
Poster: Design Patterns for Multithreaded Software
Pipelines in Real Time Applications

Stefan Preuss

University of Karlsruhe, IBDS
Am Fasanengarten 5

 76128, Karlsruhe, Germany

stpreuss@ira.ika.de

Alfred A. Schmitt
University of Karlsruhe, IBDS

Am Fasanengarten 5
 76128, Karlsruhe, Germany

aschmitt@ira.ika.de

ABSTRACT
This paper presents design patterns that will help in the task of parallelizing graphical real time algorithms,
according to the example of a visual real time 3D reconstruction algorithm. These algorithms can often be
designed as a dataflow graph, so they can be coarsely granular parallelized in a pipeline pattern. With these
patterns, the design process of the parallelization is detached from the design of the graphical algorithm. The
advantages and drawbacks of these patterns are discussed with regard to speed, but also to handling and error-
proneness and the demanded robustness of real time applications, due to the varying workload of the different
steps or data loss or obsoleteness during processing.

Keywords
parallelization, real time application, software architecture.

1. INTRODUCTION
Decent workstations are often based on SMP systems
and recently even multicore processors are becoming
affordable. One great advantage of these UMA
designs is the low cost of communicating complex
data structures (i.e. 3D meshes) between threads.
Many graphical algorithms can be designed as
processing pipelines similar to dataflow oriented
processors and thus be parallelized coarsely granular,
in order to get a faster response and/or higher output
frequency of results. The pipeline approach results
mostly (but not exclusivly) in the latter.

The danger of such an attempt arises from the
indeterministic process flow. Deadlocks, random
data order, changing or deletion of data in use by
other elements must be considered. Finding the
resulting errors is hard and time consuming. The use
of the presented design patterns will help to
minimize these dangers, that occur from parallelizing
an algorithm by giving each thread a clearly defined
area of responsibility.

2. MOTIVATION
The pipeline parallelization patterns resulted from
the parallelization of our reconstruction algorithm. It
is based on the works of [Lau94] and [Fau03].
[Lau94] introduced the concept of a visual hull and,
based on this, [Fau03] developed his automatic
reconstruction process of real objects with a camera
on a robot arm that uses a new variant of the volume
intersection approach. Due to the high performance
of this algorithm, we try to use it for markerless VR
immersion in a real time environment. The adaptive
background model for registering the silhouettes is
described in [Thu05]. The real time vertex reduction
process of this project is described in [Piz06]. A
rival approach [Fra04] is however based on Bulk
Synchronous Programming Scheme by [Val90]

3. BASIC PIPELINE DESIGNS
The design of a pipeline has to consider four
different aspects: the arrangement of the processed
data, the communication channels between the
pipeline steps, the connection topology and the
controlling of the working threads. Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

The basic patterns presented in this chapter were
inspired by [Joh04], who gives an overview of the
first achievements in the nowadays disregarded
dataflow processors that led to the visual dataflow
programming 'languages' or tools and describes
similar problems occurring during the design of a
dataflow processor or a dataflow oriented software.

Poster paper proceedings 37 ISBN 978-80-86943-99-2

mailto:stpreuss@ira.ika.de
mailto:aschmitt@ira.ika.de

Another fundamental book is [Gam95], a handbook
on patterns for object oriented software design.
These patterns turn out to be helpful for organizing
thread responsibilities as well.
The different patterns for each aspect generally
describe a trade-off between flexibility, performance,
parallel distribution and error proneness.

Connection Topology
Contrary to a normal dataflow graph, it is a more
flexible approach to let each step decide for itself
which type of data it will accept and send its results
indifferently to its successors. The connection
topology defines in which succeeding steps the data
has to be buffered.

Figure 1: Different pipeline arrangements: a)
typical data flow graph. b) assembly line
arrangement. c) dataflow arrangement.

As shown in Figure 1, the assembly line arrangement
is a strictly pipeline approach. As the data pass
through each step of the pipeline, it has to be
buffered in each of them. Unneeded data is
forwarded unprocessed to its successor. In the
dataflow arrangement, the different steps pick and
buffer only their demanded data out of the data
stream. The results are sent into the dataflow.

Data Arrangements

Figure 2: Different handling of the data pieces: as
one complete set in the workpiece arrangement a),

or free floating single data chunks b).

As shown in Fugure 2, in the workpiece arrangement
all data is packed into one container, so that each
pipeline step works on a complete data set. This
arrangement might not exploit the entire potential of
parallelization, but handling and overviewing is easy.

In the free data flow arrangement, the different types
of data are sent independently through the pipeline.
The pipeline steps could start working on the first
incoming data part but have to take care to gather all
their required data. At a first glance, this distribution

might be a good idea but the effort to pick and gather
all the needed data might sap all performance gain.

Communication Arrangements
First, the event that triggers a communication
between the pipeline steps has to be defined. In the
data driven concept, the steps of the pipeline become
active and produce results on incoming data. In the
demand driven concept, a step reacts on a request for
its result. Whereas the first is the most used concept
for data processing tasks, the latter is useful for
interactive tasks.

The possibilities to layout the communication
channel between the pipeline steps differ as well. The
most simple way is the newest-buffered
communication, where only the latest data is present
in the channel and older data is lost. Different buffers
for each type of data have to be established. This is
usually the choice for visual real time applications.

Another communication arrangement is the
synchronous communication. The channel is locked
for new input until the old data is picked up by the
succeeding step. This data arrangement assures that
there is no data loss, but it could slow down the
pipeline, or even reserialize the parallelization.

The last arrangement is the buffering-all construct.
The sent data is parked into a buffer structure until
the receiving step picks up the data for processing.
Although different buffer techniques are concernable
(e.g. stack, tree), in most cases a FIFO queue will be
adequate. This arrangement accommodates the
possibly fluctuating processing workload of the
different pipeline steps. The data will not be lost and
the pipeline steps do not block each other.

Thread control
active waiting conditional waiting

DO
 IF data is waiting
 do work
 reduce sleeptime
 ELSE
 increase sleeptime
 sleep(sleeptime)
UNTIL should end

DO
 wait for data
 do work
UNTIL should end

Table 1: The working loops of an active or
conditional waiting thread.

A simple pseudocode illustration of the two different
thread loop designs is shown in Table 1. The active
waiting thread repeatedly checks in its processing
loop wether there is any data waiting to be processed.
The thread could be put into a temporary dormant
state to reduce unnecessary processing cycles. The
sleeping time can increase with every unnecessary

Poster paper proceedings 38 ISBN 978-80-86943-99-2

check. The conditional waiting thread is initially in a
waiting state and only activated if needed.

The advantage of the conditional waiting thread is
that processor time is only used when there is
effective work to do, and the thread is immediately
reacting. On the other hand the active waiting thread
is independent from the overall arrangement. All
possible circumstances are local in the
responsibilities of this certain thread, so the danger
of deadlocks and race conditions is minimized. It is
suitable for slow reacting tasks, such as user
interface (e.g. rendering 24 times per second).

4. APPLIED MULTITHREADED
PIPELINE DESIGN
Our reconstruction environment has typical real time
conditions and requirements. There are different data
types to be processed and each set of them is related
to one point in time. A crucial challenge is that data
parts may be missing or be obsolete due to newer
data sets. Additionally, the different steps of the
reconstruction process should be able to be
dynamically activated during experimentation.
Data Container
Different types of data are encapsulated in a
container object that holds, among other
administrative data, a flag to mark if it is the last data
piece with the given attributes. Usually the creating
object is responsible for cleaning up its constructed
data in order to avoid memory leaks during
execution. To prevent complexity and bottlenecks as
well as memory leaks and colliding access, we hold a
strict policy: a data container and its data is accessed
and in the responsibility of only one object in the
pipeline at a time.

Managing the Waiting Queues
As data of different timestamps and types arrives at a
pipeline step, a number of waiting queues must be
handled for each communication channel between
the steps. Thereby one exclusivly accessed queue
collects the data of a specific timestamp. It is marked
to be full if it received a container with a “last-one
mark” for every expected data type. The queue is
marked to be done if for every expected data type a
container with the “last-one mark” was given out.
The different queues are managed by a factory
construct (see Figure 3). This construct was not
chosen for the typical reasons as described in
[Gam95], but to create a central object to keep track
of the access on its queues, similar to an inverse
semaphore. So the access to a queue is monitored by
a check in/ check out mechanism. This allows
parallel access to different waiting queues. The
competing access to one queue is managed by itself.
Returned queues that are done and not checked out

by other threads will be deleted. Queues that are
older than this queue can be marked as being done,
too. This eliminates obsolete or uncomplete queues.

Figure 3: The queue factory for managing the
different waiting queues for each timestamp.

One interesting aspect is the strategy how to
determine a new queue for the receiving pipeline step
after it has finished one (the next marked queue in
Figure 3).
The different strategies of handling the queues
resemble different aspects of the newest-buffered and
buffering-all FIFO arrangements used here on
complete data sets. A synchronous arrangement
would be contradictory to the concept of a queue to
uncouple sending and receiving steps. As data can be
lost, and the pipeline step might wait unnecessary in
a queue, it is possible to only switch to full queues. A
compromise to reduce the waiting time may be to
give priority to full queues and start processing non-
full ones if no full one is present. Older queues are
discarded and newer, but non-full queues are kept to
be filled in the future.
In the experiments, it is well tried to keep track of the
waiting full queues. Reaching a given threshold
indicates that the receiving pipeline step is waiting
for data that will never come, or is getting not
enough processor time for its task. In the first case,
the step has to discard its work on this timestamp. In
the latter case, the preceeding steps have to be
slowed down similar to the synchronous
communication arrangement.

Pipeline Steps
The functional code of the pipeline step is
encapsulated in different agents (similiar to the
visitor pattern described in [Gam95]) to allow quick
allocation of processing steps to a working thread
during experimentation. As can be seen in Figure 4,
each step consists of a queue management factory for
the incoming data, one or more agents to process the
data and a thread running through all of them. A
filter might be added in front of the queue
management factory to send the unprocessed data
types to the succeeding steps immediately. This filter

Poster paper proceedings 39 ISBN 978-80-86943-99-2

transforms an assembly line arrangement into a
dataflow arrangement.

Figure 4: The pipeline step. It capsulates its

incoming communication channel, its functional
entities (agents) and the working thread.

Special Pipeline Steps
The gatherer is a pipeline step to manage incoming
data of several preceeding sending steps and set the
“last-one” mark on the last container of all sending
predecessors. The distributor has to copy the
incoming data for several succeeding receiving steps.
This functionality can be implemented in a standard
pipeline step but, as not every step has several
predecessors or successors, there is no need for this
costly administration effort.

5. THE IDLE LOAD EFFECT
At a first glance, a dataflow arrangement with one of
the newest strategies seems to distribute the work
best among the pipeline steps, while minimizing
administrative work.

timestamp R+G > Y G+R > C Y+C > W

1
2
3
4
5
6

abort (no R)
success
abort (no R)
success
abort (no R)
success

-
abort (no B)
abort (no G)
abort (no B)
-
success

-
abort (no C)
-
abort (no C)
-
success

Table 2: Example of the idle load effect. The data
flow arrangement has to abort a lot of started

processing work due to missing data.

In the following example there is a dataflow
arranged pipeline with newest strategy (see Table 2)
in competition with a assembly line pipeline with
newest-full strategy (see Table 3). There are three
data sources sending data types: Red, Green, and
Blue. The unreliable Red and Blue data sources shall
send their data every 2nd, respectively 3rd
timestamp. The three-step pipeline processes Red,
Green and Blue data to the desired White data type.
As can be seen easily, it can provide White data only

in every 6th timestamp. But here the assembly line
arrangement waits in the first step for a full queue up
to the 6th timestamp, thus filtering out incomplete
data sets. The supposed faster first arrangement
keeps the system busy with ten futile proccessing
cycles. As part of the data might be lost due to
hardware or algorithmic issues or by the newest
strategies, the data loss and futile processing work
increase.

timestamp R+G > Y G+R > C Y+C > W

1
2
3
4
5
6

discard
discard
discard
discard
discard
success

-
-
-
-
-
success

-
-
-
-
-
success

Table 3: Example of the idle load effect. The
assembly line arrangement also has to wait for a
complete data set, but does not waste processor

time in the meantime.

6. REFERENCES
[Fau03] Fautz, M. Objekt- und Texturrekonstruktion
mit einer robotergeführten Kamera. Shaker Verlag,
2003.
[Fra04] Franco, J.S., Ménier, C., Boyer, E. and
Raffin, B. A Distributed Approach for Real Time 3D
Modeling. Proceedings of the 2004 IEEE Conference
on Computer Vision and Pattern Recognition
Workshops (CVPRW'04) IEEE. 2004.
[Gam95] Gamma, E., Helm, R., Johnson, R. and
Vlissides, J. Design Patterns, Addision-Wesley
Publishing Company, 1995.
[Joh04] Johnston, W.M., Hanna, J.R.P. and Millar
R.J. Advances in Dataflow Programming Languages.
ACM Computing Surveys, Vol. 36 No. 1, ACM
Press 2004.
[Lau94] Laurentini, A. The visual hull concept for
silhouette-based image understanding. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, vol. 16, N. 2, 1994.
[Piz06] Pizarro, F., Preuss, S. Simplification of
Reconstructed Meshes in Real Time. CASA 2006
Proceedings, Computer Graphics Society (CGS)
[Thu05] Thüring, S., Herwig, J. and Schmitt, A.
Silhouette-based Motion Capture for Interactive VR-
Systems including a Rear Projection Screen. CASA
2005 Proceedings, Computer Graphics Society
(CGS)
[Val90] Valiant, L.G. A Bridging Model for Parallel
Computation. Communication of the ACM 33(8),
1990.

Poster paper proceedings 40 ISBN 978-80-86943-99-2

	Poster_proceedings_2007_Numbered.pdf
	A07-full.pdf
	D83-full.pdf
	F02-full.pdf
	1. INTRODUCTION
	2. MOTIVATION
	3. BASIC PIPELINE DESIGNS
	Connection Topology
	Data Arrangements
	Communication Arrangements
	Thread control

	4. APPLIED MULTITHREADED PIPELINE DESIGN
	Data Container
	Managing the Waiting Queues
	Pipeline Steps
	Special Pipeline Steps

	5. THE IDLE LOAD EFFECT
	6. REFERENCES

	F59-full.pdf

