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ABSTRACT

In this paper, we present a study on the characterization and the classification of binary digital objects. This study is performed
using a set of values obtained by the computation of "shape and texture indexes". To get the shape indexes, we extract a set of
data called "measures" from 2D shapes, like for example surface and perimeter. These indexes are then used as parameters of
a function returning a real value that gives information about geometrical and morphological features of the shape to analyze.

A model characterizing the shape (and the texture) of objects is subsequently built. An application to the classification of cell
nuclei (in order to diagnose patients affected by the Progeria syndrome) is proposed.

Keywords: Pattern recognition, shape and textures indexes, Haralick's features, cell nuclei classification.

1 INTRODUCTION distribution.

. . e . The first part of this paper defines the concepts of mea-
Pattern recognmon IS & major part.of al’.tl.fIC|§.| Intelll'sures, shape indexes, examine their main properties and
gence .that_ aims to automate th? |d.ent|f|cat|on of Yeheir usage for pattern recognition. Then the model
pical situations. It is a major objective for many ap-

S . " - used to solve the classification task is presented, studied
plications: handwritten character recognition (optlcaEnd validated

character recognition, etc.), video surveillance (facia set of over three thousand cell nuclei (figure 1) from

Zetct(;}gnlrt]lon)t, e:cct‘h it ition i th _patients with Progeria syndrome has been gathered.
€ heart of Ine pattern recognition 1SSue, ere Fpaqe nyclei were manually classified lasalthy or
)athological The shape criterion was the most impor-

It is often helpful to distinguish 2 classes of charac;tant diagnostic clue for 89% of the nuclei, but comple-

teristics: the shape (polar signature [THKO6], projec'mentary information was obtained by a textural analysis

tion histograms [SR04], multi-scale curve Smomhingrelative to the homogeneity of the nucleus

for generalised pattern recognition (MSGPR) [KR06],

etc.) aqd the texture [Har79]. Characterization op SHAPE INDEXES AND MEASURES
shape with shape indexes is more and more popularh ind d for the first time i
[IP97, TLG'03] espacially for learning-based classifi-_S ape indexes were presented for the first ime in 1_976
cation [SEB03]. Their flexibility, their simplicity of in the book by Santalo [San76] related to mathematical
implementation and ease of use with a classifier mal

l&roperties of convex shapes. The definition and proper-
this approach an appropriate choice for many problemEes of shape indexes can be found in [CC8S5, Fil95].
The aim of this paper is to create a model to classi

hape indexes definition:We callshape indexepa-
blood cell nuclei in patients affected by Progeria syn-

ameters, coefficients or a combination of coefficients
drome. This rare syndrome is a laminopathy [GEG] capable of providing numerical information about the

that causes patients to age prematurely. To visua?—hape of objects. A shape index must be dimensionless

ize nuclei, images are obtained using a fluorescent mzfl_nd invariant by translation, rotation and homothety.

croscope that detects FITC tag (Fluoresceine IsoThii—\he majority of shape indexes is derived from an equa-

Cyanate) showing the shape and the lamin A/C proteiffy " an inequality observed on the shape being ana-
y ) g P P lysed. In [San76] the authors have established a set

Permission to make digital or hard copies of all or part of thisof inequalities about convex shapes in a continuous

work for personal or classroom use is granted without fee provide . p2 2 N2 i
that copies are not made or distributed for profit or comme cia%pace' P® —4nA > n°(pe — pi)*, with A the surface,

advantage and that copies bear this notice and the full citation gn tHe the perimeterp; (respectivelype) the radius of the

first page. To copy otherwise, or republish, to post on servers or tgjggest (respectively smallest) inscribed (respectively

redistribute to lists, requires prior specific permission and/or a fee. . . . o .
circumscribed) sphere. All these inequalities use dif-

yvgg(é é%tﬁfsc%nf;rence ;;roc;eiings, 15;31;022-903100-7-9 ferent shape parameters calledéasures The calcu-

’, ebruary 4 — February . . .

Plzen, Czech,Republic. ’ Iguon of the§e measures is an unavoidable step for get-
Copyright UNION Agency — Science Press ting shape indexes (indexes are based on at least one
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measure). Measures can occasionally possess dimeéh- CHARACTERIZATION OF CELL
sion: two dimensions for the surface, no dimension for NUCLE| WITH SHAPE INDEXES
the number of holes. Measures without dimension arg
considered as shape indexes.

The ability to build indexes from inequalities inheren

ealthy nuclei have ellipsoidal shape while patholo-
tgical nuclei are puffy so that concave border areas are

to the shape under investigation is a major advantag isible. For this reason, a set of fourteen shape in-

every kind of shape can be characterized and classificagxizxzsiﬁgiggg fr%mc:zztzclﬁ?:gc;ggirt ?;ﬁfl'i: daeligs
tion tasks are facilitated. PP 9

specifically designed for this study.

2.1 Shape indexes and classification

The objective of this study is to differentiatealthy
from pathologicalcell nuclei.

Classification methods are divided into two important
families: supervised and unsupervised methods. Su-
pervised methods are more powerful but require expert
knowledge to learn from. In this study we benefit
from the biologists’ and geneticists’ knowledge who
have specified classes (healthy and pathological) anc
subclassese{lipsoidal andpuffy shapes, homogeneous
and non-homogeneous textures), which has allowed u:

to use supervised methods. : } .
. . . . _Figure 1: Four cell nuclei: a healthy, b puffy, ¢ non
The aim of classification methods is to build a classi; g Y, b puffy

fication model based on the data under investigatiotlﬁ'eoxr::jorg_eneous texture, d puffy and non homogeneous
Although being applied to a specific problem, the
model must.remain general within the.fr_amework of3'1 Three new shape indexes
data. For this reason, the data are split into two sets:
a learning set and a validation set. The classifier mu&tell nuclei have a near elliptic shape when they are
have comparable performances for both the Iearnir*qfa“hy- It is consequently judicious to build indexes
and the validation sets. characterizing the elliptic nature of the cells. The area
It is necessary to construct a characteristic vector fé¥f an ellipseA equalszab, with a the semi major axis
each data prior the classification phase. The vect@ndb the semi minor axis. Ellipses have some inte-
must be relevant to the problem in order to allow accut€sting properties that can be "measure®iax = a and
rate classification and prediction. The major risk wheffmin = b OF Rmax= 3LaP1 @ndRmin = %LAP?v With Rmax
providing too many characteristics to the classifier i§'€SPectivelyRmin) the greatest (respectively smallest)
overfitting. The greater the vector's dimension is, théadius andLapy (respectivelyLapy) the length of the
greater the flexibility of the model and the better the?fincipal (respectively secondary) axis. Two shape in-
classification are, but the greater the likelihood that the€xes can be derived based on these equalities:
model's performance will be poor for a data set not TRminRn

. . . . . n ax
used during the validation is. It is therefore necessary Viellipse =
to validate each model with respect to overfitting. In
this study, the characteristic vector is composed dpenominators and numerators are equal in the case of
shape indexes and Haralick’s features [Har79] for than ellipsis and the index values are 1.
texture. Pathological nuclei are currently not convex and conse-
Classification is achieved by the logistic regressiofiuently have concave border areas. To quantify these
[DS89]. Itis a linear model particularly well adapted toconcave areas, it is possible to calculate the number of
classification problems with two classes. Logistic reconnected componentgc. remaining when the shape
gression performs a statistical analysis on the learniri§ substracted from its convex hull. In the following,
set and uses a logical distribution function to predicthose connected components will be called "gap com-
a membership probability: P = P(Y/x) = ef® ponents”. In this work, a normalized version Mdfe,

1+ef™ i o
with x = (xg,..Xn) the characteristic vector of the Yiecer IS Used by the classifier:

initial data, f(x) = 3; aixi andP(Y/x) the conditional 1
probability P of the variablex to belong to the class Y. Ncce= card(ConvexHUllF)\F) , Wi, = 17 Nowe

TRminRmax - ZLa;bare
A s Y2ellipse 4 A
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Wi 1S €qual to 1 if no gap component is found andrhe lamin A/C distribution is homogeneous for healthy
tends towards 0 as the number of gap components muclei. However, the experts only consider nuclei as
the shape increases. having non homogeneous texture when it is not "highly
In practice, the components the surface of which equallomogeneous” (figure 1).
one pixel are due to resolution errors cannot be consin order to characterize texture, a co-occurrence ma-
dered as gap components. In fact, even small gap cormix (32 grey levels) is built, out of fifteen Haralick’s
ponents (i.e a few pixels) may not be significant at leaseatures are calculated [Har79]. One of these features
with respect to the classification of nuclei. The sizes the homogeneity. Homogeneity is higher when the
and number of gap componentgc. must be taken same pair of pixels is frequently found, as it is the case
into account when diagnosing nuclei elements. A syswhen there is an uniform area or a spatial periodicity.
tematic analysis of the percentage of correct classifiEontrasting with the analysis of the shape, the analysis
cations versus the minimum size and the number was the texture provides totally unballanced classés{"
conducted. The highest classification rate (90%) is obmogeneousand 'nhon homogeneols with approxi-
tained by considering that nuclei with one 32-pixel atmately twenty times more nuclei in the homogeneous
least gap component or two 12-pixel at least gap conelass. To efficiently build the model, the number of ele-
ponents have abnormal shapes. ments in each class must be roughly comparable. For
. . . this reason, the learning phase was carried out with all
3.2 Construction and validation of the the nuclei from the non-homogeneous class (116 items)
model for nuclei characterization and an equal number of nuclei chosen by selecting pro-

The model of classification that is used in this studyPtyPes in the homogeneous class with Heneans
build a linear combination of the indexes in order toProcedureK =116). The validation is realized accord-
predict the class. The efficiency of classification (o9 tO the "Leave One Out"-protocol. Best all subsets
the validation test) relies on the selection of the bed€Search on the fifteen indexes is performed to find the
subset(s) of indexes. be;t cqmblnatlon of m_dexes. Bgst subsgt is made of
Best all subsets research on the seventeen indexed'Right indexes (listed in appendix B) which performs

performed to find the best combination of indexes. Fop0? Of good classification of texture. In addition, the
the validation, thek-Fold protocol is used (WithK = distribution of the probabilities is less constrasted than

10). A subset composed of eleven indexes (see agle distribution of the probability for the shape (figure

pendix A) yields the best classification rate. The clearly)- Sever_al causes may be invoked to explain these dif-
bimodal distribution of the classification probabilities'€r€Nces: the main reason IS the far Iowe:'r number of
of the nuclei associated with the high classification effUclei belonging to the "non homogeneous" class which

ficiency demonstrate the relevancy of the selected ireduces the learning possibilities. The second reason is
dexes (figure 2). the noise introduced by using the tags, which reduces

the reliability of the prediction.
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Figure 3: Distribution of the classification probabilities
as given by the model to the nuclei from the validation
set. The closer to one the probability, the more homo-
geneous the nucleus. Dark areas and light grey areas
are for homogeneous and non homogeneous textures
respectively
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Figure 2: Distribution of the classification probabilities
as given by the model to the nuclei from the validation
set. The closer to one the probability, the more convex
the nucleus. Dark areas and light grey areas are for
puffy shapes and ellipsoidal shapes respectively.

4 TEXTURE CHARACTERIZATION 5 FULL MODEL: DIAGNOSIS OF NU-

Although very good results have been obtained by mo- CLEI

delizing shape, this only resulted in 89% of the globalfwo classification models have been built, characte-
classification of nuclei into "healthy" or "pathological” rizing the two main diagnostic parameters: the shape
groups. In order to improve this performance, it is neof the nucleus and its texture. These two models must
cessary specifically analyse the homogeneity of the teke combined in order to establish the final model, capa-
ture of the nuclei. ble of predicting the pathological aspect of nuclei. This
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model takes advantage of the 11 shape indexes and thg._, = T':\LJCCe €]0,1] , ¥2 paralielogram= £25

8 texture model features. The classification success rate
hence reaches 90% on the learning set an8%®n the

validation set. B HARALICK FEATURES
With p(x,y) the element(x,y) of the grey levels
6 CONCLUSIONS AND PERSPEC- co-occurrence matrixN the number of pixels of the

texture to analyzely the greyscale.

TIVES The standard deviation = ¥, 5, (P(X,Y) — m)>?
In this study, we have presented a method for the classhe correlationy, 5y (x—m)(y — m)p(x,y)/c?
fication of cell nuclei of patients affected by the ProgeThe average of the sums
ria syndrome. The first step was based on the study'e entropy of the sums
of the shape of cell nuclei using shape indexes. ApLN€€ntropy3, 5, p(x.y)log(p(x.y))
propriate indexes were specifically built. These index%ﬂg ﬁté:\rﬂggredngﬁ\gatlzon oflthepd&f%ences
have subsequently shown the ability to correctly clasi_h dissimilarit X&y ”ley‘ ’
sify shape of nuclei with a success rate above 95%. e dissimilarityy 3y [x—y|P(x.y)
With reliability and validation in mind, it is not planned
to try and improve this result for two reasons: the firsREFERENCES
being that it would be necessary to introduce additiongécss]  Michel Coster and Jean-Louis Chermant. Précis

characteristics that would jeopardize learning (overfit- d'analyse d'imagesEditions du CNRS, 1985.
ting). The few tenths of a percent gained in correcipsS8d]  Hosmer D.W. and Lemeshow SApplied Logistic Re-
classification would be lost in validation. The second gression John Wiley & Sons, Toronto, 1989.

reason is that the efficiency of this approach a|readWi|95] Isabelle FillereOutils mathématiques pour la reconnais-
o de formesPhD thesis, Université de St Etienne
matches the reproducibility rate of experts. sance ‘ ’

N del b d Haralick's f bui Septembre 1995.
ext a mode! based on Harafick's features was UI'[EBC*OE}] Annachiara De Sandre Giovannoli, Rafaelle Bernard,

in order to handle the problem of texture characteriza- Pierre Cau, Claire Navarro, Jeanne Amiel, Irene Boc-
tion. This model has provided a satisfactory handling caccio, Stanislas Lyonnet, Colin L. Stewart, Arnold
of the texture characterization (90% of good classifica- Munnich, Martine Le Merrer, and Nicolas Levy. Lamin

tion) and has allowed improving the final model. The a truncation in progerizScience300(5628):2055, 2003.

- . [Har79]  R. M. Haralick. Statistical and structural approaches to
shape model alone obtained a ratio of38 correct texture. InProceedings of the IEE&olume 67, pages

classifications of the nuclei (healthy/pathological). The 786-804, 1979.

addition of the texture model allows an improvement inipg7]  Jukka livarinen and Markus Peura. Efficiency of simple
the diagnosis of less than 1%. shape descriptors. limternational Workshop on Visual
In light of these results, it seems necessary to improve Form, pages 28-30, May 1997.

the texture model. For this reason it is planned to eXKRO6] Kidiyo Kpalma and Joseph Ronsin. Multiscale contour

tend the notion of shape indexes and to use it to analvze description for pattern recognition. IEEE Transactions
p y on Pattern Recognition Lettergolume 27, pages 1545—

textures. A possible solution would be to consider a 1559. Elsevier, October 20086.
texture like an elevation map ; with each pixel no longefsan7s]  L.A Santalo. Integral Geometry and Geometric Proba-
representing a greyscale but rather a altitude. bility. Addison Wesley, 1976.

[SEB"03] A. Sboner, Claudio Eccher, E. Blanzieri, P. Bauer, Mario
A SHAPES INDEXES Cristofolini, G. Zumiani, and Stefano Forti. A multiple

classifier system for early melanoma diagnoaAiificial
With F a form, A the surface,P the perimeter,B Intelligence in Medicing27(1):29-44, 2003.
the baryCenter Ry (1especiivelyFun) the greatest (ST fesn Sotavacen s el Pecoon
(reSpeCt'Vely Sma"eSt) rad'uﬂi (respectlvelype) the multiple orientations. IHEEE Transactions on Pattern
radius of the biggest (respectively smallest) inscribed Recognition Letters/olume 25, pages 1569-1576. Else-
(respectively circumscribed) spherd,ap; (respec- vier, 2004.
tively LAPZ) the |ength of the principal (respectively [THKO6] Abdelmalek Toumi, Brigitte Hoeltzener, and Ali Khen-

secondary) axiD the diameterE the thickness chaf. Classif_ication des images ISAR pour la recon_nais—
y) axis E Nece sance des cibles. IKllléme Rencontres de la Société
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i i = i . Pi
Extensiomameter = 5 , EXtENSIORadius = Pe [TLG+03] V. M. Tuset, I. J. Lozano, J. A. Gonzalez, J. F. Pertusa,
i ity = gin icit — 1 7 Pe=p)? and M. M. Garcia-Dia. Shape indixes to identify regional
Circularity = g , Deficit =1— =5 e e 0 ety o9
Convexityberimeter = w gg ggplied Ichthyologyvolume 19, pages 88-93, April
i AF i
Convexitysyrtace = m
A(FNSymmetri¢F,x
Symmetrgesicovitch = SUReF %
i Lapil,
Y1 Ellipsis = 77~'Rm+Rmax , Y2 Ellipsis = %%
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