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ABSTRACT 
We describe a novel load-balancing method for sort-first parallel graphics rendering systems. It gives up 
geometry data which could be very large and tends to cause unacceptable cost. Instead it takes rendering time as 
the measurement of render nodes’ work load and produces new screen decomposition using a time-to-space 
algorithm. Test results show that the geometry data independent method is very effective. 
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1. INTRODUCTION 
The performance of computer graphics systems is 
growing rapidly due to the improvement of both 
graphics architecture and implementing technologies. 
However the performance of stand-alone systems is 
still limited at the following aspects[Tim00a]: 
compute-limited, graphics-limited, interface-limited 
and resolution-limited. Parallelism is a crucial tool to 
building high performance graphics systems which 
can be used in high-end applications such as 
scientific visualization of large data set, high 
resolution display and photo-realistic rendering. 

By implementing type, parallel rendering systems 
can be classified as hardware based systems such as 
InfiniteReality[Joh97a] and Pixel-Flow[Joh97b], 
large-scale parallel machine based systems such as 
Parallel-Mesa[Tul98a] and PGL[Tho95a], cluster 
based systems such as WireGL[Gre01a], 
AnyGL[Jia02a], Display Wall[Rud00a] and 
Pomegranate[Mat00a]. By the way that multiple 
rendering pipelines are organized, parallel rendering 
systems can be classified as sort-first, sort-middle 
and sort-last.  

In sort-first, the screen space is divided into many 
rectangular regions and each processor is assigned a 
portion of the screen to render. Each primitive is pre-
transformed to determine which processor it belongs 
to. When the processors get all of the primitives that 
full into their respective portion of the screen, they 
work independently and each generates a sub-image 
which will be sent the one or more frame buffers to 
be displayed. 

In sort-middle, there is a set of transformation 
processors and a set of rasterization processors. Each 
rasterization processor is assigned a portion of the 
screen. Each transformation processor completely 
transforms its portion of the primitives and the 
resulting primitive information is classified by screen 
location and sent to the correct set of rasterization 
processors. Like in sort-first, multiple sub-images are 
seamed together to form a full size image to be 
displayed. 

In sort-last, each processor has a complete rendering 
pipeline and generates a full size image by rendering 
its fraction of the primitives. These image are sent 
across a network and depth composed to produced 
the final image to be displayed. 
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Sort-first and sort-middle systems all allocate 
rendering tasks by decomposing the screen into 
multiple regions. They both suffer from load 
imbalance for the primitives usually fall into screen 
in a random manner. There’re several approaches to 
solve the load-balancing problem including static 
methods and adaptive methods. We’ll present later 
an adaptive load-balancing method that takes 
rendering time as the measure of work load. 
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2. RELATED WORK 
Static methods divide the screen into more regions 
than there’re processors and assign them to the 
processors in an interlaced fashion. If the screen is 
divided finely enough, each processor tends to have 
portions of both populated and sparse areas, and thus 
the nearly equal loads. Static methods cause little 
cost, but they are passive approaches, there’s still the 
possibility that a high concentration of  the primitives 
will fall into one region causing load-imbalance. 
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Figure 1. Adaptive methods 

Adaptive methods change the screen dividing at 
runtime due to the distribution of work load. They 
come in a variety of algorithms. Roble’s[Car95] 
method(Figure 1-a) stars with a standard rectangular 
decomposition. According to the number of 
primitives in each region, lightly loaded regions are 
combined and highly loaded ones are split in half and 
assigned to the processors freed by the combining. 

Whelan’s[Whe85a] method(Figure 1-b), also known 
as media-cut algorithm, splits the screen into sub-
regions based upon the distribution of the centroids 
of each primitive. The cuts recursively divide the 
longer dimension of the screen until the number of 
regions equals the number of processors. 
Whitman’s[Whi94] top-down decomposition method 
(Figure 1-c) stats by tallying up primitives based 
upon how their bonding boxes overlap a fine mesh. 
A unit is added to each mesh cell that the bounding 
box overlaps. Then adjacent mesh cells are combined 
and summed hierarchically to form a tree structure. 
The tree is then traversed top-down by splitting the 
region with the most primitive in half each time. The 
subdividing goes on until the number of regions is 10 
time the number of processors. Dynamic task 
assignment is used to even out the processor load 
balance. 

MAHD[Car95](mesh-based adaptive hierarchical 
decomposition) method(Figure 1-d)  also uses a fine 
mesh to tally primitives. The amount tallied to each 
cell is inversely proportional to the number of cells a 
primitive covers. The cells are summed into a 
summed area table after all primitives have been 

counted. Finally the screen is divided along cell 
boundaries using a hierarchical approach similar to 
that of media-cut. The summed-area table allows a 
binary search operation to determine the location of 
each cut. 

 

All these adaptive methods need to transform 
primitives to screen coordinates which is somewhat 
questionable. For the amount of geometry primitives 
could be very large and transferring and computation 
of the data is very much time consuming. Graphics 
system are usually high-coupling ones, so using its 
media result is not practical. We present here a novel 
load balancing method which is independent of 
geometry data. It takes rendering time as the 
measurement of a node’s work load. By a time-to-
space algorithm it turns time value to space value 
which will be used to adjust the decomposition of 
screen. Empirical results show the effectiveness of 
this method. 

 

3. ARCHITECTURE OF ANT FORCE 
2 SYSTEM 
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Figure 2. Ant Force 2 system 

Figure 2 shows the architecture of Ant Force 2, a 
cluster-based sort first parallel rendering system. The 
control node gets user’s input and distributes 
rendering tasks to multiple render nodes. Graphics 
rendering is preformed by render nodes in a parallel 
manner. Image composition node receives all the 
sub-images produced by render nodes and generates 
the final image to be displayed. The control node 
embodies a load balancing module and each render 
node embodies a timer. 

Let the number of render nodes be n, A1~An be the 
rectangular regions of the screen, f be the count of 
frames. The screen regions of the frame f is (A1f, 
A2f, ……Anf) and rendering time of that frame is (t1f, 
t2f, ……tnf). The working process of the system is as 
following: 

Step 0: f=1. Euqally decompose the screen and get 
the regions of the 1st frame which is (A11, 
A21, ……An1). 



Step 1: Control node receives user’s input and 
command render node Rk to begin rendering region 
Akf (k=1,2……n) and start the timer of Rk. 

Step2: Rk renders Akf, stop timer and send a 
“RENDER_OVER” message with tkf to the control 
node. 

Step3: When each Rk finished its rendering task, 
control node command image composition node to 
do the composition and output final image. 

Step4: Control node calls time-space algorithm TS to 
get the decomposition strategy of the f+1th frame:  

(A1f+1, A2f+1, ……Anf+1)=  TS( ( A1f, A2f, ……Anf), 
(t1f, t2f, ……tnf)) 

Step5: f =f+1 

Step6: Goto Step 1 

 
TS is the essential of the method which calculates the 
next decomposition from the current one as well as 
rendering time. 

4. TIME TO SPACE: TS ALGORITHM 
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Figure 3. Vertical, horizontal and binary dividing 

There’re 3 types of screen dividing methods: vertical 
dividing, horizontal dividing and binary dividing as 
shown in Figure 3. When the system uses vertical 
dividing as Figure 3-a, (A1f, A2f, ……Anf) is 
determined by (w1,w2……wn) for all the regions 
have the same height. The input of real TS algorithm 
are: 

(w1,w2……wn) of the fth frame. 

Render time of the fth frame (t1,t2……tn) 

The expected output of TS is (w1’,w2’……wn’) for 
the f+1th frame’s rendering. 

The process of TS is as following: 

Step1. Get average value of (t1,t2……tn): 
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Figure 4. Principle of TS algorithm 

Figure 4 shows the principle of TS algorithm. 
Assume that region 1,2,3 are rendered by nodes R1, 
R2, R3 and render times are 1sec, 2sec and 3sec. It’s 
assumed that the proportions of the work load of R1, 
R2, R3 are 1:2:3. The regions are then decomposed 
according to this proportion. Finally small regions 
are reorganized inot 3 regions in a load-euqal manner. 

To horizontal dividing, the TS algorithm is the same 
to that of vertical dividing. To binary dividing, TS 
algorithm uses a time binary tree as showed in Figure 
3-d. The process of TS algorithm for binary dividing 
is as following: 

Step 1: Fresh the time binary tree. 

Step 2: Top-down traverse the tree. For each non-leaf 
level call TS to do horizontal or vertical cutting. 

Comparing to other adaptive load balancing methods, 
the method presented here gives up geometry data 
which could be very large and to handle it tends to be 
time consuming. Instead it takes rendering time 
which reflects the work load of a render node well. 
TS algorithm turns time value to space value. From 
the processes we can see that the complexity of of TS 
for vertical and horizontal dividing is O(n2) and for 
binary dividing is O(n) where n is the count of render 
nodes. 

5. TEST RESULTS 
The load balancing method of this paper is run and 
tested on Ant Force 2. Figure 5 shows the render 
time for a series of frames. In Figure 5-a and b 
horizontal dividing is used. In Figure 5-c binary 
dividing is used. To measure the state of load balance 

we define a parameter 
first

render

T
T

=LB
, where Tfirst is the 

render time of the node that finish its job first and 
Trender is the total time that all nodes finish 



rendering. Figure 6 shows LB values according to 
Figure 5.  

From the result we can see that rendering speed is 
improved by using the load balancing method. The 
average rendering time with load-balancing is 
60%~80% of that without load-balancing. LB is also 
improved 1.3~3.4 times by the method. The cost of 
the load balancing method is pretty low which is 
2.3%~8.2% of total rendering time. It includes the 
cost of both TS computing and message exchanging 
over network. 
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6. CONCLUSION  
Load balance severely impact the performance of 
sort-first and sort-middle parallel systems. The main 
difficulty of this problem is that the resource a load 
balancing method can use is limited and often little in 
the real world. Handling geometry tends to cause 
unacceptable cost. The geometry data independent 
method presented in this paper get render time and 
utilize it to perform future screen decomposition by 
TS algorithm. The cost of this method is pretty low 

and practical result show the effectiveness of this 
method. 
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