
A Supply-Chain for Computer-Mediated
Communication and Visualization

Nils Jensen

University of Hannover
L3S / RRZN / DVR

German Pavilion, Expo Plaza 1
 30539, Hanover, Germany

jensen@learninglab.de

Ralf Einhorn
University of Hannover

L3S / RRZN / DVR
Schloßwender Str. 5

30159, Hanover, Germany

einhorn@learninglab.de

Gabriele von Voigt
University of Hannover

RRZN / DVR
Schloßwender Str. 5

30159, Hanover, Germany

vonvoigt@rrzn.uni-
hannover.de

ABSTRACT

The paper specifies modular software for synchronous and asynchronous computer-mediated communication
and visualization in network-distributed environments. It is new because the distribution of the visualization
pipeline is not prescribed, compared to other systems, and supports time-deferred collaboration and presentation
by means of recordable sessions of use. Data source is a remote program that sends and receives data via a small
linked library. The system supports real-time and time-deferred collaborative visualization over distance for e-
Science.

Keywords
Visualization GRID, Visualization Pipeline, Software Engineering, CSCV, Virtual Environment, Virtual Reality

1. INTRODUCTION
A supply chain is a network of distributed facilities
for the procurement of material, transformation to
products, and delivery to customers [Gan03a]. The
visualization GRID is an example that has lagged
behind the development of the parts. We report a
more tightly-structured combination of tools that (i)
helps scientists and engineers to experiment with
computer-simulated phenomena in distributed virtual
environments (DVE), (ii) amplifies students’ skills to
work together via computer-mediated
communication (CMC), and (iii) helps evaluators to
study decentralized work that involves Virtual
Reality (VR) [Lei97a]. The technical foundation is
visualization software, databases, multimedia
devices, and groupware. To structure and control the
components in a centralized way, we use the supply-
chain management (SCM) design pattern to combine
application steering and visualization, synchronize

the interplay between components, add verbal- and
non-verbal communication, and transcribe logs and
media streams for the recapitulation of sessions. The
system is a modular implementation of the
visualization pipeline (server), and a front-end for
computer-supported collaborative visualization
(CSCV client) in DVEs and browsers. The server
receives visualized program results and the clients
receive visualizations and multimedia data from
videoconferencing units to augment a DVE. Sections
2, 3 and 4 specify related work, design (Fig. 1), and
conclusion, respectively.

2. OPTIONS FOR CSCV
The lowest layer comprises [Kau90a, p. 5] data
generator, filter, map, render, and display. One
partitions the pipeline to use large datasets [Lei97a]
and help users to work together [Sin99a].
Partitioning techniques can be combined.
The first way is to separate data generation from
filtering. The advantage is data are visualized
remotely at the same time by use of different
techniques. The disadvantage is network saturation.
The second way is to split filtering and mapping. The
advantage is a reduction of replicated data because
filtering selects subsets. The problem is that
techniques to map data to visualization objects (VOs)
use different filter results. We split them in those that
depend on data, and those that depend on VOs.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG POSTERS proceedings
WSCG’2004, February 2-6, 2004, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Way three is to use “fat clients” which separate
mapping and rendering. The advantage is that most
visualization parameters are unbound until the client
renders data. Fat clients must be fast enough to
render complex scenes, and the data format for data
transfer is complex, see [Hos02a, Jen02a].
Way four are “thin clients” that separate display from
rendering for lightweight processors and periphery
with limited ways of output and use. The scheme
saves processor time because the front-end replicates
images. But it is restricted to one viewpoint.
The middle layer manages persistent sessions. The
synchronization of media helps one to reconstruct the
interplay between users, data, and software. But
synchronization for persistence is hard, which is
reflected by the complexity of MPEG-4 and SMIL
that specify the interplay and accurate timing of
media streams in different ways [Hos02a, W3C01a].
But tools to create and author SMIL presentations do
not integrate all formats, for example 3D graphics.
The highest layer splits the visualization pipeline in
one stream per client. Modular, extensible GUIs
combine heterogeneous content (live 3D animations
and video) through DVEs, visualization GUIs, and
VRML-browsers. [Jen02a; Jen03a] survey software.
In the paper, we decide to improve our system,
DSVR [Jen02a], because it has a library for data
generators to filter and map data to VOs. The server
replicates and forwards VOs to fat clients which
support CSCV and capture content. But limitations
are (i) no methods for generator control, (ii) hard-
coded coupling between generation, filtering and
mapping, (iii) lack of extensible user interfaces, (iv)
no persistent events, and (v) no support for thin
clients. We specify the removal of the limitations.

3. DESIGNING THE SUPPLY-CHAIN
Filter Developers of data generators enhance the
source code to derive visualizations and to control
software remotely. Systems that visualize data from
applications without changing source code [Ger01a]

exist, but the flow of data between generator and
pipeline is too coarse for parallel execution because
command line parameters, text files, and Unix pipes
are used. The alternative is to select memory to share
data with a linked library that mediates the flow of
visualization and steering data. We minimize manual
changes by way of linking to a library that does not
introduce new data types but that gives developers
control over which data are shared. The library must
read a specification of the source type from the
generator, and read the destination type of data
during run-time. To reduce programming effort, the
developer specifies information by the use of meta-
tags that are preprocessed to insert library calls in the
source code in an automatic way. It is important to
keep in mind that, for a flexible approach, tags must
not prescribe which visualizations are available to
users. The developer must specify visualization-
dependent filters and mappings in files outside the
source code. The library reads them during runtime.
We give an example in C. Comments with the prefix
“///” are directives for our preprocessor. The example
specifies a compound data structure that contains text
and variables to represent simulated measurements.
Tags describe how shared language-specific data
types map to library-specific types (SCALAR…):
struct ecomposite { /// DEF ecomposite
 float size; /// SCALARF size
 char *s; /// SCALARB s SIZE
 int slen; /// SIZE s
 char name[30]; /// SCALARB name
SIZE 30
} aComposite[2]; /// ENDDEF ecomposite
/// STRUCT ecomposite aComposite SIZE 2
double magnitude[2];
/// SCALAR magnitude SIZE 2
double temperature[2];
/// SCALAR temperature SIZE 2
vector3D * coord[2];
/// STRUCT VECTOR3D SIZE coord SIZE 2
double volume[32][32][16];
/// SCALAR magnitude SIZE 32 SIZE 32
SIZE 16 ... /// VISUALIZE

M a p p e r

S t r e a m A r c h i v e

D a t a
G e n e r a t o r

V i e w p o i n t
R e n d e r e r

D i s p l a y
C l i e n t

3 D G U I
R e p o s i t o r y

R e c o r d e r

P l a y e r

V i d e o &
E v e n t

A r c h i v e

E x t e r n a l S o u r c e s
(A u d i o , V i d e o)

F i l t e r

P e r s i s t e n c e U n i t s
V i s u a l i z a t i o n S e r v e r

C S C V C l i e n t sS y s t e m l a y e r s :

s t e e r
t r a n s f e r

t r a n s f e r

t r a n s f e r
s t o r e

r e n d e r s h o w
s t e e r c o n t r o l

t r a n s f e r

c a p t u r e s t o r el o a d

d i r e c tdi
re

ct

r e a d

S t r e a m
R e p l i c a t o r

Figure 1. CSCV architecture.

Our preprocessor replaces tagged parts with data
structures in C and with library calls to map data to
VOs. The code is ready to compile and link (part):
main() {
initializeVisualizationLibrary();
useRoute(“default.rou”);
share(aComposite, ID_aComposite,
TYPE_STRUCT_ECOMPOSITE, 2);
share(magnitude, ID_magnitude,
TYPE_SCALAR, 2);
share(temperature, ID_temperature,
TYPE_SCALAR, 2);
share(coord, ID_coord,
TYPE_STRUCT_VECTOR3D, 2, 1);
share(volume, ID_volume, TYPE_SCALAR,
32 * 32 * 16);
/* VISUALIZE */ commitState();
The example initializes the library, sets up default
routings for data replication, and specifies which data
are read during calls to “commitState()” to generate
VOs from application data. VOs are runs of VRML-
1 objects in binary form that constitute a frame in a
3D stream [Jen02a]. The frame is committed and sent
to remote servers and clients in “commitState()”:
on each processor:
forward content of shared memory
for each object set ‘s’ {
 for each object ‘o’ in ‘s’ {
 for each attribute ‘a’ of ‘o’ {
 read shared memory location
 and choose all valid indices
 ‘i,j,k,...’ that satisfy the
 filter expression
 cast and write data to ‘a’
}}} submit and forward objects
Map Objects and attributes are specified in a file that
contains names and links to data. Formal expressions
select data (Tab. 1). We restrict expressions to
properties of integers to denote array slots to support
common selection criteria. A second file defines
networked data flow. We try to balance between
decoupling and performance.

Element Meaning
* Put the array in one VO

m..n Put m-n+1 data in one VO each

Le Is less than

Ge Is greater than

Eq Is equal to

Leq Is less than or equal to

Geq Is greater than or equal to

And Logical and

Or Logical or

Not Logical not

Div Divisible with remainder 0

Table 1. Data selection keywords to generate VOs.

The file for filtering and mapping has the following
structure (we have chosen XML). Single letters
denote indices. Object sets are selected by name, the
special keyword “rawData” (tagged memory
content), or a compound formal expression that uses
“and” and “not”. The example creates a 3D
annotation at a default position, two streamlines, and
an iso-surface. The volume for the surface is sub-
sampled at level 2.
<!—visualization rules default.fil -->
<text>
<fontName> aComposite.name <filter/> i
eq 0 and j eq * </fontName>
<size> aComposite.size <filter/> 0
</size>
<string> aComposite.s <filter/> i eq 0
and j eq * </string>
<stringLength> aComposite.slen
<filter/> 0 </stringLength>
</text> <streamline>
<headSize> magnitude <filter/> 0..*
</headSize>
<color> temperature <filter/> 0..*
</color>
<tailPathX> coord <filter/> i eq 0..*
 and j eq 0 </tailPathX>
<tailPathY> coord <filter/> i eq 0..*
 and j eq 1 </tailPathY>
<tailPathZ> coord <filter/> i eq 0..*
 and j eq 2 </tailPathZ>
</streamline> <isosurface>
<regularField> volume <filter/> i div 2
and j div 2 and k div 2 </regularField>
</isosurface>
The routing file specifies “commitState()”sends
geometries to host “3dserver”, sends the iso-surface
to “hapticserver”, and saves data on “simarchive”.
<!-- routing default.rou -->
<forward><from/> not rawData <to/>
3dserver.example.edu</forward>
<forward><from/> isosurface <to/>
hapticserver.example.edu </forward>
<forward><from/> rawData <to/>
simarchive.example.edu </forward>
Render The plugin renders 3D graphics in browsers
and DVEs [Jen02a; Jen03a]. The latter uses an
adapter to mediate between the DVE and the plugin’s
NAPI interface. Screen grabbing and logging are
available, and we use RealVNC (www.realvnc.com)
to share displays on other computers, e. g. handhelds.
Record and Archive VACE is a modular,
extensible, and distributed toolkit to record media.
Users record sessions through media formats. To
record and play-out sessions in DSVR we combine it
with VACE. We generate VACE-compatible
metadata and synchronize it with recorded media
data. We build an adapter to combine VACE and
DSVR, or make DSVR read metadata, which
requires changes to DSVR.
To find the required granularity of metadata we
consult the VACE data model [Ein03a] that
comprises hierarchical layer presentation, stream and

event. A stream is a medium that is shown during
session replay. Streams are “temporal discrete” (e. g.
text) or “temporal continuous” media (e. g.
audio/video (AV) and graphics). A stream carries
events to denote changes of the media stream, e. g. a
new Web page or the start of a 3D stream. The
question is if users’ action in DSVR is “temporal
discrete” (every mouse movement represents a
VACE event) or “temporal continuous” (action must
be stored in a separate way), so that only
synchronization points are events (Fig. 2). We use
the latter because the first way would generate many
events. Hence, DSVR manages events and
synchronizes other media during play-out via
timestamps. Temporal positions of the SMIL player
and DSVR must be coherent during playback,
especially at start. In contrast to conventional
multimedia applications, the same system is used for
recording and play-out, and there is one recorded
media type for DSVR. We manage interaction data
as a container format for event and media data, like
an HTML image reference.
Replay VACE uses tools for the play-out of content.
A container format for multimedia presentations is
SMIL [W3C01a]. Available applications for SMIL
playback (e. g. RealPlayer) support some media
types natively, and others are integrated by use of
HTML files controlled by the player. The challenge
is to synchronize between DSVR and media types
that are integrated in the SMIL player. RealOne
integrates plugins for supporting proprietary media
formats, so we could add RealOne’s plugin API to
the DSVR front-end plugin. But the SMIL player
may not use OpenGL-compatible drawing contexts
and requires changes to DSVR. We prefer to control
DSVR by use of synchronization points. When the
user skips through the timeline using the SMIL
player, the player sends timestamps to DSVR to
reconstruct system states.
The SMIL player and DSVR exchange messages via
the JavaScript engine of the Web browser.
Measurements show synchronization granularity rate
is ca. 0.1 seconds. The mechanism is sufficient for
applications with “soft” real-time requirements. The
next step to improve granularity of the

synchronization is to implement a SMIL player
plugin that mediates between the player and DSVR.

4. CONCLUSION
We have specified a modular visualization pipeline
with full support for CSCV. See
www.learninglab.de/vase3 for a case study.

5. ACKNOWLEDGMENTS
The Ministry for Science, Research, and Art of
Lower Saxony and the German Ministry for
Education and Research funded VASE 3 and VACE.

6. REFERENCES
[Ein03a] Einhorn, R., Olbrich, S. and Nejdl, W. A

metadata model for capturing presentations in
ICALT, Athens, Greece, IEEE CS Press, pp. 110-
114, 2003

[Gan03a] Ganeshan, R. and Harrison, T.P. An
introduction to supply chain management,
http://silmaril.smeal.psu.edu/misc/ supply_chain_
intro.html (accessed on 29th Sep. 2003)

[Ger01a] Germans, D., Spoelder, H.J.W., Renambot,
L. and Bal, H.E. VIRPI: A high-level toolkit for
interactive scientific visualization in virtual
reality in 7th EGVE, Stuttgart Germany, ACM
Press, pp. 109-120, 2001

[Hos02a] Hosseini, M. and Georganas, N.D. MPEG-
4 BIFS streaming of large virtual environments
and their animation on the web in Web3D,
Tempe Arizona, ACM Press, pp. 19-25, 2002

[Jen02a] Jensen, N., Olbrich, S., Pralle, H. and
Raasch, S. An efficient system for collaboration
in tele-immersive environments in 4th EGPGV,
Blaubeuren Germany, ACM Press, pp. 123-131,
2002

[Jen03a] Jensen, N., Seipel, S., Nejdl, W. and
Olbrich, S. CoVASE – Collaborative
visualization for constructivist learning in CSCL
‘03, Bergen Norway, Kluwer, pp. 249-253, 2003

[Kau90a] Kaufman, A. Volume Visualization. IEEE
CS Press. 1990

[Lei97a] Leigh, J., Johnson, A.E. and DeFanti, T.A.
Issues in the design of a flexible distributed
architecture for supporting persistence and
interoperability in collaborative virtual
environments in Supercomputing ’97, San Jose
CA, IEEE CS Press, p. 1-14, 1997

[Sin99a] Singhal, S. and Zyda, M. Networked virtual
environments - design and implementation. ACM
Press. 1999

[W3C01a] W3C: Synchronized multimedia
integration language (SMIL 2.0),
http://www.w3.org/TR/2001/REC-smil20-
20010807/ (accessed on 14th Oct. 2003)

t

video (media data)

3D (user interaction+references to media data)

annotation annotation annotation

Figure 2. Media data types in VACE streams.

