
A Geometry Data Independent Load Balancing
Method For Graphics Parallel Rendering

Zhefan Jin

State Key Lab of CAD&CG, Zhejiang University.
 310027, HangZhou, PRC.

jinzf@cad.zju.edu.cn

JiaoYing Shi
State Key Lab of CAD&CG, Zhejiang University.

 310027, HangZhou, PRC.

jyshi@cad.zju.edu.cn

ABSTRACT
We describe a novel load-balancing method for sort-first parallel graphics rendering systems. It gives up
geometry data which could be very large and tends to cause unacceptable cost. Instead it takes rendering time as
the measurement of render nodes’ work load and produces new screen decomposition using a time-to-space
algorithm. Test results show that the geometry data independent method is very effective.

Keywords
sort-first, load balance, geometry data, screen division

1. INTRODUCTION
The performance of computer graphics systems is
growing rapidly due to the improvement of both
graphics architecture and implementing technologies.
However the performance of stand-alone systems is
still limited at the following aspects[Tim00a]:
compute-limited, graphics-limited, interface-limited
and resolution-limited. Parallelism is a crucial tool to
building high performance graphics systems which
can be used in high-end applications such as
scientific visualization of large data set, high
resolution display and photo-realistic rendering.

By implementing type, parallel rendering systems
can be classified as hardware based systems such as
InfiniteReality[Joh97a] and Pixel-Flow[Joh97b],
large-scale parallel machine based systems such as
Parallel-Mesa[Tul98a] and PGL[Tho95a], cluster
based systems such as WireGL[Gre01a],
AnyGL[Jia02a], Display Wall[Rud00a] and
Pomegranate[Mat00a]. By the way that multiple
rendering pipelines are organized, parallel rendering
systems can be classified as sort-first, sort-middle
and sort-last.

In sort-first, the screen space is divided into many
rectangular regions and each processor is assigned a
portion of the screen to render. Each primitive is pre-
transformed to determine which processor it belongs
to. When the processors get all of the primitives that
full into their respective portion of the screen, they
work independently and each generates a sub-image
which will be sent the one or more frame buffers to
be displayed.

In sort-middle, there is a set of transformation
processors and a set of rasterization processors. Each
rasterization processor is assigned a portion of the
screen. Each transformation processor completely
transforms its portion of the primitives and the
resulting primitive information is classified by screen
location and sent to the correct set of rasterization
processors. Like in sort-first, multiple sub-images are
seamed together to form a full size image to be
displayed.

In sort-last, each processor has a complete rendering
pipeline and generates a full size image by rendering
its fraction of the primitives. These image are sent
across a network and depth composed to produced
the final image to be displayed.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG POSTERS proceedings
WSCG’2004, February 2-6, 2004, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Sort-first and sort-middle systems all allocate
rendering tasks by decomposing the screen into
multiple regions. They both suffer from load
imbalance for the primitives usually fall into screen
in a random manner. There’re several approaches to
solve the load-balancing problem including static
methods and adaptive methods. We’ll present later
an adaptive load-balancing method that takes
rendering time as the measure of work load.

mailto:jyshi@cad.zju.edu.cn

2. RELATED WORK
Static methods divide the screen into more regions
than there’re processors and assign them to the
processors in an interlaced fashion. If the screen is
divided finely enough, each processor tends to have
portions of both populated and sparse areas, and thus
the nearly equal loads. Static methods cause little
cost, but they are passive approaches, there’s still the
possibility that a high concentration of the primitives
will fall into one region causing load-imbalance.

1 2

3 4

5
6

7 8

1

2 3

4

5 6

7 8

（b） Whelan’s method

(c)Whitman’s method

1 2

5

(d)MADH method

3 4

6

7 8

4

2

4

1

2

3

4

(a) Roble’s method

Figure 1. Adaptive methods

Adaptive methods change the screen dividing at
runtime due to the distribution of work load. They
come in a variety of algorithms. Roble’s[Car95]
method(Figure 1-a) stars with a standard rectangular
decomposition. According to the number of
primitives in each region, lightly loaded regions are
combined and highly loaded ones are split in half and
assigned to the processors freed by the combining.

Whelan’s[Whe85a] method(Figure 1-b), also known
as media-cut algorithm, splits the screen into sub-
regions based upon the distribution of the centroids
of each primitive. The cuts recursively divide the
longer dimension of the screen until the number of
regions equals the number of processors.
Whitman’s[Whi94] top-down decomposition method
(Figure 1-c) stats by tallying up primitives based
upon how their bonding boxes overlap a fine mesh.
A unit is added to each mesh cell that the bounding
box overlaps. Then adjacent mesh cells are combined
and summed hierarchically to form a tree structure.
The tree is then traversed top-down by splitting the
region with the most primitive in half each time. The
subdividing goes on until the number of regions is 10
time the number of processors. Dynamic task
assignment is used to even out the processor load
balance.

MAHD[Car95](mesh-based adaptive hierarchical
decomposition) method(Figure 1-d) also uses a fine
mesh to tally primitives. The amount tallied to each
cell is inversely proportional to the number of cells a
primitive covers. The cells are summed into a
summed area table after all primitives have been

counted. Finally the screen is divided along cell
boundaries using a hierarchical approach similar to
that of media-cut. The summed-area table allows a
binary search operation to determine the location of
each cut.

All these adaptive methods need to transform
primitives to screen coordinates which is somewhat
questionable. For the amount of geometry primitives
could be very large and transferring and computation
of the data is very much time consuming. Graphics
system are usually high-coupling ones, so using its
media result is not practical. We present here a novel
load balancing method which is independent of
geometry data. It takes rendering time as the
measurement of a node’s work load. By a time-to-
space algorithm it turns time value to space value
which will be used to adjust the decomposition of
screen. Empirical results show the effectiveness of
this method.

3. ARCHITECTURE OF ANT FORCE
2 SYSTEM

Render ClusterLoad
Balancing

Control Node

Timer

Render Node

Image
Composition

network

Timer

Render Node

Timer

Render Node

Timer

Render Node

Figure 2. Ant Force 2 system

Figure 2 shows the architecture of Ant Force 2, a
cluster-based sort first parallel rendering system. The
control node gets user’s input and distributes
rendering tasks to multiple render nodes. Graphics
rendering is preformed by render nodes in a parallel
manner. Image composition node receives all the
sub-images produced by render nodes and generates
the final image to be displayed. The control node
embodies a load balancing module and each render
node embodies a timer.

Let the number of render nodes be n, A1~An be the
rectangular regions of the screen, f be the count of
frames. The screen regions of the frame f is (A1f,
A2f, ……Anf) and rendering time of that frame is (t1f,
t2f, ……tnf). The working process of the system is as
following:

Step 0: f=1. Euqally decompose the screen and get
the regions of the 1st frame which is (A11,
A21, ……An1).

Step 1: Control node receives user’s input and
command render node Rk to begin rendering region
Akf (k=1,2……n) and start the timer of Rk.

Step2: Rk renders Akf, stop timer and send a
“RENDER_OVER” message with tkf to the control
node.

Step3: When each Rk finished its rendering task,
control node command image composition node to
do the composition and output final image.

Step4: Control node calls time-space algorithm TS to
get the decomposition strategy of the f+1th frame:

(A1f+1, A2f+1, ……Anf+1)= TS((A1f, A2f, ……Anf),
(t1f, t2f, ……tnf))

Step5: f =f+1

Step6: Goto Step 1

TS is the essential of the method which calculates the
next decomposition from the current one as well as
rendering time.

4. TIME TO SPACE: TS ALGORITHM

(a)vertical dividing (b)horizontal dividing (c)binary dividing (d)time binary tree

3

21

4

5 6

7 8
t
1

w
i

h
i

t
2
t
3

t
4
t
5 t6 t7 t

8
Figure 3. Vertical, horizontal and binary dividing

There’re 3 types of screen dividing methods: vertical
dividing, horizontal dividing and binary dividing as
shown in Figure 3. When the system uses vertical
dividing as Figure 3-a, (A1f, A2f, ……Anf) is
determined by (w1,w2……wn) for all the regions
have the same height. The input of real TS algorithm
are:

(w1,w2……wn) of the fth frame.

Render time of the fth frame (t1,t2……tn)

The expected output of TS is (w1’,w2’……wn’) for
the f+1th frame’s rendering.

The process of TS is as following:

Step1. Get average value of (t1,t2……tn):

1

1 n

m
m

t t
n =

= ∑

Step2. Calculate (, in which

0 1,...)np p p ,

0
1

, 0
u

u v
v

p t p
=

= =∑

Step3. 0 ' 0w =

Step4. for (i=1 to n)

{

 for (a=0 to n-1)

 {

 if],[1+∈⋅ aa ppti ,break;

}

∑ ∑
=

−

=+

+ −+−⋅=
a

j

i

k
kj

a

a
ai ww

t
wptiw

1

1

11

1 ')('

 }

1 sec

2 sec

3 sec
Figure 4. Principle of TS algorithm

Figure 4 shows the principle of TS algorithm.
Assume that region 1,2,3 are rendered by nodes R1,
R2, R3 and render times are 1sec, 2sec and 3sec. It’s
assumed that the proportions of the work load of R1,
R2, R3 are 1:2:3. The regions are then decomposed
according to this proportion. Finally small regions
are reorganized inot 3 regions in a load-euqal manner.

To horizontal dividing, the TS algorithm is the same
to that of vertical dividing. To binary dividing, TS
algorithm uses a time binary tree as showed in Figure
3-d. The process of TS algorithm for binary dividing
is as following:

Step 1: Fresh the time binary tree.

Step 2: Top-down traverse the tree. For each non-leaf
level call TS to do horizontal or vertical cutting.

Comparing to other adaptive load balancing methods,
the method presented here gives up geometry data
which could be very large and to handle it tends to be
time consuming. Instead it takes rendering time
which reflects the work load of a render node well.
TS algorithm turns time value to space value. From
the processes we can see that the complexity of of TS
for vertical and horizontal dividing is O(n2) and for
binary dividing is O(n) where n is the count of render
nodes.

5. TEST RESULTS
The load balancing method of this paper is run and
tested on Ant Force 2. Figure 5 shows the render
time for a series of frames. In Figure 5-a and b
horizontal dividing is used. In Figure 5-c binary
dividing is used. To measure the state of load balance

we define a parameter
first

render

T
T

=LB
, where Tfirst is the

render time of the node that finish its job first and
Trender is the total time that all nodes finish

rendering. Figure 6 shows LB values according to
Figure 5.

From the result we can see that rendering speed is
improved by using the load balancing method. The
average rendering time with load-balancing is
60%~80% of that without load-balancing. LB is also
improved 1.3~3.4 times by the method. The cost of
the load balancing method is pretty low which is
2.3%~8.2% of total rendering time. It includes the
cost of both TS computing and message exchanging
over network.

(c)campus, 133540 facets and 30M texture

load balancing

no load balancing

sec

frame

sec

sec

frame

frame

load balancing

no load balancing

load balancing

no load balancing

(a)hand, 654666 facets (b)dragon, 871414 facets

Figure 5. Test result of render time

LB

frame

LB

frame

(a)hand, no load balancing (b)hand, with load balancing

LB

frame frame

(a)dragon, no load balancing (d)dragon, with load balancing
LB

frame

load balancing

no load balancing

(e)campus
Figure 6. Test result of LB

6. CONCLUSION
Load balance severely impact the performance of
sort-first and sort-middle parallel systems. The main
difficulty of this problem is that the resource a load
balancing method can use is limited and often little in
the real world. Handling geometry tends to cause
unacceptable cost. The geometry data independent
method presented in this paper get render time and
utilize it to perform future screen decomposition by
TS algorithm. The cost of this method is pretty low

and practical result show the effectiveness of this
method.

REFERENCES
[Tim00a] Tim Davis, Alan Chalmers, Henrik Wann

Jensen[2000]. Pra-ctical Parallel Processing for
Realistic Rendering, SIGGRAPH 2000, Course
30

[Joh97a] John S. Montrym, Daniel R. Baum, David
L. Dignam, Chr-istopher J. Migdal.
InfiniteReality: A Real-Time Gra-phics System.
Proceedings of SIGGRAPH ‘97, pages 293--302,
Aug. 1997.

[Joh97b] John Eyles, Steven Molnar . PixelFlow
Rasterizer Functional Description. Revision 7.0,
November 20, 1997.

[Tul98a] Tulika Mitra, Tzicker Chiueh .
Implementation and Evaluation of Parallel Mesa
Library. IEEE International Conference on
Parallel and Distributed Systems, December 1998.

[Tho95a] Thomas W. Crocket. Parallel Rendering.
NASA Contractor Report 195080 ICASE Report
No. 95-31 . http://www.icase.edu/~tom/95-31.pdf

[Gre01a] Greg Humphreys, Matthew Eldridge, Ian
Buck, Gordon Stoll, Matthew, Pat Hanrahan.
WireGL: A Scalable Graphics System for
Clusters. In Proceedings of ACM SIGGRAPH
2001

[Jia02a] Jian Yang, Jiaoying Shi, Zhefan Jin and Hui
Zhang, “Design and Implementation of A Large-
scale Hybrid Distributed Graphics System”,
Eurographics Workshop on Parallel Graphics and
Visualization, Saarbruecken, Germany, 2002

[Rud00a] Rudrajit Samanta, Thomas Funkhouser,
Kai Li, Jaswinder Pal Singh. Hybrid Sort-First
and Sort-Last Parallel Rendering with a Cluster
of PCs. Eurographics/SIGGRAPH Graphics
Hardware Workshop 2000.

[Mat00a] Matthew Eldridge Homan Igehy Pat
Hanrahan [2000]. Pomegranate: A Fully Scalable
Graphics Architecture. In: Proceeding of ACM
SIGGRAPH 2000,

[Whe85a] Whelan Daniel. Animac: A
Multiprocessor Architecture for Real-Time
Computer Animation, Ph.D. dissertation,
California Institute of Technology, 1985.

[Whi94] S. Whitman. Dynamic Load Balancing for
Parallel Polygon Rendering. IEEE Computer
Graphics andApplications,14(4),1994

[Car95] Carl Mueller [1995]. The Sort-First
Rendering Architecture for High-Performance
Graphics. In Proceedings of the 1995 Symposium
on Interactive 3D Graphics, pages 75-82, Apr.
1995.

http://www.icase.edu/~tom/95-31.pdf

