this section is that FFTW supports native way of in parallel processing of
FFTs and using the native way is advantageous for us. Test results of two, three and four
threads came out as expected; the more threads used in computation, the higher speed-up of
computation is. Additionally bathtubs are present for more than one thread. We can combine
this discovery with results of chapter 3.3 to gain even faster results of FFT computations.
Unstable results of one thread will be examined in section 3.7.2.

3.7.2 Single thread behaviour

Next set of tests will follow results shown in figure 3.16 and will be focused on figuring out
strange FFT results spread of one thread. As already stated in section 3.7, some of the FFT
durations of one thread had much shorter time than four threads. If we would find some
steps that would stably find those short times, we could use only one thread instead of four
(or more) and still substantially speed-up FFT computations. I expect that the findings won’t
help me create faster FFTs but I will gain some knowledge of one thread operations.
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At first I needed to find out if measured values are stable across multiple test runs. Figure 3.19
was created the same way as figure 3.16 but with only one thread and ran four times. e
horizontal axis represents row length N of the matrix. e vertical axis represents durations of
FFT computations for given matrix dimension. I will read an example of measured values for
matrix with row length N 16. All four test runs were finished in 2600×106 CPU cycles. e
absolute majority of measured FFT durations are similar for all runs.
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Figure 3.19: Multiple measures of FFT durations of area 40 435 200 with one thread

In section 3.7 we found from figure 3.16 that one thread seemingly doesn’t have bathtub.
Next test will prove or disprove such statement. Results of the test in figure 3.20 shows
durations of FFT computations for one thread with planning flags ESTIMATE and MEASURE.
e horizontal axis represents row length N of the matrix. e vertical axis represents durations
of FFT computations for given matrix dimension and planning flags with one thread. I will
read an example of measured values. Computation of FFTs for matrix with row length N 10
with flag ESTIMATE took 1560×106 CPU cycles and for flag MEASURE took 3515×106 CPU
cycles.

Figure 3.20 clearly shows that with flag MEASURE bathtub exists. We can estimate the existence
of bathtub for flag ESTIMATE but its presence is not shown because the planner created the
plan with different set of codelets and measured values didn’t form visual bathtub.
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Figure 3.20: Durations of FFT computations of area 40 435 200 for one thread with
planning flags ESTIMATE and MEASURE

As for the last test of this section I wanted to test one thread with flag ESTIMATE with disabled
processor cache. e reason was that one thread has whole shared processor cache for itself
and it doesn’t have to share it with other threads. at could explain such low measured
FFT durations. e test was run on test environment 3 (see beginning of chapter 3). e
measured area is much smaller than in previous tests, only 106 470. is change was necessary
because the computer from environment 3 has much lower computing power than computers
in environments 1 or 2 and FFT computations in environment 3 are about two orders slower.

Results of the test in figure 3.20 show durations of FFT computations for one thread with
enabled and disable 64 kB L1, L2 processor cache. e horizontal axis represents row length N
of matrices with area 106 470. e vertical axis represents durations of FFT computations for
given matrix dimension. I will read an example of measured values. Computation of FFTs for
matrix with row length N 30 with disable cache took 1580×106 CPU cycles and for enabled
cache took 42×106 CPU cycles.

10

100

1 000

10 000

1 10 100 1 000 10 000 100 000 1 000 000

M
in

im
al

 ru
nn

in
g 

tim
e 

[C
PU

 c
yc

le
s *

 1
E+

06
]

Length of N side of a measured rectangle [-]

1 thread no cache 1 thread  L1, L2 cache 64 kb

Figure 3.21: Durations of FFT computations for one thread with/without enabled
processor cache
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e results of test shown in figure 3.21 imply three facts. First fact is that the shape and
FFT durations of measured values are completely different. It seems that FFTW natively
expects an use of a processor cache. Without the cache, measurement is loosing significance.
Second fact is that the computation without the cache was 40× slower than with cache. is
value was computed as average of divisions of measured durations. I would like to note that
equation (10) for transformation of CPU cycles to seconds doesn’t work in this test because
it is not set for test environment 3.

e results confirmed my expectations about not finding the right reason for substantial speed-
up of FFT durations. Combined with results of test set in chapter 3.3 I know that fast results
of one thread planner are dimension bound and are quite stable in course of multiple test
runs.

3.8 Primes speed

In this test I want to determine which prime number from formula (11) is computed in the
fastest time. I can compute decomposition of any number and see how many exponents each
prime number get. If one prime number would be computed faster then the others I would
favour it when choosing suitable fftw-friendly numbers for FFT computations. I expect
sequence 2a to be faster than the others because as written in section 3.5, “transforms whose
sizes are powers of two are especially fast”.

Similarly to test in section 3.4.2 I have ran speed tests on a rectangular areas ranging from 210

to 228 for every prime number contained in formula (11). e area 228 was the largest I could
test. With 8 GB of a physical memory and 16 bytes needed for a representation of a complex
number I made use of 4 GB of the memory. Other memory was either unused or reserved by
the OS.

From every test I had to choose only one measured value. I used equation (15) with the
MinRowLengthMultiplier value 19 (result of test 3.3) to simulate the best choice of the
planner with ESTIMATE flag. With this setup the measured values should have the lowest
FFT durations.

Results of the test in figure 3.22 show durations of 2-D FFT computations for each prime
number. e horizontal axis represents row length N of the matrix. e vertical axis repre-
sents durations of FFT computations for given matrix dimension. I will read an example of
measured values in row length N interval [100 000; 200 000] from left to right. Measured
FFT computation

• row length N 76 (117 649), took 1529×103 CPU cycles,
• row length N 217 (131 072), took 1459×103 CPU cycles,
• row length N 115 (161 051), took 6213×103 CPU cycles and
• row length N 311 (177 147), took 2872×103 CPU cycles.
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Figure 3.22: Durations of 2-D FFT computations for sequences 2a, 3b, 5c, 7d,
11e and 13f

From figure 3.22 we can see that sequences 2a, 3b, 5c and 7d were computed with very similar
times and our expectations weren’t fulfilled. Additionally sequences 11e and 13f are a bit
slower than the sequences with lower prime numbers. At the end of the measured values we
can see noticeable variances of FFT durations. e low times are caused by the planner that
chose more efficient set of codelets for computations. is effect is described in more details
in section 3.4.2. e conclusion of this test is that there are no computation benefits from
preferring the tested prime number sequences.
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4 Optimization planner

In this chapter I will describe my program Optimization Planner (OP). Its goal is to find
the “right” number of divisions of source and target and “right” dimensions of divided parts
resulting in the fastest FFT computation times. To obtain such results OP uses all knowledge
we learned in previous chapters about how FFTW works and what results can we expect. At
first we will describe which steps OP uses. After that some of the steps will be examined in
more detail. At the end we will run a test that will tell how much efficient OP is.

OP successively passes through several steps:

1. Loading and parsing input parameters
2. Creation of data structures
3. Reduction of memory requirements
4. Search for the optimal division
5. Compaction of results

As the first step we will load data into OP. It expects five parameters on input. Two dimensions
of a discretized source M×N, two dimensions of a discretized target P×Q and a one param-
eter for maximal available memory a light propagation process can use (already described in
chapter 1).

If all input parameters were successfully parsed, we can continue with step 2 and create
needed data structures. Simplified scheme of the data structures is shown in figure 4.1. e
propagation process that already parsed input parameters will create source and target. We can
see from the figure that source and target are composed of one to four locations. Every location
can be divided into numerous parts (see figure 4.3b) but OP registers them only as one tile
that aggregates information about divided parts. Detailed description of locations and their
tiles can be found in section 4.1.

propagation process

source

location1–4× ×1–4location

target

tile tile

Figure 4.1: High level architecture of Optimization Planner
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4.1 Four locations

In this section I will describe what a location is, why have we introduced them and how
are they used. A location represents some area of source or target. Every single location has
name, i.e. Main, Top, Right and Small and unique characteristic. From a programme
standpoint a location stores information about the number of its horizontal and vertical
divisions. Positions and shapes of all locations can be seen in figure 4.2.

M

N

Main

Top

Right

Small

Figure 4.2: Division of source/target area into four locations: Main, Top, Right
and Small

I will go through examples of all possible combinations of the locations. All following exam-
ples in this section will be presented for source. For all examples to be valid for target, replace
all occurrences of words [source; M×N] with words [target ; P×Q].

Figure 4.3a shows the standard situation for every newly created source. Source with dimen-
sions M×N is composed of one location Main. In case we will be able to propagate a light
from M×N source onto P×Q target in one go (without the need to split either one into parts),
both source and target will have only one Main location with one part (see figure 1.2).

If the required memory is too large, we will split source into parts (figure 4.3b). e exact
process of splitting will be described in section 4.2. For now, let us assume we know it. Source
has still only one Main location that has been divided into 4×3 parts but only one tile. A tile
stores information about the parts’ dimensions and number of parts. For example if we have
source with dimensions M×N 120×120 and its Main location will be divided into 12 parts
M’×N’ 30×40, information stored for Main location will be

• horizontal divisions: 3,
• vertical divisions: 2.

Information stored for tile of Main location will be

• height: 30,
• width: 40,
• number of parts: 12.
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Main

(a) Source with one undivided loca-
tion Main, one part and one tile

M M’

M’

N
N’ N’

Main
part

part

vertical division

horizontal
division

(b) Source with one location Main divided into
4×3 parts and one tile

Figure 4.3: Possible divisions of location Main

If we would try to divide source and it wouldn’t be possible to do so without a remainder,
locations Top (fig. 4.4a) or Right (fig. 4.4b) can be established for reminding area. e tile
for Top location have always the same width as tile for Main location. Initial height of the Top
tile is the remainder after the division. Alternatively the tile for Right location have always
the same height as tile for Main location. Initial width of the Right tile is the remainder after
the division. Reasons for those conditions are described in section 4.3.

M

N

Main

Top

(a) Establishment of location Top

M

N

Main
Right

(b) Establishment of location Right

Figure 4.4: Establishment of locations Top and Right

After dividing Main location we can find that remainders are present for both width and height
and we need Top and Right locations. e presence of the locations implies that at imaginary
intersection of the locations (top right corner of source) will be established new Small location.
is location has the smallest area of all locations and its initial weight and height are set by
the height of Top tile and the width of Right tile. Specificity of Small location is that it
cannot be divided and always has only one part (its tile has parameter “number of parts” set
to one). e setup with all four locations has been already shown in figure 4.2.

4.2 Reduction of memory requirements

Now we know all architectural parts of OP and can continue with a description of the op-
timization process. In this step we will divide Main locations of source and target in such
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way that a light propagation will use maximum of an allowed memory. All operations in this
section submit to Main location because its area is the largest (i.e. the most important) of
source and target. Dimensions of other locations are computed indirectly and change with
any modification of Main locations.

e figures of source and target in this chapter (such as figure 4.5a) are not exact models
with correct dimension ratios but rather are meant as an illustration of a division process.
I will describe used symbols found in the figures. In figure 4.5a we can see source and target
areas with sides labelled as Mv and Mh. e first letter denotes a location for which the label
belongs to: M for Main, T for Top, R for Right and S for Small. e second letter denotes
the dimension of the location’s tile. e letter v stands for a vertical dimension and h for
a horizontal dimension. For example label Mv denotes the length of vertical dimension of
Main tile.

I will show the process of the reduction on the example from chapter 1. I will quickly sum up
and expand the example. We will try to propagate a light from source onto target. We have
five input parameters; source Main tile M×N 50 000×50 000 samples, target Main tile P×Q
5000×5000 samples (fig. 4.5a) and our computer has 16 GB of an available memory from
which we can only use 14 GB. With the knowledge that an one complex number Cn takes up
16 bytes of memory, the propagation of source and target will need

(M + P − 1)× (N + Q − 1)× 2 × Cn = 54 999 × 54 999 × 2 × 16 ≈ 90 GB

of an available memory. 90 GB is much more than we can accommodate and it’s necessary to
perform a division. OP will come to the same conclusion and will continue with additional
division details:

1. 54 999 × 54 999 × 2 × 16 ≈ 90 GB > 14 GB; we have to divide.

2. Source Main area 50 000×50 000 > target Main area 5000×5000; we will divide source
Main area.

3. Source Main horizontal dimension (50 000)5 source Main vertical dimension (50 000×
19 = 950 000); we are going to divide source Main area horizontally.

Mh=50 000

Mv=50 000

Mh=5000

Mv=5000

Source Target

(a) Initial setup of source M×N
50 000×50 000 and target P×Q
5000×5000

Mh=50 000

Mv=43 528

Tv=6472
Th=50 000

Mh=5000

Mv=5000

Source Target

(b) First division of source into two
parts, Main and Top

Figure 4.5: Beginning steps in the division of source
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e multiplier of 19 (average minimal bathtub ratio from test 3.3) was added to ensure parts
of Main have optimal dimensions for processing by FFTW. Now we will find out how the
horizontal division is performed. A division have to be performed fast and in such way that
we use the most of our allowed memory. e question is, how large should the division be.
Figure 4.6 shows some of possible division factors:

• If we would divide source dimension in half (i.e. 50 000, 25 000, 12 500,…) the reduc-
tion of length is too steep and after the second division we have only a quarter of the
original length. So the division factor of two is too large. We have to use a smaller one.

• After a bit of thinking I chose division factor of 5
√

2 =̇ 1.15. At first I wanted to divide
the length as 50 000/( 5

√
2i), where i ∈ N. e results with the multiplied root weren’t

as good as I expected because the reduction of the length was still very steep as in the
previous case.

• After that I combined both approaches. Starting with 50 000/ 5
√

2 I have first division
result 43 528. e second division is computed as 43 528/ 5

√
2 and so on. From fig-

ure 4.6 we can see that this method produces more gradual results. is division process
is satisfactory and is used on source and target.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

5 000

10 000

15 000

20 000

25 000

30 000

35 000

40 000

45 000

50 000

Fifth root of two multiplier [-]

Si
de

 le
ng

th
 o

f d
iv

id
ed

 a
re

a 
[-

]

fifth root of two from previous number multiplied fifth root of two from 50000 one half from previous number

Figure 4.6: ree possible methods of division of length 50 000. Only points
“multiplied fifth root of two from 50000” use multiplier for their calculation. e
others are multiplier independent. All of the three results can be in one figure because
every point of the horizontal axis represents “one next division” regardless of an used
computation procedure

Now that we know the division process we can finally divide source into two parts. e result
of the division is shown in figure 4.5b. Source became divided into two locations, Main and
Top. Both locations consist of one part so the tiles have the same dimensions as the parts.
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e division process is not finished and we will continue with next steps. With the current
state of source and target shown in figure 4.5b OP chooses following steps:

1. 48 527 × 54 999 × 2 × 16 ≈ 79.5 GB > 14 GB; we have to divide.

2. Source Main area 43 528×50 000 > target Main area 5000×5000; we will divide source
Main area.

3. Source Main horizontal dimension (50 000)5 source Main vertical dimension (43 528×
19 = 827 032); we are going to divide source Main area horizontally.

Figure 4.7a shows results of the second division. e vertical dimension of Main tile has
decreased and the vertical dimension of Top tile has increased. No other changes were made.

After several additional divisions important changes occur. We can see in figure 4.7b that Top
location has been removed and Main location divided into two parts. If we wouldn’t do such
change the vertical dimension of Top tile would have equal length to vertical dimension of
Main tile. Such operation is forbidden because all non-Main areas are remaining ; that means
Top tile has to have shorter vertical dimension than Main tile.

Mh=50 000

Mv=37 893

Tv=12 107

Th=50 000
Mh=5000

Mv=5000

Source Target

(a) e second division of source into
two locations, Main and Top

Mh=50 000

Mv=25 000

Mv=25 000
Mh=5000

Mv=5000

Source Target

(b) Change of source after several
divisions. Top location has been
removed and Main divided into two
parts

Figure 4.7: Middle steps in the division of source

Continuing with the division from figure 4.7b OP chooses:

1. 25 000 × 54 999 × 2 × 16 ≈ 41 GB > 14 GB; we have to divide.

2. Source Main area 25 000×50 000 > target Main area 5000×5000; we will divide source
Main area.

3. Source Main horizontal dimension (50 000)5 source Main vertical dimension (25 000×
19 = 475 000); we are going to divide source Main area horizontally.

e result of this division can be seen in figure 4.8a. By changing Main tile’s vertical di-
mension, dimensions for all Main parts are also changed. Apart from return of Top location
nothing has changed.
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After many more divisions we gain final result as seen in figure 4.8b. Source with only Main
location has been divided into 16 parts each with height 3125 and width 50 000. Target
with only Main location hasn’t been divided, meaning only one part with height 5000 and
width 5000 exists. If we will try to run OP on such setup, we find out

1. 8124 × 54 999 × 2 × 16 ≈ 13.3 GB < 14 GB; no need to divide. Algorithm finished.

Mh=50 000

Mv=21 764

Mv=21 764 Mh=5000

Mv=5000

Source Target

Tv=6472 Th=50 000

(a) Further division of Main location
of source

Mh=50 000
Mv=3125

Mv=3125

Total 16× Mv=3125

… Mh=5000

Mv=5000

Source Target

(b) Final division of source and target
into two locations and 17 parts
(16 source and one target)

Figure 4.8: Final steps in division of source

At the beginning of this section we had our source and target each with one Main location and
one tile with dimensions as large as source and target. After many divisions we have prepared
source and target to be processed in a shared memory. In following chapter 4.3 we will see
how OP prepares source and target for fast transformations.

4.3 Search for the optimal division

With source and target divided, OP will find the best fftw-friendly dimensions for all locations’
tiles. e reason for the use of fftw-friendly numbers is lower computation times of FFTs
(result of tests 3.1 and 3.2). e algorithm varies according to the number of locations in
source and target. If each have just Main location, only one optimization sourceMain to targetMain
will be held. On the other hand if both source and target will have all four locations, OP will
have to independently optimize 4×4 pairs of tiles.

I will described Main to Main optimization (first location is meant for source, second for
target). After the division process Main tiles of source and target can have non-fftw-friendly
dimensions. is state is not desirable so the first step is to find whether all dimensions of
Main tiles

(source Mv + target Mv − 1)× (source Mh + target Mh − 1)

are fftw-friendly. If not, it will be necessary to transform them into fftw-friendly. e trans-
formation is performed by reduction of lengths of Main tiles’ dimensions. e following
example shows the algorithm that reduces the lengths by one point shaping the tiles into
bathtub optimal shape.
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I will use the previous example in figure 4.8b to show one step of how OP optimizes Main
areas:

1. 8124× 54 999 = 446 811 876; such number is not fftw-friendly, try to transform them
into fftw-friendly.

2. Source Main area 3125×50 000 > target Main area 5000×5000; reduce source dimen-
sion

3. Source Main horizontal dimension (50 000) 5 source Main vertical dimension (3125 ×
19 = 59 375); we are going to reduce source Main vertical length by one point and
continue from first step.

For the same reason as in section 4.2 the multiplier of 19 (average minimal bathtub ratio from
test 3.3) was added to ensure parts of Main have optimal dimensions for processing by FFTW.
After many iterations we finally find fftw-friendly dimensions for both source and target. One
of such results is shown in figure 4.9. We can see that our original division from figure 4.8b
was noticeably different from our current state.

Mh=14 306

Th=14 306

Rh=7082
Mv=752

Tv=368
Th=5000

Tv=694

Rv=752

65× horizontal
         division

…

Mh=5000
Mv=2153

Source Target

Figure 4.9: Possible result of transformation of source and target dimensions into
fftw-friendly ones

Additionally for source and target from figure 4.8b we needed

8124 × 54 999 × 2 × 16 ≈ 13.3 GB

of available memory. After the fftw-friendly reduction we need only

2904 × 19 305 × 2 × 16 ≈ 1.7 GB
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of available memory which is approximately eight times less than in non-optimized case. e
result of Main reduction generally varies greatly. With only small change of source or target
dimensions, the reduction results can use from 0.5 GB to 12 GB of available memory. e
culprits are fftw-friendly numbers that are more sparse in higher values than for lower values.
is implies the probability for choosing the higher fftw-friendly number is lower.

After the Main tiles are reduced to fftw-friendly dimensions, they are locked. at means
further manipulation with the dimensions of Main tiles of source and target are not permitted.
With this result the Main to Main optimization is complete. From figure 4.9 we can see that
other optimizations that awaits OP are

• Source Top to target Main,
• Source Right to target Main,
• Source Small to target Main and
• Source Main to target Top.

Up to this moment, only Main tile pairs were fftw-friendly optimized. e other locations
are not optimized and we will try to optimize them.

In first four cases one location from the pair is locked Main. We will represent first case “Source
Top to target Main” in figure 4.10 to show the next optimization procedure. In section 4.1
we said that horizontal dimension of source Top tile cannot be manually changed and is set
automatically by source Main tile’s horizontal dimension. From the figure we can see that
both Main locations are locked and that means horizontal dimension of source Top location
is also locked. Fortunately we don’t need to change those dimensions in any way because both
dimensions of Main tile are optimized and horizontal dimension of source Top tile was set just
as for Main tile, so it’s also optimized.

Main

Main
Top

source target

Figure 4.10: Optimization of locked Main tile and Top tile
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Only side that is not optimized is source Top tile vertical dimension. As opposed to the Main
to Main transformation, this transformation is performed by addition of lengths to Top tile’s
unlocked dimension. e process of addition can be described in following steps:

1. OP checks that actual dimensions produce fftw-friendly results. If not,
2. OP adds one point to source Top tile unlocked dimension and checks if the changed

dimensions are fftw-friendly. We can allow to add one point to the dimension because
Top tile can expand upwards (into dashed area shown in figure 4.10) and fill empty spaces
with zeros without any change to the data. is process is repeated until fftw-friendly
dimensions are found or

3. lengthened dimension reaches length of Main tile vertical dimension. We have already
noted in section 4.2 that remaining locations’ tiles cannot have the same dimensions
as Main tile. is case is an exception because Main dimensions are locked and won’t
be changed. And because now the optimized Main tile has the same dimensions as Top
tile, the Top tile is also optimized.

We have described optimization process for our first case from the list. For other three in the
same category is the process analogous only with different unlocked dimension.

e second category of optimization pairs are shown in following list and have only non-
Main location. In comparison with first category the non-Main pairs have two unlocked
dimensions; One for source and other for target. Optimization process is analogous to first
category but instead of adding only to one unlocked dimension, algorithm chooses which side
to lengthen.

• Source Top to target Top,
• Source Right to target Top,
• Source Small to target Top.

When all pairs are optimized OP condenses all results and offers them for use. With this last
step finished, the program ends.

4.4 Planner efficiency

In this test I want to determine effectiveness of Optimization Planner (OP). e test will
consist of two parts. In the first part I will perform FFT computation from a source M×N
onto a target P×Q with restricted access to available memory. is propagation will be
computed by brute force with every permutation of dimensions on small areas; Otherwise
I won’t be able to compute all possibilities. In the second part I will start OP with the same
setting as for the first part and compare results of brute force run. e reason for this test
is to see how much different will be the optimal division of brute force run and “optimum”
returned by OP. I expect the result returned by OP to be distant at most one hundred places
from measured optimal speed.
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First part was ran with parameters source M×N 48×48, target P×Q 48×48 with memory
8192 (213). e test ran 4 hours and 17 minutes and computed 153 902 permutations.
e number is so low because many combinations weren’t allowed because of insufficient
allowed memory. e fastest division is source M×N 8×16, target P×Q 8×16 with duration
5 938 688 CPU cycles. e slowest division is source M×N 2×2, target P×Q 39×2 with
duration 700 481 536 CPU cycles. e slowest computation was approximately 118× slower
than the fastest calculation. An excerpt from measured values is shown in table 4.1.

Place Column
length M

Row
length N

Column
length P

Row
length Q

FFT duration
[CPU cycles]

1st 8 16 8 16 5 938 688
2nd 16 8 16 8 5 967 744
3rd 7 16 9 16 7 427 920
4th 9 16 7 16 7 453 440
5th 16 9 16 7 7 456 000

249th 4 35 3 35 14 392 576
253rd 4 16 11 16 14 425 536
255th 4 32 2 32 14 427 520
277th 4 33 3 32 14 678 136
299th 4 32 3 33 14 745 720

153 899th 2 2 2 39 666 865 664
153 900th 2 39 2 2 671 649 792
153 901st 39 2 2 2 698 982 400
153 902nd 2 2 39 2 700 481 536

Table 4.1: Excerpt from measured values of source M×N 48×48, target P×Q
48×48 with memory restricted to 8192 bytes

Second part was ran in OP with the same parameters as in the first part. e resulting
“optimum” was computed by OP in source M×N 4×32, target P×Q 2×32. is duration
of those dimensions were computed in 14 427 520 CPU cycles. By comparing computed
dimensions with results from the first test the OP’s result is placed 255th fastest from 153 902
measured permutations.

My expectations weren’t fulfilled because I didn’t expect so large variety of measured durations.
Still being only approximately 2.4× slower than the best permutation is satisfying and 255th
place from 153 902 is very good result.
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5 Conclusion

At the end of the description of the light propagation process we were acquainted with a lack of
an available computer memory needed for a propagation of high quality computer generated
holograms. It’s known that by dividing a source and a target into smaller parts we are able
to run a light propagation process in terms of the number of parts and utilize the available
memory. What we didn’t know is how should be the division performed, so that it’s as fast
as possible. is problem already solved Mr. Nedved in his research. After the examination
of his results I reached the conclusion that some of his assumptions are not (entirely) correct
and test results too vague. For those reasons I conducted my own research and later retested
Mr. Nedved’s results.

Because of a heavy use of fast Fourier transforms in a light propagation we needed to find
the best library that would fulfil our diverse requirements. I searched for more or less known
FFT libraries and created the list of candidates. After disqualifying all candidates that didn’t
meet our requirements only two most prospective libraries “Fastest Fourier Transform in the
West” (FFTW) and “Intel Math Kernel Library and its Fast Fourier Transform Routines”
(Intel MKL) remained. By converting possibly biased and unbiased measured speeds from
various tests into microseconds we were able to compare speeds of the libraries. At the end
FFTW library was proclaimed as the winner. rough various tests we examined behaviour
of FFTW and found many interesting features:

• Only fftw-friendly numbers chosen by the specific FFTW formula are computed no-
ticeably faster than non-fftw-friendly numbers. Because of this discovery we used only
fftw-friendly number in following tests.

• e computation speed depends on height to width ratio of dimensions of a source and
a target. With certain height to width ratio our speed results were especially fast. We
started to call the dimensions with such ratios as “bathtubs” and found a generic formula
so we could always find them.

• FFTW provides several planning flags that change behaviour and computation speed
results. We tested several of those flags and determined all except one as unsatisfactorily
slow. We couldn’t test flags for matrices > 4 GB because of hardware limitation.

• Even through FFTW documentation stated 2N transforms to be especially fast we dis-
proved the statement and determined that non-2N transforms with similar transform
areas to 2N were computed faster.

• With use of FFTW native parallel engine we tested transforms with various number of
threads. For two or more threads the results turned out as expected; e more threads
used for computation the shorter transform durations. Results for one thread were
chaotic and even after several tests we didn’t find out why.

• Lastly we tested transforms of prime numbers from fftw-friendly formula and found out
that all were computed in roughly same time. Favouring one prime number over another
is meaningless.
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All gained knowledge of FFTW behaviour was utilised in making Optimization Planner, the
program that finds optimal divisions of a source and a target so that the durations of fast
Fourier transforms take the shortest time. e function of the program is demonstrated by
the test results that shows a high efficiency of the program.
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Acronyms Overview

DFT Discrete Fourier Transform
FFT Fast Fourier Transform
FFTW Fastest Fourier Transform in the West; the library that implements FFT
GPL GNU General Public License
IDFT Inverse Discrete Fourier Transform
SLM Spatial Light Modulator; a display
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