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Abstract 
The local geometric properties such as curvatures and normal vectors play important roles 
in analyzing the local shape of objects. The result of the geometric operations such as 
mesh simplification and mesh smoothing is dependent on how to compute the curvature 
of vertices, because there is no its exact definition in meshes. In this paper, we indicate 
the fatal error in computing discrete sectional-curvatures by the previous discrete 
curvature estimations. Moreover, we present a new discrete sectional-curvature estimation 
to overcome the error, which is based on the parabolic interpolation and the geometric 
properties of Bezier curve. 
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1. Introduction 
The problem of estimating the geometric 

properties such as normal vectors and curvatures 
in triangular meshes plays important role in many 
applications such as surface segmentation and  
anisotropic remeshing. A lot of efforts have been 
devoted to this problem, but there is no consensus 
on the most appropriate way [1,3,4,5,8,9]. Popular 
methods typically consider some definition of 
curvature that can be extended to the polyhedral 
setting. Taubin presented a method to estimate the 
tensor of curvature of a surface at vertices of a 
mesh [6]. Watanabe proposed a simple method of 
estimating the principal curvatures of a discrete 
surface [7]. Meyer et. al proposed a discrete 
analog of the Laplace-Beltrami operator to 
estimate the discrete curvature[2]. 

Most of these methods compute directly the 
sectional curvatures for each adjacent edge of a 
vertex. They assume that the normal curve 
interpolates both the given vertex and an adjacent 
vertex and the curve is represented by Taylor 
series. However, they make the same mistake that 
they adopt the distance between the given vertex 
and its adjacent neighbor vertex as the parameter 
of the series. There are several polygons of 
different interior angles, all of which are 
circumscribed by circles of the same radius. The 
discrete curvatures of all vertices estimated by 
those methods are the same as that of the circle 
although they have different interior angle. It is 
quite alien to universal concepts.  
 
2. Parabola-Based Discrete Curvature 
We adopt a quadratic Bezier curve as an 
interpolating curve. Let A, B, C be three 
consecutive vertices. The general form of the 
quadratic Bezier curve satisfying P(1/2) = B is as 

follows: 
P(t) = A B0

2(t) + (4B-A-C) / 2 B1
2(t) + C B2

2(t), 
where Bi

n(t) = n !/ ((n-i)! i !) (1-t)(n- i) ti are the 
Bernstein polynomials of degree n. The curvature 
of P(t) at t=1/2 is  
κP(1/2)  =   || P” (1/2 ) × P’( 1/2 ) || / ||P’(1/2)||3  

     = || 4(A-2B+C) × (C-A) || / ||C-A||3. 
Hence, we can define a new Parabola-based 
discrete curvature of the given vertex B as 
follows: 

κP(B) ≡ ||4(A-2B+C)×(C-A)||/||C-A||3.  
 

 
Figure 1. The geometric property 

 
First of all, we find out the geometric properties 
of the P-discrete curvature formula. Let V=(C-
A)/2 and G = A-2B+C. The P-discrete curvature 
formula is  
κP (B) = || 4G × 2V || / || 2V ||3 = || G ×V || / ||V||3  
    = (||G|| ||V|| sin θ ) / ||V||3,          (1) 

 
where θ is the in-between angle of the vectors G 
and V. The numerator of Equation (1) is the area 
of the parallelogram BDEF and is four times as 
much as the area of the triangle BCF as shown in 
Figure 1. Therefore, the P-discrete curvature 
formula is κP (B) = 2h/ v2, where, h and v are the 
height and the width of the triangle BCF, 
respectively. 
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3. Experimental Results 
In order to verify the propriety of the P-discrete 
curvature, we regularly sample n points on a 
circle of radius 1 and compute their P-discrete 
curvature. Let pi=(cos((2π i)/n), sin((2π i)/n)), i = 
0, … , n-1, be the vertices of a n-gon on the circle. 
By trigonometry, we can compute the values of v 
and h as follows: 

v = r sin ((2π i) /n),  h = r(1 - cos ((2π i) /n ) ). 
 

 
Figure 2. Polygons with the different p-curvature values 
 
Therefore, as the number of sampling points 
increases to the infinity, the value of curvature at 
a vertex of the n-gon becomes that of the circle.  

 
Limn→∞ (2(1-cos((2πi)/n))/rsin2((2πi)/n) = 1/r. 
 

Figure 2 shows the several polygons on a circle of 
radius 1 and their P-discrete curvature values. The 
result is an excellent contrast to that of circular 
based (C-type) discrete curvature estimation. That 
estimation wishes that the curvature at the 
sampled vertices may become that of a circle. The 
method puts emphasis on the point of view that 
the vertices are on a circle. However, it goes 
against the concept of curvatures. It loses the 
information on the local shape. On the other hand, 
our method recognizes the vertices of polygons to 
have a sharper angle, not to be on a circle. That is, 
the P-discrete curvature of vertices of a triangle is 
4 and that of rectangle is 2.0 (see Figure 2). More 
the number of vertices increases to the infinity, 
less the curvature value decreases to 1. Table 1 
shows the differences of C-type discrete curvature 
and P-type discrete curvature  
 
4. Conclusion 
The analysis on the local properties of 3D meshes 
plays an important role in the applications such as 
morphing, simplification, smoothing. In special, 
the curvature at a point on a surface may represent 
the shape of its neighborhood. However, there is 
an exact definition of the curvature at a vertex. So, 
one has to approximate the value as a discrete 
curvature. The common previous methods 
compute directly the sectional curvatures for each 
one-ring neighbor, and then derive the Gaussian 
curvature and the mean curvature using the 
sectional curvatures. All of them utilize the circle-
based discrete curvature to compute the sectional 

curvature. In this paper, we find out a fatal 
mistake and propose the parabola-based discrete 
curvature estimation to resolve the problem. Our 
method may be the basis of normal vector 
estimation and segmentation of meshes. 
 
Table 1. P-type curvature vs. C-type curvature 

 
Acknowledgement 
This work was supported by the Post-doctoral 
Fellowship Program of Korea Science & 
Engineering Foundation(KOSEF) 
 
References 
1. Sylvain Petitjean, " A Survey of Methods for 

Recovering Quadrics in Triangle Meshes", ACM 
Computing Surveys, Vol. 34, No. 2, pp 211—262 
(2002). 

2. Mark Meyer, Mathieu Desbrun, Peter Schroder, and 
Alan H. Barr, "Discrete Differential Geometry 
Operators for Triangulated 2-Manifolds", Proc of 
VisMath, (2002) 

3. J. Goldfeather and V. Interrante, " A novel cubic-
order algorithm for approximating principal direction 
vectors", ACM Transaction on Graphics, Vol . 23, No. 
1, pp 45—63 (2004) 

4. Holger Theisel, Christian Rossl, Rhaleb Zayer, and 
Hans-Peter Seidel, "Normal Based Estimation of the 
Curvature Tensor for Triangular Meshes", Proc. of 
Pacific Graphics'04, pp 288—297 (2004) 

5. Tatiana Surazhsky, Evgeny Magid, Octavian Soldea, 
Gershon Elber, and Ehud Rivlin, " A Comparison of 
Gaussian and Mean Curvatures Estimation Methods 
on Triangular Meshes", Proc. of 2003 IEEE 
International Conference on Robotics and 
Automation, (2003) 

6. Gabriel Taubin, "Estimating the Tensor of Curvature 
of a Surface from Polyhedral Approximation", Proc. 
of the Fifth International Conference on Computer 
Vision, (1995) 

7. Kouki Watanabe and Alexander G. Belyaev, 
"Detection of Salient Curvatures Features on 
Polygonal Surfaces", Computer Graphics Forum, Vol. 
20, No. 3, (2001) 

8. David Cohen-Steiner and Jean-Marie Morvan, 
"Restricted Delaunay Triangulations and Normal 
Cycle",  ACM Symposium of Computational 
Geometry, (2003) 

9. M. Garland and P. S. Heckbert, "Surface 
simplification using quadratic error metrics", 
SIGGRAPH ‘97, pp 209—216 (1997) 

 C-type  
Discrete urvature 

P-type  
Discrete Curvature 

Formula κC(B) = (2 N⋅BA) 
/ || AB||2 

κSP(B) = (2 N⋅BA) 
/|| BA - (N ⋅BA)N||2

Parameter Distance Horizontal Distance
Range κC(B) ≤ 2  

if  ||AB|| ≥ 1 
κSP(B) < ∞ 

Trajectory circle parabola 
Magnitude κC(B) ≤ κSP(B) 
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