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1 INTRODUCTION
The Voronoi diagram (VD) and the Delaunay triangu-
lation (DT) can be used for modelling different kinds
of data for different purposes. These two structures are
attractive alternatives to rasters to discretise a continu-
ous phenomenon such as the percentage of gold in the
soil, the temperature of the water, or the elevation of a
terrain. They can also be used to represent the bound-
aries of real-world features, for example geological
modelling of strata or cadastral models of apartment
buildings. The VD and the DT are an appealing solu-
tion because of their duality (they represent the same
thing, just from a different point of view) and because
both structures have interesting properties (see Auren-
hammer [Aur91] for a review of the properties and po-
tential applications).

Most of the algorithms and implementations available
to construct the three-dimensional VD/DT store only
the DT and perform their topological operations on
tetrahedra, and if needed the VD is extracted after-
wards. Although this results in a faster implemen-
tation, it has major drawbacks if one wants to work
with the VD. It is for example impossible to assign
attributes to Voronoi vertices or faces, and moreover
the computation (extraction) of the VD is an expen-
sive operation. We believe that in many real-world
applications, the major constraint is not the speed of
construction of the topological models of large num-
ber of points, but rather the ability to interactively con-
struct, edit (by deleting or moving certain points) and
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query (interpolation, extraction of implicit surfaces,
etc.) the desired model. We also think that there are
many reasons that justify preserving simultaneously
both the VD and the DT. The two-dimensional case
has already been elegantly solved with thequad-edge
data structures of Guibas and Stolfi [GS85]. The struc-
ture permits the storage of any primal and dual subdi-
visions of a two-dimensional manifold. Dobkin and
Laszlo [DL89] have generalized the ideas behind the
quad-edge structure to preserve the primal and dual
subdivisions of a three-dimensional manifold. Their
structure, thefacet-edge, as is the case for the quad-
edge, comes with an algebra to navigate through a sub-
division and with primitives construction operators.
Unlike the quad-edge that is being used in many im-
plementations of the 2D VD/DT, the facet-edge has
been found difficult to implement in practice and, to
our knowledge, has not been used in ‘real projects’.
Other data structures, e.g. see [Lie94, LT97], can usu-
ally store only one subdivision.

To store and manipulate three-dimensional cells com-
plexes, we propose a simpler structure, based on
the quad-edge, that we nameaugmented quad-edge
(AQE). Each cell of a complex is constructed using the
usual quad-edge structure, and the cells are linked to-
gether by the dual edge that penetrates the face shared
by two cells. When some basic navigation and con-
struction operators are added to the structure, it is pos-
sible to construct and store simultaneously the 3D VD
and its dual the DT. While using somewhat more stor-
age, the approach has the advantage of conceptual sim-
plicity and involves only a simple extension of the 2D
topological relationships.

2 AUGMENTED QUAD-EDGE
The quad-edge data structure [GS85] as a representa-
tion of one geometrical edge consists of fourquads
which point to two vertices of an edge and two neigh-
bouring faces. It allows navigation from edge to edge
of a connected graph embedded in a 2-manifold. Its
advantages are firstly that there is no distinction be-
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Figure 1: Left: The quad-edge structure and some ba-
sic operators. The starting quadq is the black quad,
and the resulting quads are grey. Right: TheSplice
operator.
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Figure 2: Thethroughpointer.

tween the primal and the dual representation, and sec-
ondly that all operations are performed as pointer op-
erations only, thus giving an algebraic representation
to its operations. Figure 1 shows the basic structure,
the different navigation operators (next,rot and org),
and the construction operatorsSpliceandMakeEdge.

The augmented quad-edge (AQE) uses the ‘normal’
quad-edge, which is valid for any 2-manifolds, to rep-
resent each cell of a 3D complex, in either space. For
instance, each tetrahedron and each Voronoi cell are
independently represented with the quad-edge, which
is akin to a boundary representation (b-rep). With this
simple structure, it is possible to navigate within a sin-
gle cell with the quad-edge operators, but in order to
do the same for a 3D complex two things are missing:
a ways to ‘link’ adjacent cells in a given space, and
also a mechanism to navigate to the dual space. First,
notice that in this case two of the fourorg pointers of
a quad-edge point to vertices forming the 2-manifold,
but the other two (which in 2D point to the dual, or
a face) are not used in 3D. Notice also that in 3D the
dual of a face is an edge. Our idea is therefore to use
this dual edge to ‘link’ two cells sharing a face: the
unused face pointers simply point to their dual edge.

This permits us to ‘link’ cells together in either space,
and also to navigate from a space to its dual. Indeed,
we may move from any quad-edge with a face pointer
to a quad-edge in the dual cell complex, and from there
we may return to a different 2-manifold in the original
cell complex if needed.

A quad-edge is divided into four quadsq, and there
exist two types of quads: aqf points to a face, and
a qv points to a vertex. Onerot operation applied
to a qf returns aqv, and vice-versa. Aqf identifies
uniquely, like Dobkin and Laszlo’s structure [DL89],
a pair (face, edge). Thereforeqf has also a linked quad
q⋆
f in the dual that is defined by (edge⋆, face⋆).

One issue remains to be resolved: as each face is pen-
etrated by several dual edges, a consistent rule must be
defined to select the appropriate one. Indeed, with the
AQE, the dual edge to a face has to be stored for all
the dual cells sharing that edge. A triangular face has
for example three dual edges since each of its three
vertices becomes a cell in the dual. Aqv has itsorg
pointer set to a node, and aqf has itsorg pointer set
to q⋆

f . The pointer toq⋆
f from qf is called through

(Figure 2). The quadq⋆
f is defined as belonging to

the dual cell which encloses the node pointed to by
qf .rot = qv. This is sufficient to define thethrough
pointer structure.
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