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Plzeň, 2013 Pavla Fraňková
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kind assistance during project.

I hereby declare that this Diploma’s Thesis is the result of my own work and
that all external sources of information have been duly acknowledged.

.......................................
Pavla Fraňková
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Abstract

We deal with the geometrical multigrid with aggressive coarsening and polynomial
smoothing. We give a brief introduction to the finite elements method and geo-
metric multigrid. We implement the multigrid solver in Matlab. Our main task
is to prove results of [18] numerically. We analyze the main parts of the problem
and try to make them more effective. We also implement the problem in Fortran
90 code, so that we could refine the mesh and compute the coarsening matrix at
the same time.

Key words

Geometric multigrid, polynomial smoothers, aggressive coarsening, iterative meth-
ods

Abstrakt

Zabýváme se geometrickým multigridem s agresivńım zhrubováńım a polynomiálńım
hlazeńım. Podáme stručný úvod do metody konečných prvk̊u a multigridu. V daľśı
části implementujeme multigrid v Matlabu. Analyzujeme hlavńı části programu
s ohledem na rychlost výpočtu. Také je provedena implementace ve Fortranu 90,
která umožňuje poč́ıtat zjemňováńı śıtě a asemblováńı hrub́ıćı matice najednou.
Výsledky [18] byly numericky prokázány na několika př́ıkladech.

Kĺıčová slova

Geometrický multigrid, polynomiálńı hladič, agresivńı zhrubováńı, iteračńı metody
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Introduction

The multigrid methods are strong tools for solving systems of linear equations.
In this thesis we focus on the geometric multigrid. In the geometric multigrid we
start with the coarse level and by refining the coarse mesh we obtain a system of
nested meshes.
Our main interests lead to the multigrid with aggressive coarsening and polynomial
smoothing. When using such a coarsening, the coarse space is much smaller than
the fine space. It was theoretically proved that if we use a special polynomial
smoother, the uniform convergence can be achieved. This can be done if the
degree of the smoother reflects the coarsening factor. It will be our aim to verify
the convergence results in [18], which say that when we use such a polynomial

smoother S, the convergence is uniform under assumption deg(S) < C hk+1

hk
, C > 0,

where hk and hk+1 are the characteristic resolutions for the finer resp. coarser grid.
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Chapter 1

Variational Formulation of
Elliptic problems

1.1 Spaces of Continuous Functions

Let N denote the set of non-negative integers. An n-tuple

α = (α1, . . . , αn) ∈ N
n

is called a multi-index. The non-negative integer |α| := α1 + . . . αn is referred to
as the length of the multi-index α = (α1, . . . , αn). Let

Dα =
∂|α|

∂xα1

1 . . . ∂xαn
n

.

Let Ω be an open set in R
n and k ∈ N. We denote by Ck(Ω) the set of all

continuous real - valued functions defined on Ω such that Dαu is continuous on Ω
for all α = (α1, . . . , αn) with |α| ≤ k. Assuming that Ω is a bounded set, Ck(Ω̄)
will denote the set of all u in Ck(Ω) such that Dαu can be extended from Ω to a
continuous function on Ω̄.
Ck(Ω̄) can be equipped with the norm

‖u‖Ck ¯(Ω) :=
∑

|α|≤k

sup
x∈Ω
|Dαu(x)|.

We denote the space of continuous functions by C(Ω̄) with norm

‖u‖C(Ω̄) = max
x∈Ω̄
|u(x)|.

The support of a continuous function of u defined on an open set Ω ⊂ R
n is defined

as the closure in Ω of the set {x ∈ Ω : u(x) 6= 0}.
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We denote by Ck
0 (Ω) the set of all u contained in Ck(Ω) whose support is a

bounded subset of Ω. Let
C∞

0 (Ω) =
⋂

k≥0

Ck
0 (Ω).

1.2 Spaces of integrable functions

We consider a class of spaces that consist of Lebesgue integrable functions. Let p
be a real number, p ≥ 1, we denote by Lp(Ω) the set of all real - valued functions
defined on an open subset Ω of R

n such that

∫

Ω

|u(x)|pdx <∞.

Lp(Ω) is equipped with the norm

‖u‖Lp(Ω) :=

(∫

Ω

|u(x)|pdx
)1/p

.

An important case corresponds to taking p = 2. Then

‖u‖L2(Ω) =

(∫

Ω

|u(x)|2dx
)1/2

.

The space L2(Ω) can be equipped with the inner product

(u, v) :=

∫

Ω

u(x)v(x)dx.

Clearly ‖u‖L2(Ω) = (u, u)1/2.

Lemma 1 (The Cauchy-Schwarz inequality). Let u and v belong to L2(Ω), then
u, v ∈ L1(Ω) and

|(u, v)| ≤ ‖u‖L2(Ω)‖v‖L2(Ω).

1.3 Sobolev Spaces

Let k be a nonnegative integer and suppose that p ∈ [1,∞]. We define (with Dα

denoting a derivative of order |α|)

W k
p (Ω) = {u ∈ Lp(Ω) : Dα ∈ Lp(Ω), |α| ≤ k.}
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W k
p (Ω) is called a Sobolev space of order k- It is equiped with the (Sobolev) norm

‖u‖W k
p (Ω) :=





∑

|α|≤k

‖Dαu‖pLp(Ω)





1/p

when 1 ≤ p <∞.

Letting

|u|W k
p (Ω) :=





∑

|α|=k

‖Dαu‖pLp(Ω)





1/p

when 1 ≤ p <∞,

for p ∈ [1,∞), we can write

|u|W k
p (Ω) :=

(

k
∑

j=0

|u|pLp(Ω)

)1/p

when 1 ≤ p <∞.

An important special case corresponds to taking p = 2, the space W k
p (Ω) is then

a Hilbert space with inner product

(u, v)W k
p (Ω) :=

∑

|α|≤k

(Dα, Dα).

We shall usually write Hk(Ω) instead of W k
p (Ω). The definition of W k

p (Ω) and its
norm and semi norm, for p = 2, k = 1, give:

H1(Ω) = {u ∈ L2(Ω) :
∂u

∂x j
∈ L2(Ω), j = 1, . . . , n},

‖u‖H1(Ω) :=

(

‖u‖2Lp(Ω) +
n
∑

k=1

‖∂u
∂x i
‖2Lp(Ω)

)1/2

.

|u|H1(Ω) :=

(

n
∑

k=1

‖∂u
∂x i
‖2Lp(Ω)

)1/2

.

H2(Ω) =

{

u ∈ L2(Ω) :
∂u

∂x j
∈ L2(Ω), j = 1, . . . , n,

∂2u

∂xi∂xj

∈ L2(Ω), j = 1, . . . , n

}

,

‖u‖H2(Ω) :=

(

‖u‖2Lp(Ω) +
n
∑

k=1

‖∂u
∂x i
‖2Lp(Ω) +

n
∑

k=1

‖ ∂2u

∂xi∂xj

‖2Lp(Ω)

)1/2

.
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|u|H2(Ω) :=

(

n
∑

k=1

‖ ∂2u

∂xi∂xj

‖2Lp(Ω)

)1/2

.

Finally, we define the Sobolev space H1
0 (Ω) as the closure of C∞

0 (Ω) in the
norm ‖ ·‖H1(Ω). H

1
0 (Ω) is the set of all u ∈ H1(Ω) such that u is the limit in H1(Ω)

of sequence {um}∞m=1 with um ∈ C∞
0 (Ω) . For sufficiently smooth ∂Ω the is

H1
0 (Ω) = {u ∈ H1(Ω) : u = 0 on ∂Ω.}

1.4 Variational formulation for Poisson Equation

Theorem 1. For sufficiently smooth functions v and w there holds

∫

Ω

∇v∇wdx =

∫

∂Ω

∂w

∂n
ds−

∫

Ω

v∆wdx.

The first integral on the right-hand side denotes integration with respect to the arc
length s along ∂Ω

Proof. Recall the divergence theorem:

∫

Ω

divAdx =

∫

∂Ω

Ands.

Setting A=(vw,0) and A=(0,vw) we obtain

∫

Ω

∂v

∂x i
wdx+

∫

Ω

v
∂w

∂x i
dx =

∫

∂

Ωvwnids, i = 1, 2.

This gives
∫

Ω

∇v∇wdx =

∫

Ω

(

∂v

∂x1

∂w

∂x 1
+
∂v

∂x2

∂w

∂x 2

)

dx

=

∫

∂Ω

(

v
∂w

∂x 1
n1 + v

∂w

∂x 2
n2

)

ds−
∫

Ω

v

(

∂2w

∂2x 1
+ v

∂2w

∂2x 2

)

dx

=

∫

∂Ω

v
∂w

∂n
ds−

∫

∂Ω

v∆wdx

�
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For sufficiently smooth bounded domain Ω ⊂ R
2 with boundary ∂Ω we consider

the homogeneous Dirichlet problem for the Poisson equation :

−∆u = f in Ω
u = f on ∂Ω

. (1.1)

Using Green’s formula we find the variational formulation of 1.1. We define the
space

V = {v : v is continuous on Ω,
∂v

∂x1
,
∂v

∂x2
are p.w. cont. on Ω and v = 0 on ∂Ω}.

We multiply the Poisson equation by v ∈ V , integrate over Ω and after using the
first Green formula we find u that satisfies

u ∈ V : a(u, v) = (f, v) ∀v ∈ V (1.2)

with

a(u, v) :=

∫

Ω

∇u∇vdx and (f, v) :=

∫

Ω

fvdx

The corresponding minimization problem is:

u ∈ V : F (u) ≤ F (v) ∀v ∈ V and F (v) :=
1

2
a(v, v)− (f, v).

It this place, we remind some facts needed for the next section:
Let V be a linear space. L : V → R is called a linear form if

L(βv + αw) = βL(v) + αL(w) ∀v, w ∈ V, β, α ∈ R.

a(., .) is a bilinear form on V × V if a : V × V → R and if it is linear in both
arguments:

a(u, βv + αw) = βa(u, v) + αa(u,w),

a(βv + αw, u) = βa(u,w) + αa(u, v), ∀u, v, w ∈ V, β, α ∈ R.

The bilinear form is called symmetric if

a(u,w) = a(w, u) ∀u,w ∈ V.

1.5 Unique Solvability of Variational Formula-

tion

In this section we will deal with existence and uniqueness of a solution to the
problem

u ∈ V : a(u, v) = L(v) ∀v ∈ V.
Here V is a Hilbert space with inner product 〈·, ·〉 and norm ‖·‖, a(·, ·) is a bilinear
form and L : V → R is a linear form. Here we need some properties of a and L.
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Definition 1. The linear form L : V → R is called continuous or bounded if

∃C > 0 : |L(v)| ≤ C‖v‖ ∀v ∈ V

Definition 2. The bilinear form a : V × V → R is called continuous or bounded
if

∃Ca > 0 : |a(v, w)| ≤ Ca‖v‖‖w‖ ∀v, w ∈ V

Definition 3. The bilinear form a : V × V → R is called V -elliptic if

∃α > 0 : |a(v, v)| ≥ α‖v‖2 ∀v ∈ V

Theorem 2 (Banach fixed point theorem). Let V be a Banach space (a complete
vector space not necessarily having an inner product) and let φ : V → V be a
contraction, i.e.

∃c, 0 ≤ c < 1 : ‖φ(v)− φ(w)‖ ≤ c‖v − w‖ ∀v, w ∈ V.

There exists a unique u ∈ V such that

φ(u) = u.

Theorem 3 (Riesz representation theorem). Let V is a Hilbert space with inner
product 〈·, ·〉 and norm ‖·‖. Any element w ∈ V defines a continuoues linear form
L ∈ V ′ by L := 〈w, v〉. On the other hand, for any continuous linear form L ∈ V ′

there exists a unique element RL ∈ V such that

L(v) = 〈RL, v〉 ∀v ∈ V

Moreover, there holds ‖RL‖ = ‖L‖V ′, i.e.

‖R‖V ′→V := sup
G∈V ′{0}

‖RG‖
‖G‖V ′

= 1

Theorem 4 (Lax-Milgram theorem). V is a Hilbert space with inner product 〈·, ·〉
and norm ‖ · ‖, a(·, ·) is continuous, V-elliptic bilinear form and L : V → R is
continous linear form. Then the variational problem has a unique solution u ∈ V .

Example 1. We now consider the two-dimensional variational formulation for
Poisson problem with Dirichlet boundary conditions:

a(u, v) = L(v),
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where u, v ∈ H1
0 (Ω), a(u, v) =

∫

Ω
∇u∇vdx and L(v) =

∫

Ω
fvdx. Linearity and

bilinearity is clear due to the linearity of the integrals provided that f ∈ L2(Ω). To
prove the boundeness of L we use the Cauchy-Schwarz inequallity

|L(v)| = |
∫

Ω

fvdx| ≤ ‖f‖L2(Ω)‖v‖L2(Ω) ≤ ‖f‖L2(Ω)‖v‖H1(Ω).

We used the bound ‖v‖L2(Ω) ≥ ‖v‖H1(Ω) which holds by definition on the H1(Ω)
norm. The continuity of a can be shown with Cauchy-Schwarz again.

|a(v, w)| ≤ ‖∇v‖L2(Ω)‖∇w‖L2(Ω) ≤ ‖∇v‖H1(Ω)‖∇w‖H1(Ω).

Here we get continuity with Ca = 1. We now check the H1
0 (Ω)-ellipticity of a. We

need to find a constant α < 0 such that there holds

a(v, v) =

∫

Ω

|∇|2dx ≤ α‖v‖2H1(Ω).

We use the Poincaré’s inequality

∫

Ω

v2(x)dx ≤ C

∫

Ω

|∇v(x)|2dx ∀v ∈ H1
0 (Ω).

We then obtain that holds for α = 1
C+1

.

1.5.1 Natural and Essential Boundary Conditions

We now consider a boundary problem where the normal derivative is prescribed.
such a problem is called Neumann boundary problem:

{

−∆u = f in Ω
∂u
∂n

= g on ∂Ω
. (1.3)

Here, Ω ⊂ R
2 is again a bounded domain with Lipschitz continuous boundary ∂Ω

and ∂u
∂n

denotes the outward normal derivative of u on ∂Ω The boundary condi-
tions is called Neumann boundary condition. Again, we multiply the differential
equation by a test function v ∈ H1(Ω) and integrate over Ω. Using that ∂u

∂n
= g

on ∂Ω, the first Green formula gives

(f, v) =

∫

Ω

−∆uvdx = −
∫

∂Ω

∂u

∂n
vds+

∫

Ω

∇u∇vdx =

−(g, v)∂Ω + (∇u,∇v) = a(u, v)− (g, v)∂Ω.

9



The variational formulation of is

u ∈ H1(Ω) : a(u, v) = (f, v) + (g, v)∂Ω, ∀v ∈ H1(Ω),

where

a(u, v) = (∇u,∇v) and (g, v)∂Ω :=

∫

∂Ω

gvds.

Remark: Note that the Neumann boundary condition appears in the variational
formulation and is not incorporated in the space V = H1(Ω). It is therefore called
natural boundary condition. In contrast, a Dirichlet boundary condition of the
type u = on ∂Ω enters the variational formulation by choosing V appropriately
to reflect this condition, V ⊂ H1

0 (Ω) ⊂ H1(Ω) here.Therefore, Dirichlet boundary
conditions are called essential boundary conditions.

1.6 Finite Element Approximation

We now introduce the finite element method for the solution of 1.2. Let us assume,
for simplicity, that Ω is a polygonal domain. We then consider a triangulation
Th = {Kj := j = 1, . . . ,m} of Ω into triangles (elements) Kj, i.e.

Ω =
⋃

K∈Th

K.

Here we assume that any two triangles are disjoint or intersect at any single vertex
or an entire edge. The triangulation is called a mesh on Ω. We define

hk = diameter of K = length of longest side of K,

ρk = diameter of the longest circle in K.

With such a mesh we associate a mesh size defined by

h = max
K∈Th

diameter(K).

We also require
ρk

hk

≥ β

for β > 0 independent of h and for all K ∈ Th.
It will be assumed that we use a regular mesh: any pair of triangles in a

triangulation on Ω intersect along a complete edge, at a vertex or not at all. Such
meshes are shown in the figure 1

10



Figure 1.1: Examples of the regular triangulations

We now consider the case V = H1(Ω) and

Vh = {v ∈ V : v|K ∈ P0(K)∀K ∈ Th},

where Th is a triangulation of Ω, which is assumed to be polygonal. Here, P0(Ω)
denotes the space of polynomials of degree 1 on K.

Our finite element space then is

Vh = {v : v is continuous on Ω, v|kis linear for K ∈ Th, v = 0 on ∂Ω}.

The dimension of Vh is the number M of interior nodes of the mesh Th. We now
label all the nodes of the triangulation and associate each node Ni to one piecewise
linear function ϕi, which is one at the node, see figures 1.2 and 1.3

It is immediate that the functions ϕ ∈ Vh defined by

ϕ(Ni) = δij =

{

1 if i = j
0 if i 6= j

, i, j = 1, . . . ,M

form a basis of Vh. We can represent any v ∈ Vh as a linear combination of the
basis functions,

v =
M
∑

j=1

ηjϕj where ηj = v(Nj).

The finite element scheme for 1.2 reads: Find uh ∈ Vh such that

a(uh, v) = (f, v) ∀v ∈ Vh.

This is equivalent to the linear system

Aξ = b,

11



N1

N2

N3

K

Figure 1.2: Triangulation on Ω

Figure 1.3: Basis function ϕi
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where A = (aij is the M ×M stiffness matrix with elements

aij = a(ϕi, ϕj) =

∫

Ω

∇ϕi∇ϕjdx, i, j, . . . ,M,

b = (bi) ∈ RM is the load vector with

bi = (f, ϕj) =

∫

Ω

fϕi∇dx, i, . . . ,M,

and the solution vector ξ = (ξi) ∈ RM satisfies ξi = uh(Mi), i = 1, . . . ,M .

1.6.1 Interpretation of the Galerkin Orthogonality

Now suppose that Vhis a finite dimensional subspace of H1
0 . As before, the finite

approximation of

find u ∈ H1
0 (Ω) such that a(u, v) = L(v) ∀v ∈ H1

0 (Ω).

is:
find uh in Vh such that a(uh, vh) = L(vh) for all vh ∈ Vh.

Since it holds for any v ∈ Vh, it also holds for vh. We therefore have

a(u, vh) = L(vh) ∀v ∈ Vh.

Subtracting these two equations we get the Galerkin orthogonality

a(u− uh, vh) = 0 ∀vh ∈ Vh.

We now continue and denote v = u − uh ∈ H1
0 . From one of Lax-Milgram

assumption (V-ellipticity of a) we have that

‖u− uh‖2H1(Ω) ≤
1

α
a(u− uh, u− uh),

‖u− uh‖2H1(Ω) ≤
1

α
a(u− uh, u− uh),

From Galerkin orthogonality we have a(u, vh) = a(u, uh) ∀vh ∈ Vh and it follows
that

‖u− uh‖2H1(Ω) ≤
1

α
a(u− uh, u− uv).

The boundedness of a gives

a(u− uh, u− uv) ≤ Ca‖u− uh‖H1(Ω)‖u− uh‖H1(Ω).

13



0 uh

Vh

u

H1
0

u− uh

Figure 1.4: Interpretation of the Galerkin orthogonality

Combining the last two inequalities, we obtain that

‖u− uh‖H1(Ω) ≤
Ca

α
‖u− vh‖H1(Ω)∀vh ∈ Vh.

This result is known as Céa’s lemma:

Lemma 2 (Céa’s lemma). The finite element approximation uh to u ∈ H1
0 (Ω), the

weak solution to the problem , is the nearest-best fit to u in the norm | · ‖H1(Ω):

‖‖u− uh‖H1(Ω) ≤
Ca

α
min
vh∈Vh

‖u− vh‖H1(Ω)‖.

The orthogonality of error u− uh to the space h is shown in the picture 1.4

1.6.2 Matrix assembly

To efficiently organize this computation one uses an element-oriented strategy.
Using the decomposition Ω =

⋃

K∈Th
K we find for any i, j,∈ {1, . . . ,M} that

a(ϕi, ϕj) =

∫

Ω

∇ϕi∇ϕjdx =
∑

K∈Th

∫

K

∇ϕi∇ϕjdx =
∑

K∈Th

aK(ϕi, ϕj).

There holds aK(ϕi, ϕj) = 0 unless both nodes Ni and Nj are vertices of the triangle
K. Therefore, to calculate aK(ϕi, ϕj), one only needs to consider the numbers

14



i, j ∈ {1, . . . ,M} which correspond to nodes Ni, Nj of K. For arbitrary fixed
K ∈ Th let Ni, Nj, Nk denote three vertices. We then call the 3× 3-matrix

Ak :=





aK(ϕi, ϕi) aK(ϕi, ϕj) aK(ϕi, ϕk)
aK(ϕj, ϕk) aK(ϕj, ϕj)

sym aK(ϕk, ϕk)





the local stiffness matrix for K. A is sometimes called global stiffness matrix
to distinguish it from the local stiffness matrices. To calculate Ak one obviously
needs only the restrictions of the basis functions ϕi, ϕj, ϕk. Let us denote these
restrictions by

ψi := ϕi|K, ψj := ϕj|K, ψk := ϕk|K.
Each of these functions is linear on K and has the value at exactly one vertex and
vanishes a the other two vertices. Any linear function w on Kcan be represented
by

w = w(Ni)ψi + w(Nj)ψj + w(Nk)ψk.

The functions ψi, ψj, ψk are called local stiffness basis functions on K.

1.7 Finite element error estimate

Theorem 5. For a Lipschitz domain Ω ⊂ R
2 with polygonal boundary and a given

integer T ≥ 2 let {T : T ∈ Th} be a shape regular triangulation of Ω. Then for
a piecewise polynomial interpolation operator Ih of degree t − 1 (piecewise with
respect to Th) there holds

(

∑

T∈Th

‖u− Ihu‖2Hm(T )

)1/2

≤ Cht−m|u|Ht(Ω)

for all u ∈ H t(Ω) an all 0 ≤ m ≤ t.

Let Ω ⊂ R
2 be a polygon with a quasi-uniform, regular and shape-regular mesh,

and Ih be a piecewise linear interpolation operator with respect to the vertices of
the mesh. Then

‖u− Ihu‖2H1(Ω) =
∑

T∈Th

‖u− Ihu‖2H2(T ) ≤ Ch2|u|2H2(Ω).

We therefore obtain

‖u− Ihu‖2H1(Ω) ≤ Ch2|u|2H2(Ω) ∀u ∈ H2(Ω).
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Chapter 2

Multgrid Methods

In the next chapter, we give an introduction to the multigrid methods. The crucial
part of the multigrid methods is the so called smoothing process. The iterative
methods like Jacobi or Gauss - Seidel are the most classic examples if smoothers
and we start with them.

2.1 Symmetric and positive definite matrices

A n× n square matrix A = (aij) is called symmetric if

vTAw = wTAv

for any two vectors v and w. It is equivalent to aij = aji.
A square matrix A is called positive definite if

vTAv > 0

for any non-zero vector v.
For symmteric matrix the following values

min
v

vTAv

vTv
and max

v

vTAv

vTv

characterize the minimal and maximal eigenvalues of A.

Definition 4 (symmetric definition of matrix norm). For any n×m rectangular
matrix B, the symmetric expression

max
v∈Rn,w∈Rm

wTBv

‖v‖‖w‖ ,

defines a matrix norm ‖B‖.
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The definition is equivalent to

‖B‖ = max
v∈Rn

‖Bv‖
‖v‖

Proposition 1. Let A and B be teo s.p.d matrices. Then the inequality

vTAV ≤ vTV Bv for all v,

implies that
vTB−1V ≤ vTA−1v for all v.

2.2 Iterative Methods

Let V be a finite dimensional vector space. We will study iterative methods to
solve a linear system

Au = f,

where A : V → V is a symmetric positive definite linear operator and f ∈ V is
given.

Let M be an n × n matrix such that the systems in the form of My = g are
easy to solve. We consider the decomposition

A = D + L+ LT ,

where L is strictly lower triangular part of A. For a given M and initial guess x0

we consider an iterative process

M(xk+1 − xk) = f − Axk (2.1)

for k = 0, 1, . . . .
The term xk+1 is called the correction and the right hand-side rk = Axk is

called residual.

Algorithm 1 Calculate uk+1

given :
M, x0 ∈ V
find :

xk+1 = xk +M−1(f − Axk), k = 0, 1, 2, . . . . (2.2)

Lets assume a sequence of iterations

xk, k = 0, . . . , n. (2.3)

17



We denote the error ek = x∗ − xk , where x∗ is the exact solution of . It holds

M(xk+1 − xk) = M(xk+1 − x+ x− xk) = f − Axk = Aek,

ek+1 = (I −M−1A)ek.

Another form of (2.1) can be written such that

xk+1 = Exk +N, k = 0, 1, 2, . . . , (2.4)

where
E = I −M−1A, N = M−1f.

The matrix E is called the iteration matrix. We recursively obtain

xk+1 − x∗ = E(xk − x∗) = · · · = Ek+1(x0 − x∗).

We see that the error e = xk+1− x∗ is transformed by the matrix E. We therefore
say that E is also the error propagation operator.
A complex scalar λ is called an eigenvalue of the square matrix A if a nonzero
vector u exists such that Au = λu. The vector u is called an eigenvector of A
associated with λ. The set of all the eigenvalues of A is called the spectrum of A
and is denoted by σ(A).

The maximum modulus of the eigenvalues is called the spectral radius and is
denoted by ρ(A).

ρ(A) = max
λ∈σ(A)

|λ|.

Theorem 6. Let E be a square matrix such that ρ(E) < 1. Then I − E is non-
singular and the iteration (2.3) converges for any f and x0. Conversely, if the
iteration (2.3) converges for any f and x0, then ρ(E) < 1.

Idea of the proof: Let λ1, λ2, . . . , λn be the eigenvalues of E, then there exists
a regular matrix T such that

E = TJT−1,

where J is Jordan matrix . It holds

Ek = TJkT−1.

If
max

i
|λi(E)| < 1,

then
lim

k→∞
Jk = 0,
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therefore
ek = Eke0 → 0.

In the opposite direction, if limk→∞Ek = 0, then limk→∞ Jk = 0 and

|λi| < 1 ∀i.

Corollary 1. Let E be a square matrix such that ||E|| < 1 for some matrix norm
||.||. Then I − E is nonsingular and the iteration (2.2) converges for any initial
vector x0.

In the next part, we are interested in the convergence of the stationary method
in energy norm ‖v‖A =

√
vTAv. For symmetric, positive definite matrix A we

define s.p.d matrix A
1

2 . Then it holds:

‖v‖2A = vTAv = vTA
1

2A
1

2v = (A
1

2v)A
1

2v = ‖A 1

2v‖2.

We use ek+1 = (I −M−1A)ek we have

A
1

2 ek+1 = A
1

2 (I −M−1A)A− 1

2 (A
1

2 ek).

Applying norm on both sides, we have

‖ek+1‖A ≤ ‖I − A
1

2M−1A
1

2‖A‖ek‖A.

We need to estimate ‖I − A 1

2M−1A
1

2‖A.

We denote the expression ǫ := ‖I − A 1

2M−1A
1

2‖A. We then consider ǫT ǫ:

ǫT ǫ = (I − A 1

2M−TA
1

2 )(I − A 1

2M−TA
1

2 ),

= I − A 1

2M−TA
1

2 − A 1

2M−1A
1

2 + A
1

2M−TAM−1A
1

2 ,

= I − (A
1

2M−T )(M +MT − A)(M−1A
1

2 ).

We denote Y = M−1A
1

2 , then

I − Y T (M +MT − A)Y.

As matrix Y is invertible, Y T (M+MT −A)Y is s.p.d. if a and only if M+MT −A
is s.p.d.

Theorem 7 (16). A necessary and sufficient condition for the iteration process to
be A- convergent (convergent in A-norm) is

M +MT − A

to be s.p.d.
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We now consider a composite iteration using both M and MT . For given
x0, k ≥ 0 compute

M(xk+ 1

2 − xk) = b = Axk,

MT (xk+1 − xk+ 1

2 ) = b = Axk+ 1

2 .

We obtain
M̄(xk+1 − xk) = b = Axk,

where
M̄ = M(M +MT − A)MT .

We then have
xk+ 1

2 = xk +M−1rk,

xk+1 = xk+ 1

2 +M−T rk+ 1

2 .

Then,

xk+1 = xk + (M−1 +M−T −M−TAM−1)rk = xk +M−T (M +MT − A)M−1rk.

This is standard iteration process with the symmetric preconditioner M̄ ,

M(xk+1 − xk) = f − Axk.

We have
I − M̄−1A = (I −M−TA)(I −M−1A).

Hence if we multiply equation with A
1

2 from the left and A− 1

2 from the right. We
then obtain

A
1

2 (I − M̄−1A)A− 1

2 = A
1

2 (I −M−TA)(I −M−1A)A− 1

2 = ǫT ǫ.

Here, the composite iteration is composite if and only if the original iteration with
M is A-convergent.

2.2.1 Richardson Iterative Method

The first method we describe is the Richardson method. The matrix B from
algorithm (2.2) is given by

B =
ω

ρ(A)
I,

therefore
uk+1 = uk +

ω

ρ(A)
(f − Auk), k = 0, 1, 2, . . . .

Let
Aφi = νiφi,
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with νi the eigenvalues of A,

ν1 < ν2 < . . . νn,

φi the eigenfunctions of A, Then

u− u0 =
∑

i

αiφi

and
u− uk =

∑

i

αi(1− ω
νi

νn

)kφi.

For a fixed ω = 1, it is clear that if (1− ωνi/νn)k converges to zero as k →∞, it
converges fast for νi close to νn. This means that the high frequency modes in the
error are damped out quickly.

The graphs of solution after some smoothing steps are in the picture 2.1

2.2.2 Jacobi, Gauss-Seidel and SOR Methods

Let V = R
N and let A ∈ R

N×N now be a symmetric positive definite matrix. We
then consider a splitting

A = (D − L− U)

where D is diagonal and L and U are the strictly lower and upper parts of A.
Then

Au = f,

⇔ (D − L− U)u = f,

⇔ Du = (L+ U)u+ f,

⇔ u = D−1(L+ U)u+D−1f.

The Jacobi iteration reads

uk+1 = D−1(L+ U)uk +D−1f

or
uk+1 = uk −D−1(Auk − f)

The Gauss-Seidel method in matrix form is obtained in the following way. Using
the decomposition

A = D − L− U,
(D − L)u = Uu+ f
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Figure 2.1: Smoothing effect of iterative methods
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and the iterates are

uk+1 = uk − (D − L)−1(Auk − f).

Another approach is to solve each equation for ui and use it to update uk+1. The
Gauss-Seidel is then of the form

uk
i = (bi −

i−1
∑

j=1

aiju
k
j −

n
∑

j=i+1

aiju
k−1
j )/aii.

The successive over relaxation (SOR) comes from the Gauss-Seidel method,

xk+1
i = xk

i + rk
i

where

rk
i = (bi −

i−1
∑

j=1

aiju
k
j −

n
∑

j=i+1

aiju
k−1
j )/aii.

To make an improvement, we use ωrk
i ,

xk
i = xk

i + ωrk
i ,

we get a linear combination of k − th iteration from a Gauss-Seidel method and
previous k − 1th itereration,

xk
i = ω(bi −

i−1
∑

j=1

aiju
k
j −

n
∑

j=i+1

aiju
k−1
j )/aii + (1− ω)xk

i .

2.3 Introduction to Multigrid

In this section we give a brief introduction to the multigrid methods. A nice
introduction can be found in [4] and in [15]. A bit more general theory can be
then found in [1]. Many relaxation schemes damp the oscillatory modes of the
error effectively, but smooth modes are damped slowly. If we use a coarse grid,
relaxation is cheaper (1/2 of nodes in 1D, 1/4 in 2D) . The second observation
might be the residual correction idea: Let ui be the approximation to u, the
residual is d = f − Au and the error v = u− ui satisfies Av = d.

The error will be smoother after relaxing on the fine grid, but more oscillatory
on the coarse grid. We can therefore relax the residual equation Av = d with
initial guess of error e = 0.

Let us denote the fine grid by Ωh and the coarse grid by ΩH , where H = 2h.
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We define a linear mapping p : R
m → R

n, m < n. The mapping p is called a
prolongator and it’s range includes such error modes, which cannot be effectively
eliminated with smoothing. We find v ∈ R

m such that v minimizes error correction
‖e− pv‖A. The idea is outlined in the algorithm 3: The minimization of ‖e− pv‖A
in A norm leads to the two level algorithm:

d

dt
‖e− p(v + wt)‖2A = 0 ∀e ∈ R

m,

‖e− p(v + wt)‖2A = ‖e− pv‖2A + 2t(A(e− pv), pw) + t2‖pw‖2A,
d

dt
‖e− p(v + wt)‖2A = 2(A(e− pv), pw).

The minimization ‖e− pv‖A fulfills

(pTA(e− pv), pw) = 0 ∀w ∈ R
m.

The condition for coarse grid correction is therefore

pTA(e− pv) = 0,

which is
pTApv = pTAe.

Since
e = e(x) = x− x∗, x∗ = A−1f,

The correction on the coarse level is given by solving the equation

pTApvpT (Ax− f). (2.5)

The expression (2.5) gives the standard two-level algorithm 2. We will now use
notation Ih

H for interpolation and IH
h for restriction.

The notation uh = Sν2(Ah, u
h, fh) means that uh results form a smoothing

method after ν smoothing steps for the initial guess u0, the right hand side f and
iteration matrix A.

We have to define mappings from coarse to fine grids. Let us take the 1-D case.
We define a mapping

Ih
2h : Ω2h → Ωh.

If uh, u2h are defined on Ωh,Ω2h, then

Ih
2hu

2h = uh,

where Ih
2h is an interpolation if

{

uh
2i = u2h

i ,
uh

2i+1 = (u2h
i + u2h

i+1)/2,
for 0 ≤ i ≤ N + 1

2
.
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Algorithm 2 Two-grid method

relax on fine mesh
uh = Sν1(Ah, u

h
0 , f

h) on Ωh

compute residuum
dh = fh − Ahu

h

restrict residuum
dH = IH

h d
h

relax on the coarse mesh to get the error on the coarse mesh
AHvH = dH on ΩH

correct the approximation of fine mesh
uh = uh + Ih

Hv
H

post smooth
uh = Sν2(Ah, u

h, fh) on Ωh

In the matrix form, this reads

uh =
1

2































1
2
1 1

2
1 1

...
1
2
1































u2h

The restriction operator can be then taken as

I2h
h uh = u2h,

which is also called the injection operator.
We may also consider a full weighting operator, which is in 1-D case

u2h
i =

1

4
(uh

2i−1 + 2uh
2i + uh

2i+1).

In matrix form, this reads

u2h =
1

4









1 2 1
1 2 1

1 2 1 . . .
1 2 1









uh.
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We could look at the algorithm as at the iterative process with error propaga-
tion operator Mh.

Since we are interested just in Mh, we take fh = 0 and Sν1 , Sν2 corresponding
smoothing operators. We now follow the two-level algorithm steps to get

uh ← Sν1(uh),

the residual
dH = IH

h (−AhS
ν1

h (uh)).

The algorithm becomes

uh ← Sν2 [Sν1(uh) + Ih
H(IH

h AhI
h
H)−1(−AhS

ν1

h (uh))],

therefore
Mh = Sν2 [I − Ih

H(IH
h AhI

h
H)−1Ah]S

ν1

h .

The matrix inside the brackets,

T h
H = I − Ih

H(IH
h AhI

h
H)−1Ah, (2.6)

is known as the coarse grid correction. We now remind some facts about projec-
tions. Let V be a vector space. We say that linear mapping P : V → V is a
projection, if P = P ◦ P .

Theorem 8. Let V be a vector space and P : V → V projection. Then

V = RangeP ⊕KerP.

Proof in [19].

Lemma 3. When the coarse grid matrix is defined as AH = IH
h AhI

h
H , then the

coarse grid operator (2.6) is a projector with respect to the Ah - inner product.

We follow the important proof from in [19]. Proof. Let us show that I−TH
h =

Ih
HA

−1
H IH

h Ah is a projector. At first, we check if P 2 = P :

(Ih
H(IH

h AhI
h
H)−1Ah) · (Ih

H(IH
h AhI

h
H)−1Ah) =

Ih
HA

−1
H (Ih

HA
−1
H IH

h )A−1
h IH

h Ah = Ih
HA

−1
H IH

h Ah = Ih
H(IH

h AhI
h
H)−1Ah.

Next we show that TH
h is self adjoint. The adjoint of Ih

HA
−1
H IH

h Ah in a Ah−inner
product is

(TH
h x, y)Ah

= (Ih
HA

−1
H IH

h Ahx, y)Ah
= (x, Ih

HA
−1
H IH

h Ahy)Ah
= (x, TH

h y)Ah
.
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TH
h is therefore self-adjoint and Ih

H A−1
H IH

h Ah and A an A-orthogonal projector.
We now show that Ih

HA
−1
H IH

h Ah is a A-orthogonal projection to the range(IH
h ) and

T h
H is A-orthogonal to the A-orthogonal complement to Range(P ).

We know that our algorithm is based on the minimization of ‖e − Ih
Hv‖A. We

therefore have

‖e− Ih
HA

−1
H IH

h Ahe‖A = min
w∈Range U

‖e− w‖A.

U = Ih
HA

−1
H IH

h Ah is a A-orthogonal projection to the RangeP :

{x ∈ R
n : (Ax,w) = 0 ∀w ∈ Range(Ih

H)}.

Next step is
{x ∈ R

n : (Ax,w) = 0 ∀w ∈ Range(Ih
H)} =

{x ∈ R
n : (Ax, Ih

Hv) = 0 ∀v ∈ R
m} =

{x ∈ R
n : Ih

HAx = 0}
= Ker (IH

k A).

�

We now look at very important property [19]. Let us consider Mh in the form

Mh = S1[I − Ih
H(IH

h AhI
h
H)−1Ah].

Here S1 is Richardson iteration, therefore we denote S by I − ω
ρ(A)

A.

We would like to find an upper bound of Mh.

‖ST h
He‖A
‖e‖A

=
‖ST h

He‖A
‖T h

He‖A
· ‖T

h
He‖A
‖e‖A

,

sup
‖ST h

He‖A
‖e‖A

= sup
‖ST h

He‖A
‖T h

He‖A
· ‖T

h
He‖A
‖e‖A

.

By the submultiplicativity of the norm ‖ · ‖A we obtain

sup
‖ST h

He‖A
‖e‖A

≤ sup
‖ST h

He‖A
‖T h

He‖A
· sup

‖T h
He‖A
‖e‖A

.

The spectral radius of A-orthogonal projection is bounded by 1:

sup
‖ST h

He‖A
‖e‖A

≤ sup
‖ST h

He‖A
‖T h

He‖A
= sup

u∈RngT h
H

‖Su‖A
‖u‖A

.
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We now consider
‖Su‖2A = ‖(I − ω

ρ(A)
A)u‖2A =

〈Au, u〉 − ω

ρ(A)
〈A2u, u〉 − ω

ρ(A)
〈Au,Au〉+ ω2

ρ2(A)
〈AAu,Au〉,

‖u‖2A −
2ω

ρ(A)
‖Au‖2 +

ω2

ρ2(A)
〈AAu,Au〉 =

‖u‖2A − (2− ω)
ω

ρ(A)
‖Au‖2.

Under an assumption ‖Au‖2

‖e‖2
A

> Cρ(A) and taking ω = 1 we have

‖u‖2A(1− (2− ω)
ω

ρ(A)

‖Au‖2
‖u‖A

) ≤ ‖u‖2A(1− 1

ρ(A)
Cρ(A)) = (1− C)‖u‖2A.

We have proved that (Au, Ih
H) = 0 ∀v ∈ R

m.

‖u‖2A = (Au, u) = (Au, u− Ih
Hv) ≤ ‖Au‖‖u− Ih

Hv‖ ∀v ∈ R
m.

We assume so called weak approximation property

∀u ∈ R
n∃v ∈ R

m : ‖u− Ih
Hv‖ ≤

C
√

ρ(A)
‖u‖A.

2.3.1 Nested Iteration

A nested iteration can be used to obtain a good initial guess from coarser meshes.

Algorithm 3 Nested iteration

set h := h0. Given an initial guess uh
0 , setu

h = Sν1(Ah, u
h
0 , f

h)
for l = m− 1 to 0 do
uh/2 = I

h/2
h uh

h = h/2
uh

j = Sν1(Ah, u
h
0 , f

h)
end for
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2.4 The Multigid Cycle

The multigrid cycle is based on a two - grid cycle. In the two-grid method, we
needed to find a solution of

Ahv
H = dH

exactly. We observe, that we don’t have to solve the coarse level defect equation
exactly, since

v̄ = Ih
Hv

H

is also an approximation. We may replace vH by a suitable approximation. We
can apply the two grid idea again with even coarser grid. This process can be
repeated until all l + 1 levels are involved. Level 0 corresponds to the coarsest
level.

Algorithm 4 Multi-grid method for solving Alu
l = f l, um+1

k =
MGM(k, γ, um

k , Ak, fk, ν1, ν2)

presmoothing
compute ūm

k by applying ν1 smoothing steps to um
k .

ūm
k = Sν1(Ak, u

m
k , f

k)
coarse grid corrections
compute residuum
d̄m

k = fk − Akū
m
k

restrict residuum
d̄m

k−1 = Ik−1
k d̄m

k

compute the approximate solution
Ak−1v̄

m
k−1 = d̄m

k−1

if k = 1 use a direct or fast iterative solver to solve d̄m
k−1 = Ik−1

k d̄m
k

if k > 1,
v̄m

k−1 = MGM(k − 1, γ, 0, Ak−1, d̄
m
k−1, ν1, ν2)

interpolate the correction
v̄m

k = Ik
k−1v̄

m
k−1

correct
um

k = ūm
k + v̄m

k

postsmoothing
um+1

k = Sν1(Ak, u
m
k , f

k)

M0 = 0

Mk = Sν2

k (Ik − Ik
k−1(Ik−1 − (Mk−1)

γ)(Ak−1)
−1Ik

k−1Lk)S
ν1

k

k = 1, . . . , l
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The difference between the two-grid operation

Mk−1
k = Sν2

k (Ik − Ik
k−1A

−1
k−1I

k−1
k Ak)S

ν1

k

and the above iteration operator Mk is that A−1
k−1 is replaced by

(Ik−1 − (Mk−1)
γ)(Ak−1)

−1.

2.4.1 Full Multigrid (FGM)

As previously we consider a sequence of discrete approximations and use the no-
tation

MGM r(k + 1, γ, ωk, Ak, fk, ν1, ν2)

for a procedure consisting of r steps of a suitable iterative (k+1)-grid cycle with
cycle index γ. The right hand sides fk on Ω can be defined recursively by

fk = Ik
k+1fk+1

with
fl = f |Ωl

.

The aim is to achieve a discretization accuracy on each level within a few multigrid
cycles.

In the multigrid cycle, the operator Ik
k−1 was applied to the corrections, but

here we have FMG interpolation Ik
k−1,

Ik
k−1 : Ωk−1 → Ωk,

which transfers the approximation of the solution to the fine grid.

Algorithm 5 Full Multigrid

for k = 0 solve
A0u0 = f0

uFMG
0 = u0

for k = 1, 2, . . . , j
uk

0 = Ik
k−1u

FMG
k−1 uFMG

k = MGM r(k + 1, γ, ωk, Ak, fk, ν1, ν2)
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2.4.2 Work Estimates

More on this topic in [6]. We now assume MGM algorithm, which consist of these
parts:

ul = S(ul, fl) ≤ CSnl for all l ≥ 1
dl−1 = I l

l−1(Alul − fl) ≤ CDnl for all l ≥ 1
ul = ul − I l+1

l vl−1 ≤ CCnl for all l ≥ 1
u0 = A−1

0 f0 ≤ C0

(2.7)

The nl is the number of unknowns and equations at level l. We assume Al to be
sparse matrices and bounds proportional to nl. We now use some results from [6].
The constant

CH = sup
nl−1

nl

has the value
CH = 2−d,

where d is the dimension of R
d and mesh size is hl−1 = 2hl. The following holds:

Suppose that
γCH < 1.

Then one step of the multi-grid iteration requires Clnl operations, where

Cl <
νCs − CD + CC

1− γCH

+ (γCH)l−1C0

n1

.

Generally we have Wl computational work per level l. It is recursively given

W1 = W 0
1 +W0

Wk+1 = W k
k+1 + γkWk, k = 1, . . . , l − 1

The W k
k+1 denotes computational work of two-grid cycles except work needed to

solve the defect equations on Ωk.
If γ is independent of k, then

Wl =
l
∑

k=1

γl−kW k−1
k + γl−1W0, l ≥ 1.

In the 2D case
Nk
∼= 4Nk−1.

We then require
W k−1

k ≤ CNk.

Under these assumptions we get estimate of total computing work Wl
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Wl ≤
4

3
CNl for γ = 1

Wl ≤ 2CNl for γ = 2

Wl ≤ 4CNl for γ = 3

2.4.3 Geometric Multigrid on FEM Spaces

In this section we may refer to the theory in [3] and [2]. Let us now consider a
model problem for Ω ⊂ R

2,

−∆u = f, in Ω, (2.8)

u = 0 on ∂Ω.

The weak formulation of the problem can be formulated into a form

a(u, v) = l(v), ∀v ∈ H1
0 (Ω),

a(u, v) =

∫

Ω

∇u(x)∇(v)(x)dx,

l(v) =

∫

Ω

u(x)f(x)dx

and

(v, w) =

∫

Ω

vw dxdy.

Let us consider a hierarchy of nested finite element spaces

V0 ⊂ V1 · · · ⊂ VL

where each space is spanned by

Vl = span{ϕ(l)
i }nl

i=1.

The notation ϕ
(l)
ic

means ic− th basis function on the level l. Since each ϕ
(l)
ic
∈ V ⊂

VL we have the expansion

ϕ
(l)
ic

=
n
∑

i=1

ϕ
(l)
ic

(xi)ϕ
(l−1)
i .

Consider the coefficient vector φic = (ϕl
ic(xi))

n
i=1. The matrix P l

l−1 = (φic)
nl

ic=1 is
referred to as the coarsening matrix. The relations among basis function is shown
in the picture 2.4.3. We will talk about this topic again in the implementation
part.
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Figure 2.2: The basis function on the coarse level (top left), which can be expanded
by the basis function on the finer levels
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2.5 Multigrid with Polynomial Smoothers

In this section, let us consider a standard V-cycle multigrid to solve

Ax = f,

with A s.p.d. matrix of order n. We assume there is a hierarchy of prolongators
{P k

k−1},
P k

k−1 : R
n
k−1 → R

k, nk−1 < nk, k = 0, . . . , L− 1

and matrices Ak defined in the section 2.3.4 .
Let us consider a polynomial smoother with error propagation operator

I −M−T
k Ak = I −M−1

k Ak = Sγ
k

(

I − 1
¯λS2
k
Ak

S2
kAk

)

, (2.9)

where Sk is a polynomial in Ak such that σ(Sk) ≤ 1, λ̄S2
k
Ak
≥ σ(S2

kAk) and γ
positive integer (we will assume γ =1). The error propagation operator to the
symmetrized smoother M̄k is

I − M̄−1
k A=(I −M−T

k Ak)(I −M−1
k Ak) = S2γ

(

I − 1

λ̄S2
k
Ak

S2
k

)2

.

The symmetrized smoother Mk is then

M̄−1
k = A−1

k



I −
(

I − 1

λ̄S2
k
Ak

S2
k

)2

S2γ
k



 .

We need a multigrid relaxation on the level k as an iterative process with error
propagation operator I −M−1

k Ak. As we have proved in the beginning of chapter
2. The process is Ak convergent if MT

k +Mk − Ak is positive definite matrix. We
assume that there is a constant α > 0, uniform with respect to k ≥ such that,

vT
k (MT

k +Ml − Ak)vk ≥ αvT
k Akvk ∀v∈R

nk . (2.10)

Now, we recursively define the V -cycle preconditioner Bk (s.p.d matrix) in the
following way:

for k = 1, . . . , L

I −B−1
k Ak = (I −M−T

k Ak)(I − P k
k−1B

−1
k−1(P

k
k−1)

TAk)(I −M−1
k Ak).

We start with B0 = A0 and let B = BL
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Lemma 4. For any λ > 0 and integer N > 0 there is a unique polynomial pλ,N of
degree N such that

max
0≤t<λ

p2
λ,N(t)t

is minimal under the constraint pλ,N(0) = 1. The polynomial p is given by

pλ,N(t) =

(

1− t

r1

)

. . .

(

1− t

rN

)

,

rk =
λ

2

(

1− cos

(

2kπ

2N + 1

))

, k = 1 . . . , N.

Let λ̄k be an upper bound of ρ(Ak) and integerNk a given degree of a smoothing
polynomial. We choose

pλ̄Nk
Ak.

We also set

λ̄S2
k
Ak

=
λ̄k

(2N + 1)2
.

We use following algorithm to implement action 2.9 . Next, we perform the linear
part Sk: We do for i = 1, . . . , Nk = deg(Sk),

x← (I − αiAk)x+ αif, αi =

[

λ̄k

2
(1− cos

(

2iπ

2Nk + 1

)

)

]−1

, λ̄k ≤ ρ(Ak).

We then perform the iteration with the error propagation operator

I − λ̄−1
S2

k
Ak
S2

kAk,

we then do

x← x− 1

λ̄S2
k
Ak

S2
k(Ax− f),

where we evaluate the action of Skx as a product

Skx = (I − αAk) . . . (I − αNk
Ak)x.

Let us define the quantity λk,j = supx ∈ R
nk

〈AP 0
k

x,P k
0

x〉

‖P k
j x‖2 , k < j

Theorem 9. Let λ̄k−1,k ≥ λk−1,k, we assume the existence of linear mappings
Qk : Vk → VL, QL = I, staisfying

‖(Qk −Qk+1)v‖k ≤
Ca

√

λ̄k−1,k

‖v‖A ∀v ∈ VL, k = L, . . . , 1 (2.11)
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and
‖Qk‖A ≤ Cs, k = 0, . . . , L.

We assume smoothers satisfy 2.10 and M̄k satisfy

‖v‖2M̄k
≤ β(λ̄k−1,k)‖v‖2 + ‖v‖2Ak

.

Then the multigrid operator B is nearly spectrally equivalent to A:

vTAv ≤ vTBv ≤
[

C2
s + 2L

(

β(Ca + 4C2
s ) +

1

α
C2

s

)]

vTAv.

2.6 Multigrid with smoothed prolongator

Previously, we were interested in the minimization of the ‖e− Ih
Hv‖A. We are now

interested in the minimization of the error after the correction and the smoothing
[17]. We want to find such v, that

‖s(e− Ih
Hv)‖A is minimal.

We use the very similar manipulation like in the section about classic two-level
method. Again, we deal with a quadratic functional ‖S(e− Ih

H)‖2A, so we find its
minimum by zero variation:

d

dt
|t=0‖S(e− Ih

H(v + tw))‖A = 0 ∀w ∈ R
m.

The minimization condition reads

(AS(e− Ih
Hv)Spw) = 0 ∀w ∈ R

m,

hence
IH
h S

TASIh
Hv = Ih

HS
TASe.

The error propagation operator is given by

Ee = S(e− Ih
Hv) = [I − SIh

H((SIh
H)TASIh

H)−1(SIh
H)TA]Se.

We now compare it with the previous

Mh = Sν2 [I − Ih
H(IH

h AhI
h
H)−1Ah]S

ν1

h .

We have the same method with one pre-smoothing step ν1 = 1 and the prolongator
SIh

H . We then have a following algorithm SMG:
We consider a polynomial smoothers

S = (I − ω1

λ̄
A)(I − ω2

λ̄
A) . . . (I − ωN

λ̄
A), . . . ωi ∈ R+, i = 1, . . . N.

Here N = deg(S). Let λ̄ ≥ ρ(A) and λ̄S ≥ ρ(S2A) = λ̄
(2N+1)2

. We consider a
following algorithm
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Algorithm 6 Two-grid method with smoothed prolongator - SMG

relax on fine mesh
uh = S1(Ah, u

h
0 , f

h) on Ωh

compute residuum
dh = fh − Ahu

h

restrict residuum
dH = (SIh

H)Tdh

relax on the coarse mesh to get the error on the coarse mesh
(SIh

H)TAh(SI
h
H)vH = dH on ΩH

correct the approximation of fine mesh
uh = uh + (SIh

H)vH

Algorithm 7 Two-grid method with smoothed prolongator -SMG II

for given parameters N = deg(S), ωi ∈ R+, i = 1, . . . N :
for i=1,. . . ,N do
x← (I − ωi

λ̄
A)x+ ωi

λ̄
f

solve
(SIh

H)TAh(SI
h
H)vH = dH on ΩH

correct the approximation of fine mesh
uh = uh + (SIh

H)vH

do
x← (I − ω

λ̄S
S2A)x+ ω

λ̄
S2f

37



Chapter 3

Implementation and Numerical
Experiments

In this chapter, we discuss the numerical implementation of the previous algo-
rithms. We describe our programs and present various numerical experiments.
Our main aim is to test the uniform convergence of the algorithm SMG II We also
test some aspects of the algorithm changing degree of the polynomial smoother or
taking non-polynomial smoothers. We concentrate on Poisson problem on various
meshes, boundary conditions and right hand side.

3.1 Implementation

We first discuss the main issues of the multigrid algorithm. The computation
consists of preprocessing part and solving part. During the preprocessing part we
set up the problem and finest mesh, assembly the matrix and load vector. We then
assembly coarsening matrices and compute Galerkin matrices. As soon as we are
finished with the preprocessing, we compute the solution in the multigrid cycle.

3.1.1 Error Estimates and Stopping Criterion

Let us consider very simple example

−∆u = 1

with Dirichlet boundary conditions u = 0 on Γ, where Γ is the boundary of the
square [0, 1]× [0, 1].

We would like to measure ‖u − uh‖A, convergence rates and computational
times. To investigate the energy norm, we transform it into another form:

a(u− uh, u− uh) = a(u, u) + a(uh, uh)− 2a(u, uh)
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= a(u, u) + a(uh, uh)− a2(uh, uh)

= a(u, u)− a(uh, uh)

i.e. we have
‖u− uh‖2A = ‖u‖2A − ‖uh‖2A.

The norm ‖uh‖A is easy to compute, since it is

‖uh‖2a = bT z,

where b is a load vector and z is vector of unknown coefficients.
The norm ‖u‖2A is usually not known, but we can make a very good guess by

Aitken’s extrapolation technique: We compute uh for a sequence of meshes for
i = 1, . . . , n. Denote ui

h = γi, we then have

‖u‖2A ≈
γiγi−2 − γ2

i−1

γi − 2γi−1 + γi−2

, i = 3, . . . , n.

In the following computations, we use several types of errors. We work with the
exact solution u, vector b, computed solution uh and, int the case of computational
error, we distinguish between computed solution of discrete problem vh a exact
solution of the discretization problem uh.
ralative error

=

√

(u− uh)T(A)(u− uh)√
uTAu

,

absolute error
=
√

(u− uh)TA(u− uh),

relative residual error

=

√

(b− Auh)T(A)(b− Auh)√
bTAb

,

computational error

=

√

(uh − vh)T(A)(uh − vh)

||u||A −
√

uT
hAuh

.

In our experiments, we are interested in the rate of convergence µ and the order
of convergence α.

We say that the sequence has the rate of convergence µ if

lim
k→∞

ek+1

eα
k

= µ, µ > 0.
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We assume
en+1 = C|en|α,

then
α = log(|en+1/en|)/ log(|en/en−1|).

We also use the convergence rate

µ = e
1/NoI
NoI ,

where eNoI is relative residual error after NoI iterations.

3.2 Matlab Programs

Our programs has been implemented with the Matlab R2006a software. We use
some of the Matlab procedures, especially the pdetoolbox.
The main computations are done in the script multigrid_script and the function
multigrid_cycle. To run the multigrid solver, we run the script multigrid_script.
There are 5 predefined problems. As we need to assembly the stiffness matrix and
the load vecctor, we need to get parameters to be put into Matlab pde routines.

We first discuss the assembpde command. To be able to assembly the sys-
tem, we need three matrices p, e and t, coeffitients of the elliptic problem and
information about geometry of the problem. The last three number coming to the
procedure are (1,0,1) and corresponds to the fact that we solve the Poisson equa-
tion. Now we get the geometry and matrices p, e and t. We can use the initmesh

command or we can use the pdetool and export all the necessary coefficients into
the data files. In our implementation we consider the both cases.

For our first example we initialize mesh, assembly the system and solve the
system of equations in Matlab built-in procedures:

[p,e,t]=initmesh(’squareg’,’hmax’,2)

for i =1:10

[K,W,B,ud]=assempde(’squareb1’,p,e,t,1,0,1);

[p,e,t]=refinemesh(’squareg’,p,e,t);

u1=K\W;

u(i)=W’*u1

end

We see that we need to carry the information about boundary nodes. We have
two options available. If we solve a Dirichlet problem, one way is to solve the
system of ni equations, where ni is the number of interior nodes. In this case, we
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have to compute some mapping between numbering of the global basis functions
and numbering of the interior nodes. Second approach is to include boundary
nodes into the matrix, such that the numbering of the global basis functions is the
same as the numbering of the nodes. The stiffness matrix is larger, but since there
is no need for extra mapping, it will be more comfortable for us to work with such
a matrix. Another reason could be that the matrices for Dirichlet and Neumann
problem would have the same size, so our algorithms for creating the coarsening
matrix could be almost the same.

The last thing before we do some experiments is to make an upper guess of
the eigenvalue of A necessary in the algorithm. To do so, we use the Gershgorin’s
theorem:

Theorem 10. Every eigenvalue of the matrix A of size N satisfies:

|λ− Aii| ≤
∑

j 6=i

|Aij| i ∈ {1, 2, 3, . . . , N}

In matlab weuse the command lambda=norm(A,’inf’) .
From [18] we also have take care of the degree of the smoother. The degree

must satisfy

deg(S) < C
hk+1

hk

, C > 0.

3.2.1 example

We consider the simple example

−∆u = f

with Dirichlet boundary conditions u = 0 on Γ, where Γ is the boundary of the unit
circle. The solution u is chosen such that it solves the exation with f = −12xy.
The exact solution is therefore

u(x, y) = xy(1− x2 − y2).

We have predefined our problem as problem 4, with initial triangulation shown in
the picture 3.2.1.

The exact solution is shown in the picture 3.3.
As this is the first example, we also want to talk about matrices involved. The

matrices are generally sparse, as we can wee in the picture 3.2. The picture 3.2
shows the nonzero elements of the stiffness matrix. The coarsening matrix is also
sparse. The coarsening matrix is created according the section 2.4.3:

The basis on the coarse level is expanded by the basis on the fine level. Con-
sider the coefficients of fine basis functions, which expands the coarse one. It is
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Figure 3.1: Coarsest triangulation of the unit circle on the left and a refinement
of the triangulation on the right.
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Figure 3.2: Nonzero entires of the stiffness matrix A. The coarsest matrix is on
the left and matrix on on the level after three refinements on the right.
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Figure 3.3: Graph of the exact solution u.

obvious that each column of the coarsening matrix consists of the vector of these
coefficients. In our case (p1 polynomials) it is easy to estimate the coefficients,
since they can be either 0, 1 or 1/2. Lets now look at the the triangulations for
this example.

Matlab initmesh labels the edge nodes first. After one refinemesh step the old
nodes have the same number and new nodes are created. We use these information
to create the coarsening matrices.

The following algorithm is used to compute the coarsening matrix. Vector w2
keeps the information about the node - if it is boundary node (0) or not (1). We
know that ones will be on the diagonal, as the coarse nodes are also on the fine
mesh. Then we go over the coarse elements. The coarse nodes restricted to the the
fine mesh have the neighbors, which has the coefficient one half in the coarsening
matrix. As we create sparse matrices, we do need an input in the coordinate
format. As we go over every interior edge twice, Matlab sums the value, if it finds
the coordinate entry twice. We therefore set the value as 1/4.

We can now proceed to the multigrid cycle. If we do not solve the equation
where the solution is known, we use the Matlab backslash command to compute a
solution, which we take as an exact solution. The first three iterations are shown
in the picture 3.4.
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Figure 3.4: The pictures above show graphs of |u−uh| after the first three iteration
of the cycle.
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Algorithm 8 Calculation of the coarsening matrix

NCP : number of coarse points
for k = 1 to NCP do
i(s) = k
j(s) = k
s = s+ 1

end for
for k = 1 to 3 · nel do

if w2(nodes(k, 1)) == 1
i(s) = nodes(k, 2), j(s) = nodes(k, 1), s = s+ 1;
i(s) = nodes(k, 3), j(s) = nodes(k, 1), s = s+ 1;

end for
u = zeros(length(i), 1)
u(:) = 1/4
u(1 : length(w2)) = 1
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3.2.2 example

Let us consider
−∆u = f, (3.1)

with u = 0 on the boundary. The domain Ω is a unit square [0, 1] × [0, 1]. We
choose the right-hand side f such that

u = x2y(1− x)(1− y)

is the seoluion of −∆u = f .

ux = −2xy(1− x)(1− y)− x2y(1− y),

uxx = −2y(1− x)(1− y) + 4xy(1− y) + 2x2(1− x),
uy = x2(1− x)(1− y)− x2y(1− x),

therefore
f = −2y(1− x)(1− y) + 4xy(1− y) + 2x2(1− x).

We can now compute the energy norm of exact solution:

∇u · ∇u = 2xy(1− x)(1− y)− x2y(1− y))2 + (x2(1− x)(1− y)− x2y(1− x))2,

‖u‖A =

√

4

525
.

At first we set up the problem. This example is predefined as problem 0. The
initial mesh is generated with one interior node on the coarse level. The mesh is
shown in the picture 3.5 on the right and a graph of the exact solution is shown
on the left.

In the tables 3.2 - 3.5 we can study the convergence of the multigrid cycle
with the polynomial smoother, with Gauss Seidel smoother and just Gauss Seidel
iterative scheme. The coarsening factor means the number of levels which we ’skip’
during coarsening. It is obvious that Gauss Seidel as a smoother doesn’t work for
aggressive coarsening, but polynomial smoother works well.
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Figure 3.5: The graph of exact solution of (3.1) and the initial mesh (right).

Table 3.1: Computational values for solving (3.1).

m 9
coarsening time 1.565571e+000

matrix assembly time 3.729150e+000
Deg. of freedom 130561

Number of nonzero el. of A 650761
ǫ 10−6

Table 3.2:

coarsening multigrid solver polynomial number of α rate
factor time (s) degree iterations

1 1.740449e+001 1 16 1.007809 2.060952e-001
2 4.275317e+001 2 18 1.007127 2.563962e-001
4 3.565271e+002 8 15 0.985567 2.662881e-001

47



Table 3.3:

coarsening multigrid solver GS number of α rate
factor time (s) iterations

1 2.8003e+001 25 1.008 0.37681
2 6.7686e+001 72 0.999 0.737
4 4.3129e+002 400 0.9998 0.9797

Table 3.4:

NoI comp. error GS comp. error pol.s.
1 6.4436e+004 8.2088e+003
2 5.7229e+004 1.1257e+003
3 5.2336e+004 1.5492e+002
4 4.8615e+004 2.2786e+001
5 4.5464e+004 3.4662e+000
6 4.2692e+004 5.4181e-001
7 4.0206e+004 8.8056e-002
8 3.7950e+004 1.5096e-002
9 3.5883e+004 2.7938e-003
10 3.3978e+004 5.6757e-004
11 3.2212e+004 1.2646e-004
12 3.0566e+004 3.0319e-005
13 2.9028e+004 7.6425e-006
14 2.7584e+004 1.9901e-006
15 2.6227e+004 5.2995e-007
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Figure 3.6: Convergence for GS smoothing
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Figure 3.7: Convergence for pol. smoothing

Table 3.5:

NoI rel error Mg with GS relerror pol.s. pure GS rel err.
1 6.2126e-001 7.9144e-002 948.4670609e-003
2 5.5177e-001 1.0854e-002 899.864136e-003
3 5.0459e-001 1.4936e-003 854.7872352e-003
4 4.6872e-001 2.1969e-004 813.0582955e-003
5 4.3834e-001 3.3420e-005 774.3215218e-003
6 4.1161e-001 5.2239e-006 738.2420133e-003
7 3.8764e-001 8.4899e-007 704.5312213e-003
8 3.6589e-001 1.4554e-007 672.9442175e-003
9 3.4597e-001 2.6936e-008 643.272465e-003
10 3.2760e-001 5.4722e-009 615.3369700e-003
11 3.1057e-001 1.2192e-009 588.9827573e-003
12 2.9470e-001 2.9231e-010 564.0746101e-003
13 2.7987e-001 7.3685e-011 540.4937804e-003
14 2.6595e-001 1.9188e-011 518.1354164e-003
15 2.5286e-001 5.1095e-012 496.9065087e-003
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3.3 Example

Here, we consider a Neumann problem

−∆u = 10 in Ω,
u = x+ y on ∂Ω.

We have to deal with the boundary term now. The stiffnesses matrix and
the load vector will be computed by command assempde again. The geometry
files which generates the boundary data can be easily computed in the pdetool.
Second thing is, that we have to consider the boundary nodes in the computations
of prolongators. The diagonal entries are ones again. We now distinguish between
boundary nodes and interior nodes. Since we account each interior node twice,
the entry to the sparse matrix stays (i, j, 1/4). For the boundary nodes, which
are considered ones in the algorithm, the entry is (i, j, 1/2). This is carried by
prolmatrix5.

Following tables shows results for the algorithm. If we use polynomial smoother,
the number of iteration stays relatively the same. Again, we compare polynomial
smoother and GS smoother .

Table 3.6:

m 5
coarsening time 1.2196e-001

matrix assembly time 3.6175e-001
galerkin matrices time 1.4877e-002

deg. of freedom 4993
number of nonzero el. of A 34433

ǫ 10−6
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Figure 3.8: Inital mesh

Figure 3.9: Solution to the Neumann problem

Table 3.7:

coarsening multigrid solver polynomial number of α rate
factor time (s) degree iterations

1 5.3448e-001 1 9 9.8303e-001 1.8674e-001
2 6.0693e-001 2 9 9.9554e-001 1.9223e-001
4 6.2584e+000 8 8 9.8706e-001 1.6871e-001
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Table 3.8:

NoI rel abs relres
1 1.1910e-001 1.4429e+000 2.4909e+000
2 1.4143e-002 1.7134e-001 1.0044e-001
3 2.2660e-003 2.7451e-002 1.4975e-002
4 4.0132e-004 4.8618e-003 3.0500e-003
5 7.6168e-005 9.2275e-004 6.6055e-004
6 1.5179e-005 1.8389e-004 1.4185e-004
7 3.1242e-006 3.7849e-005 3.0553e-005
8 6.5633e-007 7.9512e-006 6.5683e-006

Table 3.9:

coarsening multigrid solver number of α rate
factor time (Gs) iterations

1 3.2256e-001 11 9.9313e-001 2.7635e-001
2 6.1448e-001 29 9.9897e-001 6.1448e-001
4 8.6440e+000 377 9.8706e-001 9.6396e-001

Table 3.10:

NoI rel abs relres
1 2.5629e+000 1.5183e+000 2.5629e+000
2 1.3958e+000 1.2155e+000 1.3958e+000
3 9.9521e-001 1.0634e+000 9.9521e-001
4 8.4588e-001 9.6002e-001 8.4588e-001
5 7.4667e-001 8.7608e-001 7.4667e-001
6 6.7121e-001 8.0437e-001 6.7121e-001
7 6.0979e-001 7.4143e-001 6.0979e-001
8 5.5763e-001 6.8528e-001 5.5763e-001
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3.3.1 example

Let us consider
−∆u = f,

with u = 0 on the boundary.
This is our last example. The domain is shown in the picture 3.10. Following

tables and graphs shows the convergence results for the algorithm. The picture
3.13 shows the convergence when we use incorrect degree of the smoother = 1.

The tables 3.13 and 3.14 give the most important results. As we see, the
convergence is improving when degree of the polynomial is growing. On the other
side, the number of non zeros of the smoother is growing in each step, since the
smoother is a polynomial of A. Therefore the matrix-matrix computations are
very expensive and a large problem can’t be solved in the reasonable time. As we
would like to solve large systems, this is a massive complication.

The first four iteration of the method are shown in 3.11. We can see the mark
of the initial the initial triangulation and how the error get smoothed.
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Figure 3.10: Initial mesh
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Table 3.11:

m 9
coarsening time 6.5472e-001

matrix assembly time 4.6654e-001
Galerkin assembly time 1.8832e-002

deg. of freedom 5033
number of nonzero el. of A 34379

ǫ 10−6

Table 3.12:

coarsening multigrid solver polynomial number of α rate
factor time (s) degree iterations

1 6.9622e-001 1 14 9.9955e-001 3.5930e-001
2 9.2971e-001 2 13 9.9994e-001 3.4383e-001
4 1.4025e+001 8 14 9.9980e-001 3.6126e-001

Table 3.13:

multigrid solver polynomial number of rate NNZ
time (s) degree iterations

6.3479e-001 1 14 3.5930e-001 656
8.1637e-001 2 9 1.8037e-001 1562
1.0729e+000 3 7 1.0754e-001 2690
1.4757e+000 4 6 9.6589e-002 3952
1.8088e+000 5 5 6.1993e-002 5296
2.6479e+000 6 5 5.8273e-002 6666
3.6143e+000 7 5 5.8273e-002 7944
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Table 3.14:

polynomial number of rate NNZ
degree iterations

1 12 2.9146e-001 656
2 7 1.2530e-001 1562
3 5 5.8990e-002 2690
4 5 4.4151e-002 3952
5 4 2.3992e-002 5296
6 4 1.5771e-002 6666
7 4 1.2964e-002 7944
8 3 9.2997e-003 9060

Figure 3.11: First four iterations of the cycle
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Figure 3.13: Energy norm using polynomial smoother of degree 1
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3.4 Fortran implementation

We implemented a solver in Fortran 90 to experiment with the algorithm. In
Fortran we are forced to implement everything on our own, on the other side
it gives us many options to think about the algorithm more deeply. We work
with the main program main.f90, where the initialization, refinemesh, computation
of the matrices and solver are held. There are two modules mgtypes.f90 and
matrixassembly.f90.

We have implemented everything straight for sparse matrices. The type mg
is some kind of a container, where it consists of rhs, x, coarsening matrix and
the Galerkin matrix. We create a vector mg(:) - for each level one spot in the
vector. The mgtypes also contains sparse matrix type. Since we think this topic
is important, we give a short introduction to the sparse storage formats.

3.4.1 Sparse Matrices Storage formats

In the case of piecewise linear basis functions the matrices Ak and Ck are sparse.
The sparse matrices has most of the entries equal to zero. It is therefore not
necessary to store matrices as dense.

We denote Nz as the number of nonzero elements.

Coordinate format

The coordinate format contains three arrays: a real arrays which contains entries
of the matrix, integer array containing row indices and an integer array containing
column indices.

The order of entries is stored in arrays is arbitrary. It might look like this:

A =













0 2 0 4 0
0 0 5 0 0
0 0 0 0 0
0 0 4 9 1
0 0 1 0 0













then
a = [2, 1, 4, 9, 5, 4, 1]

jr = [1, 5, 4, 4, 2, 1, 4]

jc = [2, 3, 3, 4, 3, 4, 5]
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CSR Structure

The storing of nonzero elements can be done such that we go across all the rows
(rows format) or columns (column format) and we write all the elements in the
order how they appeared. Our three arrays would have following meaning:
a: A real array of length NZ containing nonzero elements of A,
of : An integer array of positions in the column ,
xm : A pointer array, where i-th entry points to the beginning of i-th row in the
arrays. The length of the array is N+1, containing also the number of(1)+NZ .

Taking A from previous example, our arrays would have following form:

a = [2, 4, 5, 4, 9, 1, 1]

of = [2, 4, 3, 3, 4, 5, 3]

xm = [1, 3, 4, 7, 8]

Les A be a symmetric matrix. We then can store only lower triangular elements
of the matrix.

A =













1 0 0 0 0
0 3 0 0 0
0 0 8 2 1
0 0 2 9 0
0 0 1 0 10













The storage arrays for a symmetric matrix is

a = [1, 3, 8, 2, 9, 1, 10]

of = [1, 2, 3, 3, 4, 3, 5]

xm = [1, 2, 3, 4, 6, 8]

CSC Structure

The compressed sparse column format is similar to the CSR format, but we go
across columns instead of rows.

3.5 Implementation issues

We will now talk shortly about some implementation matters we consider inter-
esting. Previously, in Matlab, we had to refine all the meshes and then compute
the coarsening matrix. We had to go over number of coarse elements · 3. In For-
tran, we wanted to refine the elements in similar way like it is in Malab, but while
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constructing a new mesh, we use the information about the mesh and create coars-
ening matrix immediately. To coarsen initial mesh from problem 0 to 10 levels, we
need 10.738 seconds in Matlab and in Fortran just 0.0858 seconds.

If we compare matrix and rhs creating, in Matlab we need 15.675 seconds and
3.01 in Fortran.

The program was created with the idea that it could be parallelized in the
future. This is the case of creating the local stiffness matrices and mainly matrix
vecotr multiplication. It is well known that CSR times vector can be parallelized
easily, but CSC not. We therefore store coarsening matrices in CSC storage format
(number of rows is much greater then the number of columns.) Matrix A is stored
in CSR format, due to the future Galerkin multiplication. This is however the most
problematic part. Since the sparse vectors in general are not entered entry by entry,
the computation takes much longer time. Therefore in our Fortran code the time
to compute the Galerkin matrices takes too long. Our task to the future will be
to make the program run in parallel and implement matrix-matrix multiplication
in more optimal way (reordering algorithms, block storage schemes).
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Conclusion

In this thesis we were dealing with in the geometrical multigrid methods. The
main goal was to implement the algorithms and create the test problems to nu-
merically verify the results of [18]. We have created a set of test problems using
Dirichlet and Neumann conditions, various meshes, smoothers and degrees of free-
dom. In the first and second part we gave a brief introduction to the variational
problems. We then continued with the finite element method. We mentioned the
most important theorems and described the computational aspects of the finite
elements method. The fourth part consists of the introduction to the multigrid.
The theory of the geometric multigrid is wide, therefore we focused on the topics
which we consider to be close to the article [18].
The last and most important part covers the description of the implementation
and numerical experiments. It has been numerically verified that the conver-
gence result is independent of hk+1/hk. The problematic part of the algorithm
is that the smoother is polynomial of A. Large coarsening factor (= aggressive
coarsening) reflects larger degree of the smoother, which means that the number
of nonzero elements of the smoother grows. As we solve large sparse systems,
matrix-matrix multiplication affects the computational time massively. Multigrid
with the polynomial solver degree greater than 8 for large problems seems not to
be an advantage. Then we implemented the program in Fortran 90. This gives us
more freedom to implement our algorithm and a source code base, which can be
extended in the future. We were able to implement the program using some ideas
we had during Matlab implementations, on the other hand some aspects weren’t
working for us. It will be therefore our work in the future to improve and extend
the code.
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