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Abstract

The theory of essentially non-oscillatory schemes (ENO) is applied to finite
volume methods for the numerical solution of hyperbolic conservation laws.
ENO are based on the reconstruction problem of the cell averages. The re-
construction is built in the stencil which is a set of the cells in which the
data are the smoothest. Therefore, the procedure controls the oscillations
as much as possible. Classical ENO schemes use polynomials. In the the-
sis we introduce also another way of the reconstruction using conditionally
positive definite radial basis functions (RBF). The thin plate splines, as the
combination of the linear polynomial and radial basis functions, can be suit-
ably extended in multi-dimensional finite volume schemes. We provide some
numerical examples of ENO methods using both polynomials and RBFs.



Contents

1 ENO schemes in one dimensional space 4
1.1 Spatial Discretization . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Finite Volume Method . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Time Discretization . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 ENO schemes in two dimensional space 28
2.1 Discretization and Finite Volume Method . . . . . . . . . . . . 28

2.1.1 Polynomial Reconstruction . . . . . . . . . . . . . . . . 30
2.1.2 Reconstruction Using Radial Basis Functions . . . . . . 33

2.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.1 Linear Equation . . . . . . . . . . . . . . . . . . . . . . 38
2.2.2 Nonlinear Equation . . . . . . . . . . . . . . . . . . . . 62
2.2.3 System of Linear Equations . . . . . . . . . . . . . . . 64

1



Introduction

Partial differential equations describe a wide variety of models for real prob-
lems like sound propagation, heat, elasticity etc. Since the equations are
usually very complicated, only special models can be solved analytically. In
this thesis, we present numerical method for solving hyperbolic conservation
laws.

In last few years, it increases the interest about methods which give
us high order accurate numerical solution. The classical finite difference
methods of first order are very inaccurate and higher order of such methods
products oscillations near non–smooth data. There exists improved methods
which try to reduce these oscillations for example by adding artificial viscos-
ity or reducing the order of the accuracy near the discontinuities, but the
lower order spreads globally and the numerical solution falls back to the first
order anyway.

In this thesis, we focus on finite volume schemes which are based on
approximation theory using preferably polynomials. The main aim of the
authors was to remove the oscillations, then the total variation dimishing
(TVD) schemes were developed. These methods try to strictly satisfy the
non-oscillatory behaviour so that if we use higher order accuracy, it degener-
ates again to the first order method. First non-TVD finite volume schemes
apply the fixed stencil interpolation, but it does not respect the discontinu-
ities and thus these procedures result in oscillations again.

Harten, Engquist, Osher and Chakravarthy in 1987 introduced the so–
called Essentially Non-Oscillatory (ENO) schemes. It was created as a nu-
merical method which eliminates the problem of the methods used so far.
The word essentially means that it is possible that the method can products
new extrema of the size of the truncation error. The theory of (essentially)
local extremum dimishing schemes is discussed in [17, 7, 1].

ENO methods use originally polynomial reconstruction with an adaptive
stencil. It is known in the approximation theory that the more data we have,
the higher order of the accuracy we get. We use the same idea with the
stencil for ENO methods. The main task of ENO schemes is how to choose
the stencil. We select stencil as a set of the cells which include the most
smooth data as much as possible. For the cell i just left from the shock in
one dimensional space we try to choose stencil on the same side, for instance
{i− 2, i− 1, i} depending on required order of the accuracy. We use divided
difference in 1D reconstruction to choose the cells to the stencil according to
[4, 2].
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ENO methods are studied in one dimensional space by [4, 1]. The first
extension of the method into 2D problems is again using the classical poly-
nomials, in [4] on structured mesh, in [2, 5, 8] on unstructured mesh. 2D
reconstruction causes bigger problem in the selection of the stencil. First we
have more possibilities how to choose the cells. Some authors, for example
Sonar in [6], focus on efficiency of the algorithm and they consider only lim-
ited number of the possible stencils. Second task is how to choose the most
appropriate stencil so that we work with the most smooth data. Tradition-
ally, total variation is used but Jameson in [17] shows an example where the
total variation have smaller value for less smooth data than for more smooth
data.

Because ENO method is based on reconstruction theory, as finite volume
method, recently authors started to focus on different kind of the approx-
imation. Specifically, the thin plate splines with the radial basis functions
yield an optimal recovery algorithms according to [6, 7, 10, 13]. The radial
basis functions (RBF) are often used in the approximation theory in the last
years and they were applied to solving differential equations about 15 years
ago. We can find the properties and application of radial basis functions in
[9, 14, 15, 16] in details.

The text is organized into two main chapters thus we introduce the es-
sentially non-oscillatory schemes for one dimensional linear problem in the
first chapter. We focus on polynomial reconstruction and we are interested in
quality of the numerical solution depending on the degree of the polynomial.

The second chapter is concentrated on the conservation law in the two
dimensional space. We extend the term reconstruction on triangular mesh.
The main task is to compare the quality of the numerical solution depending
on approximation of the cell averages using the polynomials and thin plate
splines. We apply this theory on scalar linear equation, system of linear
equations and also nonlinear equation.
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Chapter 1

ENO schemes in one dimen-
sional space

Essentially non–oscillatory schemes have been constructed to solve the hyper-
bolic partial differential equations with high order accuracy. In one spatial
dimension, the hyperbolic PDE is in the form

ut (x, t) + fx (u (x, t)) = 0, x ∈ [a, b] , t ∈ (0, T ) (1.1)

with the initial condition

u (x, 0) = u0 (x) , x ∈ [a, b] . (1.2)

ENO methods are a finite volume methods which try to improve the classical
methods. The main part of the finite volume methods is the approximation
of the solution u using the cell averages. There exist a lot of methods which
try to build the approximation such that the numerical solution does not
oscillate. The so called total variation dimishing (TVD) schemes do not
product the oscillations even if the stencil contain the cells with discontinuous
data, i.e. they strictly satisfy the non-oscillatory behaviour. It implies that
the TVD methods of higher order degenerate to the first order anyway. But
the methods, which are not TVD and are based on approximation of the
data in the fixed stencil, product oscillations.

ENO method is motivated by the previous problems and it introduces
the adaptive stencil. The idea is to avoid the discontinuity and interpolate
data in the smoothest regions. We study the procedure how to choose the
appropriate stencil and thus get numerical solution of high order accuracy in
the following sections.

Although the ENO methods are not TVD, they are really high order
accurate methods. It means that ENO scheme can products little oscillations
but they are comparable with the truncation error, [17, 7, 1].
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1.1 Spatial Discretization

Let us consider the hyperbolic partial differential equation in one dimensional
space (1.1) in this chapter s.t. the solution is dependent on both spatial and
time variable. In this section, the discretization only in space is considered
and we leave the problem continuous in time. We assume solving the prob-
lem (1.1) in the interval I = [a, b]. By discretization of this interval I we
understand a grid

a = x 1
2
< x 3

2
. . . < xN− 1

2
< xN+ 1

2
= b. (1.3)

Each interval
Ii =

[
xi− 1

2
, xi+ 1

2

]
, ∀i = 1, 2, . . . , N, (1.4)

is called the cell. The cell centeres and cell sizes are denoted by

xi =
1

2

(
xi− 1

2
+ xi+ 1

2

)
∀i = 1, 2, . . . , N, (1.5)

∆xi = xi+ 1
2
− xi− 1

2
, ∀i = 1, 2, . . . , N. (1.6)

In this thesis we consider equidistant grid, i.e. all cell sizes are equal.

1.2 Finite Volume Method

As we mentioned, the ENO scheme is the finite volume method. To build
this method, we start with integration of (1.1) over the cell Ii

d

dt

∫ x
i+1

2

x
i− 1

2

u (x, t)dx = −
∫ x

i+1
2

x
i− 1

2

fx (u (x, t))dx. (1.7)

We determine the antiderivative of the right side of the last equation and we
divide whole equation by the cell size to obtain

d

dt

 1

∆x

∫ x
i+1

2

x
i− 1

2

u (x, t)dx

 = − 1

∆x

(
f
(
u
(
xi+ 1

2
, t
))
− f

(
u
(
xi− 1

2
, t
)))

.

(1.8)
Let us define

ū (xi, t) =
1

∆x

∫ x
i+1

2

x
i− 1

2

u (x, t)dx, (1.9)

which are the cell averages. The integrated form of the equation (1.1) is in
the following form

dū (xi, t)

dt
= − 1

∆x

(
f
(
u
(
xi+ 1

2
, t
))
− f

(
u
(
xi− 1

2
, t
)))

. (1.10)
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The approximation of the flux leads to the equality

dū (xi, t)

dt
= − 1

∆x

(
f̄i+ 1

2
− f̄i− 1

2

)
, (1.11)

where the numerical flux is defined by

f̄i+ 1
2

= h
(
u−
i+ 1

2

, u+
i+ 1

2

)
. (1.12)

The value u−
i+ 1

2

, resp. u+
i+ 1

2

, is the function value of the unknown solution

u at the point xi+ 1
2

according to the cell Ii, resp. Ii+1. The basic problem

of the finite volume method is that we do not know the values u±
i+ 1

2

because

we have available only the cell averages (1.9). Therefore (1.11) can not be
formulated. We thus have to estimate these values.

We obtain them by a procedure of reconstruction which we study in the
section 1.3 in details. This procedure does not compute the values u±

i+ 1
2

exactly. We thus consider the cell averages of the solution in time to be
approximate too. We denote its approximation as Ūi (t) and U±

i+ 1
2

. This

leads to the conservative scheme

dŪi (t)

dt
= − 1

∆x

(
f̄i+ 1

2
− f̄i− 1

2

)
, (1.13)

Let us assume that U±
i+ 1

2

are already known for each cell. Then the function

h in (1.12), i.e. the approximation to the numerical flux, can be defined for
example by one of the following ways

• Godunov flux:

h
(
U−
i+ 1

2

, U+
i+ 1

2

)
=


minU−

i+1
2

≤u≤U+

i+1
2

f (u) if U−
i+ 1

2

≤ U+
i+ 1

2

maxU+

i+1
2

≤u≤U−
i+1

2

f (u) if U−
i+ 1

2

> U+
i+ 1

2

, (1.14)

• Lax-Friedrichs flux:

h
(
U−
i+ 1

2

, U+
i+ 1

2

)
=

1

2

[
f
(
U−
i+ 1

2

)
+ f

(
U+
i+ 1

2

)
− α

(
U+
i+ 1

2

− U−
i+ 1

2

)]
, (1.15)

where α = maxu |f ′ (u)| is a constant and the maximum is taken over the
relevant interval of u.

Notice that the initial condition can be discontinuous in real problem. In
such case, we can not study a solution of the problem in the classical sense.
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Therefore we use concept of weak solution which has to satisfy the following
integral identity

d

dt

∫ x
i+1

2

x
i− 1

2

u (x, t)dx+
1

∆x

(
f
(
u
(
xi+ 1

2
, t
))
− f

(
u
(
xi− 1

2
, t
)))

= 0, (1.16)

over every cell Ii, i = 1, . . . , N . The weak solution defined in this way is not
generally unique which leads to the usage of so called entropy conditions.
For this topic, more details could be found in [12, 13, 7].

1.3 Reconstruction

In the previous section, we mentioned that ENO scheme uses only the discrete
cell averages (1.9) but the unknown values U±

i+ 1
2

at the cell boundaries xi+ 1
2

are required to formulate (1.13). These unknowns are determined using the
so called reconstruction. By reconstruction we understand an approximation
of the function u (x) in each cell Ii based on the values of the cell averages.

It is possible to use more ways to approximate data. We discuss a poly-
nomial reconstruction in 1D problem and we add reconstruction using radial
basis functions to 2D problems. The polynomial reconstruction is determined
for every cell Ii. At first, the condition for conservation of cell averages is
used. Let us assume that pi(x) is a polynomial reconstruction of u for the
cell Ii in the time t. Therefore

1

∆x

∫ x
i+1

2

x
i− 1

2

pi (x)dx = Ūi. (1.17)

The simplest way of the reconstruction is to use a constant polynomial, see
Figure 1.1. To get the approximation using constant polynomial and hold
the cell average (1.17) at the same time it provides unique result pi(x) = Ūi.
If we repeat it for each cell Ii then we obtain reconstructed data of u. The
reconstruction pi(x) is defined at each point, i.e. also at the cell boundaries
xi± 1

2
where we look for the approximation of Ui± 1

2
.

For the given reconstruction pi(x) in the cell Ii, the unknown value U+
i− 1

2

is obtained as function value of the polynomial pi at the point xi− 1
2

and U−
i+ 1

2

as function value of the polynomial pi at the point xi+ 1
2
. In the special case

of constant recovery, these unknows are simply the values of the cell average
of the corresponding cell Ii. According to the Figure 1.1, the values from left
and right U±

i− 1
2

do not have to be equal.
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xi-1

x
i-

1

2

x
i+

1

2

x
i+

3

2

xi xi+1 xi+2

U i-1

U i Ui+1�2-

U i+1Ui+1�2+

U i+2

piHxL

pi+1HxL

Figure 1.1: Polynomial reconstruction of the cell averages using constant polyno-
mial.

If we consider a polynomial reconstruction, we can generally use poly-
nomial of any degree. It holds that for method of the k-th order, we use a
polynomial of degree at most k − 1

pi (x) = u (x) +O
(
∆xk

)
, x ∈ Ii, i = 1, 2, . . . , N. (1.18)

We can read the proof in [4]. Let us assume that we want to construct a
linear reconstruction for the cell Ii, i.e. we use a polynomial of the form pi(x)
= a0 +a1(x−xi). To determine the linear polynomial we need two conditions
to compute the unknown coefficients a0 and a1. The first condition is the
same as for a constant polynomial because we require the conservation of the
cell average of the polynomial over cell Ii. One of the neighboring cells Ii−1

or Ii+1 gives us another condition. We require also for one of the cells Ii−1

or Ii+1 to fulfill the cell average

1

∆x

∫ x
i− 1

2

x
i− 3

2

pi (x)dx = Ūi−1 (1.19)

or
1

∆x

∫ x
i+3

2

x
i+1

2

pi (x)dx = Ūi+1. (1.20)

It is not evident which neighbouring cell to choose. Mainly, it is very im-
portant for discontinuous data. The reason comes from the classical finite
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difference method. Specifically, finite difference method of the first order is
not very accurate and it products oscillations using finite difference method
of the second order near non–smooth data.

ENO methods try to fix the problem of the finite difference method men-
tioned above. We say that for the corresponding cell Ii we want to select the
so called adaptive stencil Si. It is a set of neighbouring cells over which we
look for the reconstruction.

In our example for linear polynomial, we start with the stencil Si = {Ii}.
The next step is to add one of the neighbours, as we discussed above, and
get either the stencil Si = {Ii−1, Ii} or Si = {Ii, Ii+1}. We show both options
in the Figure 1.2 and we discuss how to select more appropriate stencil in
the following paragraphs.

x
i-

1

2

Ii

x
i+

1

2

Ii+1

x
i+

3

2

Ii-1 Ii-1

U i-1

U i

U i+1

U i+2

Ui+1�2-

piHxL

x
i-

1

2

Ii

x
i+

1

2

Ii+1Ii-1 Ii-1

x
i+

3

2

U i-1

U i

U i+1

U i+2

Ui+1�2-

piHxL

Figure 1.2: Polynomial reconstruction of the cell averages using linear polynomial,
where the stencil is {Ii−1, Ii} (left) or {Ii, Ii+1} (right).

Generally in case of the polynomial approximation, we look for stencil
including k cells for k−1 degree of the polynomial. The cells can be on both
sides around the corresponding cell Ii for which we form the reconstruction.
Let say that there are r cells to the left and s cells to the right, where r, s
are nonnegative and it holds

r + s+ 1 = k. (1.21)

Then the stencil is the following set

S (i) = {Ii−r, . . . , Ii+s} , (1.22)
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assuming each cell between I2−k and IN+k−1 is available. Now we need an
appropriate criterion how to choose the neighboring cell to prevent the situa-
tion that oscillations occur. We use the Newton divided difference according
to [4]. For this purpose, we define the primitive function V (x) of the solution
u

V (x) =
∫ x

−∞
u (ξ)dξ, (1.23)

where the lower limit −∞ in not important and can be replaced by any fixed
number. We apply the divided differences of the function V (x) to build
the appropriate stencil. The 0–th degree divided difference for the primitive
function V is defined by

V
[
xi− 1

2

]
= V

(
xi− 1

2

)
, (1.24)

where the value of V (x) at the point xi+ 1
2

is expressed as

V
(
xi+ 1

2

)
=

i∑
j=−∞

∫ x
i+1

2

x
i− 1

2

u (ξ)dξ. (1.25)

The cell average is substituted in the last expression and thus the relation
between the primitive function V (x) at the cell boundaries and the cell
averages Ūi is obtained

V
(
xi+ 1

2

)
=

i∑
j=−∞

Ūj∆x. (1.26)

The last expression implies that if we know the cell averages Ūi exactly
then we can determine the values of the primitive function V (x) at the cell
boundaries exactly. Assume e, f to be nonnegative integer numbers then we
can define the j–th degree divided differences

V
[
xi− 1

2
−e, . . . , xi− 1

2
+f

]
=
V
[
xi+ 1

2
−e, . . . , xi− 1

2
+f

]
− V

[
xi− 1

2
−e, . . . , xi− 3

2
+f

]
xi− 1

2
+f − xi− 1

2
−e

,

(1.27)
where e+f = j. Using (1.26) we get the divided differences of V (x) expressed
by the cell averages Ūi. Let us show an example of the first degree divided
difference of V (x) for cell Ii =

[
xi− 1

2
, xi+ 1

2

]
(i.e. e = 0, f = 1)

V
[
xi− 1

2
, xi+ 1

2

]
=
V
[
xi+ 1

2

]
− V

[
xi− 1

2

]
xi+ 1

2
− xi− 1

2

=
V
(
xi+ 1

2

)
− V

(
xi− 1

2

)
∆x

=
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=

∑i
j=−∞ Ūj∆x−

∑i−1
j=−∞ Ūj∆x

∆x
=
Ūi∆x

∆x
= Ūi. (1.28)

We now discuss why the divided difference is appropriate for selection of the
cells. It holds according to [4]

V
[
xi− 1

2
−e, . . . , xi− 1

2
+f

]
=
V j (ξ)

j!
(1.29)

for some ξ inside xi− 1
2
−e < ξ < xi− 1

2
+f and e+ f = j, provided the primitive

function V (x) is smooth in the interval. If V (x) is discontinuous at some
point in the above interval then

V
[
xi− 1

2
−e, . . . , xi− 1

2
+f

]
= O

(
1

∆xj

)
. (1.30)

It implies that the divided difference measures the smoothness of the function
V (x) in the interval

(
xi− 1

2
−e, xi− 1

2
+f

)
, where e+ f = j.

Let us remind that we wanted to build a reconstruction from the cell
averages for a stencil S and we constructed Newton divided difference to
decide what is the most appropriate stencil. The property of the divided
difference mentioned above is very important because we look for a special
type of interpolation polynomial. It is the Newton interpolation which is
constructed just by the Newton divided differences. It means that if we find
a set of such cells (i.e. the stencil) in which the primitive function V (x) is
the most smooth then we get optimal recovery.

A stencil Si = {Ii−r, . . . , Ii+s} can be represented by a set of the boundary

points
{
xi− 1

2
−r, . . . , xi− 1

2
, xi+ 1

2
, . . . , xi− 1

2
+s+1

}
. We can immediately see that

e = r, f = s + 1 and degree of the divided difference is j = r + s + 1
in (1.27). It implies that for each stencil Si = {Ii−r, . . . , Ii+s} we can find
Newton inporpolation polynomial Pi (x) of degree k of the function V (x) at

points
{
xi− 1

2
−r, . . . , xi− 1

2
+s+1

}
as follows

Pi (x) =
k∑
j=0

V
[
xi− 1

2
−r, . . . , xi− 1

2
−r+j

]
·
j−1∏
m=0

(
x− xi− 1

2
−r+m

)
, (1.31)

where j = r+ s+ 1. Because V (x) is the primitive function of the unknown
solution u (x) thus the derivative of (1.31) can be computed and we can finally
express the Newton interpolation polynomial of k-th degree of the function
u (x)

pi (x) =
k∑
j=1

V
[
xi− 1

2
−r, . . . , xi− 1

2
−r+j

]
·
j−1∑
m=0

j−1∏
l=0,l 6=m

(
x− xi− 1

2
−r+l

)
, (1.32)
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where j = r+ s+ 1. Although this polynomial is determined by the divided
difference of the primitive function V (x), using (1.26) we know that we can
express the divided difference using the cell averages Ūi which we know.

Let us show how to find the most appropriate stencil S (i), containing
k neighboring cells for the i–th cell Ii using divided difference. We always
start with the corresponding cell Ii, i.e. S (i) = {Ii}. It is enough to satisfy
first order of the method. To get higher order, we have to add one of the
neighbour cells Ii−1 or Ii+1 as mentioned above. But we can finally decide
computationally which one. Smaller value of the divided difference implies
the smoother function thus we avoid the oscillations. We compare the divided
difference for the stencil S1(i) = {Ii−1, Ii} and S2(i) = {Ii, Ii+1}. If it holds∣∣∣V [xi− 3

2
, xi− 1

2
, xi+ 1

2

]∣∣∣ < ∣∣∣V [xi− 1
2
, xi+ 1

2
, xi+ 3

2

]∣∣∣ , (1.33)

we add the left neighbour cell Ii−1. Otherwise we add the right neighbour
Ii+1. If we use the chosen stencil to express the reconstruction (1.32) at this
moment, we would get method of the second order. But to obtain method
of even higher order we proceed by the same way adding next cells until we
reach k cells in the stencil S (i).

Let us assume that we have determined the stencil with needed number
of the cells according to the required order of the method using the divided
differences. For such a stencil we can now find the Newton interpolation
(1.32) and thus we can reconstruct the unknown function u at each point.

The last task is to calculate the polynomial pi (x) at the cell boundaries
for the corresponding cell Ii. We do it by substituting the points xi− 1

2
and

xi+ 1
2

into the interpolation p (x)

U−
i+ 1

2

= pi
(
xi+ 1

2

)
,∀i = 1, . . . , N, (1.34)

U+
i− 1

2

= pi
(
xi− 1

2

)
,∀i = 1, . . . , N. (1.35)

Another and for uniform grid better way is described, in [4], how to get the
interpolation polynomial. We can proceed similarly to [4] to obtain the fol-
lowing expression for the general approximate polynomial of arbitrary degree

pi (x) =
k∑

m=0

m−1∑
j=0

ūi−r+j∆xi−r+j

∑k
l=0,l 6=m

∏k
q=0,q 6=m,l

(
x− xi−r+q− 1

2

)
∏k
l=0,l 6=m

(
xi−r+m− 1

2
− xi−r+l− 1

2

)
 .
(1.36)

The values of the polynomial at x = xi+ 1
2

are expressed by

U−
i+ 1

2

= pi
(
xi+ 1

2

)
=
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=
k−1∑
j=0

 k∑
m=j+1

∑k
l=0,l 6=m

∏k
q=0,q 6=m,l

(
xi+ 1

2
− xi−r+q− 1

2

)
∏k
l=0,l 6=m

(
xi−r+m− 1

2
− xi−r+l− 1

2

)
∆xi−r+jŪi−r+j.

(1.37)
The last equation is simplified and thus the constants crj are established as
follows

crj =

 k∑
m=j+1

∑k
l=0,l 6=m

∏k
q=0,q 6=m,l

(
xi+ 1

2
− xi−r+q− 1

2

)
∏k
l=0,l 6=m

(
xi−r+m− 1

2
− xi−r+l− 1

2

)
∆xi−r+j, (1.38)

which we can rewrite for a uniform grid by

crj =
k∑

m=j+1

∑k
l=0,l 6=m

∏k
q=0,q 6=m,l (r − q + 1)∏k

l=0,l 6=m (m− l)
. (1.39)

Then we obtain the final relation for the approximate boundary values of the
function u (x)

U−
i+ 1

2

= pi
(
xi+ 1

2

)
=

k−1∑
j=0

crjŪi−r+j. (1.40)

We can find a table of these constants crj for the uniform grid in [4], for order
of accuracy between k = 1 and k = 7.

We have to note that the expressions above are related to the right bound-
ary point xi+ 1

2
in Ii. If we want to determine the value for xi− 1

2
in the cell

Ii, there exist a little modified relation for the approximate value U+
i− 1

2

U+
i− 1

2

= pi
(
xi− 1

2

)
=

k−1∑
j=0

c̃rjŪi−r+j, (1.41)

where c̃rj = cr−1,j. At this time, we are able to construct an interpolation
polynomial for any data, to get the approximation of the flux and the very last
step is to formulate (1.13). We concentrate on solving of ordinary differential
equation according to the time variable in the next section.

1.4 Time Discretization

We described the basic idea of ENO method in the previous section. We
obtained an approximation of the unknown function u (x, t) in each cell Ii
and we computed the required values of the solution at the cell boundary
points U±

i− 1
2

so far. The very last step is to form the equation (1.13), i.e. solve
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differential equation according to the time variable t. We will be interested
in the Euler and Runge-Kutta methods.

Let us discretize the time interval (0, T ) such that

0 = t1 < t2 < . . . < tn < tn+1 < . . . < tK−1 < tK = T. (1.42)

Moreover, we define step ∆t as follows

∆t = tn+1 − tn, ∀n = 1, 2, . . . , K. (1.43)

We look for the approximate solution u of the following

dŪi (t)

dt
= − 1

∆x

(
f̄i+ 1

2
− f̄i− 1

2

)
, (1.44)

where the right side is obtained by ENO approximation.

Euler method

First, let us focus on Euler method which is method of the first order accu-
racy. The following equality is obtained by integration of the relation (1.44)
with respect to time over the interval [tn, tn+1]

∫ tn+1

tn

dŪi (t)

dt
dt = − 1

∆x

∫ tn+1

tn

(
f̄i+ 1

2
− f̄i− 1

2

)
dt =

= −∆t

∆x

(
1

∆t

∫ tn+1

tn
f̄i+ 1

2
dt− 1

∆t

∫ tn+1

tn
f̄i− 1

2
dt
)
,

since 1
∆t

∫ tn+1
tn f̄i+ 1

2
dt is an average of the flux, which we denote F̄

n+ 1
2

i+ 1
2

, thus

Ūi (tn+1) = Ūi (tn)− ∆t

∆x

(
F̄
n+ 1

2

i+ 1
2

− F̄ n+ 1
2

i− 1
2

)
.

We approximate Ūi (tn+1) and Ūi (tn) by Ūn+1
i and Ūn

i then we get the explicit
Euler method written in the following form

Ūn+1
i = Ūn

i −
∆t

∆x

(
F̄
n+ 1

2

i+ 1
2

− F̄ n+ 1
2

i− 1
2

)
. (1.45)
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Runge – Kutta methods

The class TVD Runge–Kutta methods is suitable to solve initial value prob-
lem of ordinary differential equations with higher accuracy. In connection
to the ENO method, we want to apply Runge – Kutta method to solve the
folloving ODE

dŪi (t)

dt
= L

(
Ūi (t)

)
, (1.46)

where L
(
Ūi (t)

)
represents the right side of the equation (1.44) which is ob-

tained by ENO method. ENO method, described in the previous section,
provides numerical solution of high order accuracy in space. Euler method is
method of the first order. The Runge – Kutta method is applied to get higher
accuracy also for approximation in time. Special Runge – Kutta method is
used for hyperbolic conservation laws, i.e. total variation diminishing (TVD)
Runge – Kutta methods which maintains stability of the numerical solution.
The theory about the TVD and non–TVD Runge – Kutta methods are stud-
ied for instance in [19, 4, 20].

Second order TVD Runge–Kutta method, [4], is given by

Ū
(1)
i = Ūn

i + ∆tL
(
Ūn
i

)
Ūn+1
i =

1

2
Ūn
i +

1

2
Ū

(1)
i +

1

2
∆tL

(
Ū

(1)
i

)
. (1.47)

The third order TVD Runge–Kutta method is expressed

Ū
(1)
i = Ūn

i + ∆tL
(
Ūn
i

)
Ū

(2)
i =

3

4
Ūn
i +

1

4
Ū

(1)
i +

1

4
∆tL

(
Ū

(1)
i

)
(1.48)

Ūn+1
i =

1

3
Ūn
i +

2

3
Ū

(2)
i +

2

3
∆tL

(
Ū

(2)
i

)
.

1.5 Algorithm

In this section, we summarize in a brief overview the algorithm used to
implement ENO method for solving a hyperbolic partial differential equation
(1.1) with an initial condition (1.2).

1. Discretization
Let us consider the uniform discretization for all calculations with con-
stant size of cell ∆x. We discretize the interval [a, b] to get the cell
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boundaries xi+ 1
2

and the cell centers xi, exactly according to the de-
scription in the section 1.1. At the same time, the cell averages of the
initial condition (1.2) are determined using the expresstion (1.9) for
each cell Ii in the interval [a, b]. Next we discretize the time interval
[0, T ] with constant step ∆t as described in 1.4.

The following steps proceed until the time T is reached.

2. Selection of stencil for method of k–th order
This problem is described in details in the section 1.3. We have to
determine the stencil Si for each cell Ii. The stencil includes k cells for
the method of the order k. In the process, we always start with stencil
including the corresponding cell Ii, i.e. as if we get the first order of
the method. Next we consider two possible stencils, one S1

i = {Ii−1, Ii}
by adding left cell and second S2

i = {Ii, Ii+1} adding the right cell.

The relation (1.27) is used to compute the divided difference and we
choose such a stencil which has smaller value of the divided difference
according to (1.33). The second order of the method is thus reached.

Next we select between S1
i = {Ii−2, Ii−1, Ii} and S2

i = {Ii−1, Ii, Ii+1} if
we added Ii−1 in the last step. Or we select between S1

i = {Ii−1, Ii, Ii+1}
and S2

i = {Ii, Ii+1, Ii+2}. We again compute the divided difference
for them and use the condition (1.33). Third order of the method is
obtained now. We proceed in a similar way up to reaching k-th order
of the method.

3. Computing of polynomial approximation in stencil
In the previous step, the stencil was determined, i.e. the interval in a
space domaine where reconstruction of function u is computed. We use
(1.32) to obtain the polynomial pi (x) of the degree at most k − 1 for
each cell Ii.

4. Determination of cell boundaries
The values of polynomial pi (x) at the points xi− 1

2
and xi+ 1

2
are the

approximations of the function u (x) at the cell boundaries U+
i− 1

2

and

U−
i+ 1

2

according to (1.34) and (1.35). Second possibility is to directly

use expressions (1.40) and (1.41). Let us remind that we can skip the
step 3 if we use (1.40) and (1.41).

5. Approximation of flux
Let us choose (1.14) or (1.15) as the scheme for approximation of the
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numerical flux and we use (1.12) to compute f̄i+ 1
2

for all i.

6. Computing of the next time step
The evolution problem (1.44) is solved in time using Euler method
(1.45) or Runge – Kutta method (1.47) or (1.48).

Approximation of the solution was computed for tn+1 and the steps
2− 6 follows.

1.6 Numerical Results

ENO method is applied to scalar linear partial differential equation in this
section. We are interested in quality of the numerical solution depending on
the order of the method. Let us study the transport equation with transport
velocity c

ut + cux = 0, x ∈ [a, b] , t ∈ (0, T ) (1.49)

with an initial condition

u (x, 0) = u0 (x) , x ∈ [a, b] . (1.50)

Outflow boundary conditions are applied in the experiments which could be
represented by Neumann boundary condition. In this thesis, we focus on
properties of the ENO methods and quality of the numerical solution, but
theory about boundary condition can be found e.g. in [19] in details. The
equation (1.49) has analytical solution which is briefly calculated before we
present the numerical experiments. We rewrite the equation (1.49) as an
inner product of two vectors

(1, c) · (ux, uy) = 0,

where (ux, uy) is gradient of the function u. The left side of the equality
represents the derivative of the function u with respect to the vector v =
(1, c), i.e.

∂u

∂v
= 0.

Zero derivative means that the function u is constant along the lines with
the direction vector (1, c). Therefore, the solution of the transport equation
has the following form

u (x, t) = u0 (x− ct) . (1.51)

The solution is constant in the directions of the vector (1, c) and it moves
with speed c in the time t. If the constant c is positive then the solution
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travelles to the right and vice versa. We talk about right or left travelling
wave, respectively.

Now, we turn our attention to the numerical experiments. Specifically,
let us solve the transport equation (1.49) for [a, b] = [−18, 18]. We use
the equidistant grid between points xi+ 1

2
, Godunov flux (1.14) in the ENO

method and Euler method for the equation in time. Since we know the
analytical solution, we can compute the error of the numerical approximation.
Assume that û (xi, tn) is the average of the exact solution and Ūn

i is the
average of the numerical solution of the transport equation at the cell centers
xi and at the time tn. The error of the numerical solution is given by

∆x
∑
i

∣∣∣Ūn
i − û (xi, tn)

∣∣∣ . (1.52)

Experiment 1

Let us consider an example using the following initial condition which is also
showed in the Figure 1.3

u (x, 0) =


−1 if x < −1

1 if −1 ≤ x ≤ 1
−1 if 1 < x.

We choose ∆x = 0.05, the time step ∆t = 0.06 and the speed c = 1. We
can compare the numerical and analytical solution at the time t = 0.3 in
the Figure 1.4 for ENO method of the first and second order. We can see
that the numerical solution oscillates strongly after only five time steps. The
reason is in the stability of the method. Each finite volume method has to
satisfy the so called Courant-Friedrichs-Lewy condition (CFL condition) for
stability of the numerical solution. The theory of the CFL condition and
stability is described in details in [12, 19]. We have to fulfil the following
condition for the transport equation, see e.g. [12]

|c| ∆t

∆x
≤ 1. (1.53)

In case of general hyperbolic equation (1.1), CFL condition has the form

max
u
|f ′ (u)|∆t

∆x
≤ 1. (1.54)
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Figure 1.3: Initial condition.

We consider satisfying CFL condition in the rest of the experiments in
this section. Figures 1.5 and 1.6 show numerical solution of the transport
equation (1.49) for ∆x = 0.05, ∆t = 0.02, c = 1, T = 4. The graphs confirm
that the numerical solution does not oscillate in this case because we fulfil
CFL condition. Numerical solution of ENO method is compared with the
analytical solution in each graph. ENO method of the first order (i.e. using
constant reconstruction) is very inaccurate according to the Figure 1.5 (left).
But the quality of the numerical solution rises as the order of the method
increases.

Figure 1.4: Numerical (circles) and analytical (solid line) solution after 5 time
steps. ENO method of the first (left) and second (right) order is used for ∆x =
0.05, ∆t = 0.06.
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Figure 1.5: Numerical (circles) and analytical (solid line) solution after 200 time
steps. ENO method of the first (left) and second (right) order is used for ∆x =
0.05, ∆t = 0.02.

Figure 1.6: Numerical (circles) and analytical (solid line) solution after 200 time
steps. ENO method of the third (left) and fourth (right) order is used for ∆x =
0.05, ∆t = 0.02.

The error of the numerical solution (1.52) is entered in the Table 1.1. It
confirms the behaviour of the numerical solution in the previous figures. The
value of the error decreases with increasing order of the method. The biggest
decrease of the error is between ENO method of the first and second order.
While the error goes down much slower for higher order of the method.

According to the above example, we would choose ENO method of the
fourth order, if we are interested only in numerical solution with the smallest
error. But the efficiency of the algorithm can be high using very small ∆x and
∆t and it rises for higher order of the accuracy of the method. The efficiency
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of the algorithm is displayed in the Table 1.2 for the previous example after
200 steps. If we thus want to use ENO method of the fourth order, we should
not forget to higher computational time. Perhaps it is better to use method
of the third order because the error for ENO scheme of the third and fourth
order is about the same value and method of the third order is bit faster.

k error
1 1.1099
2 0.1892
3 0.1243
4 0.1119

Table 1.1: Error of the numerical solution after 200 time steps for ∆x = 0.05,
∆t = 0.02, c = 1.

k time [s]
1 3.2
2 4.3
3 6.4
4 7.4

Table 1.2: Efficiency of the algorithm of the numerical solution after 200 time steps
for ∆x = 0.05, ∆t = 0.02, c = 1.

We now choose more fine grid ∆x = 0.025 and we are interested if the
error of the numerical solution decreases. The results are displayed in the
Figures 1.7, 1.8 at time T = 4 for ∆t = 0.01. According to the graphs, the
numerical solution is improved for each order of the method compared to the
previous experiment on coarse grid. The values of the error in the Table 1.3
confirm that the magnitude of the error is half than the error on coarse grid
∆x = 0.05. However the algorithm works about four times longer.
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Figure 1.7: Numerical (circles) and analytical (solid line) solution after 400 time
steps. ENO method of the first (left) and second (right) order is used for ∆x =
0.025, ∆t = 0.01.

Figure 1.8: Numerical (circles) and analytical (solid line) solution after 400 time
steps. ENO method of the third (left) and fourth (right) order is used for ∆x =
0.025, ∆t = 0.01.

k error time [s]
1 0.7833 11.6
2 0.0949 17.3
3 0.0622 25.5
4 0.0560 29.6

Table 1.3: Error of the numerical solution and efficiency of the algorithm after 400
time steps for ∆x = 0.025, ∆t = 0.01, c = 1.
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Experiment 2

It has been found out in the previous experiment that ENO method of third
or fourth order provides acceptable results. We are interested whether the
accuracy using such method is higher than using the classical finite difference
methods. Finite difference methods are described in details in [12]. The
Figure 1.9 compares ENO method of the first and second order with finite
difference method of the first order for ∆x = 0.05, ∆t = 0.02 and c = 1. The
first order of the ENO method and finite difference method gives the same
quality of the numerical solution.

Finite difference method of the second order is more accurate than ENO
method of the first order but it oscillates near discontinuity, see Figure 1.10.
Moreover, already numerical solution of the ENO method of the second order
is closer to the analytical solution than finite difference method of the second
order.

Let us consider now the so called Harten–Zwas method. It is a method
which uses second order finite difference method around points where solution
is smooth and it switches to the first order otherwise, because first order
does not product oscillations. We again compare this method with ENO
method of first and second order in the Figure 1.11. The results are similar to
the previous situation except that Harten – Zwas method does not product
oscillations, i.e. the switching method improves ENO method of the first
order. But the quality of the ENO method of the second order is higher
than Harten–Zwas method. It thus appears that ENO method of the second
and higher order provides numerical solution of the transport equation with
smaller error than finite difference methods.

Figure 1.9: Numerical (circles) and analytical (solid line) solution at time t = 4.
ENO method of the first (left) and second (right) order is compared with finite
difference method of the first order. ∆x = 0.05, ∆t = 0.02.
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Figure 1.10: Numerical (circles) and analytical (solid line) solution at time t = 4.
ENO method of the first (left) and second (right) order is compared with finite
difference method of the second order. ∆x = 0.05, ∆t = 0.02.

Figure 1.11: Numerical (circles) and analytical (solid line) solution at time t = 4.
ENO method of the first (left) and second (right) order is compared with the
Harten – Zwas method. ∆x = 0.05, ∆t = 0.02.

Experiment 3

We studied the quality of the numerical solution using discontinuous initial
condition so far. We are now interested in more complicated initial condition.
We use both continuous and discontinuous initial condition, see Figure 1.12.
Let us consider ∆x = 0.05, ∆t = 0.02, c = 1 and T = 8.

ENO method of the first order is applied in the Figure 1.13. The numeri-
cal solution is compared with the analytical solution. The numerical solution
behaves similarly to the previous examples. The shape of the numerical so-
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lution does not quite fit to the analytical solution because of the diffusion
effect.

Figure 1.12: Initial condition.

If we use ENO scheme of the second order in the Figure 1.14 (left), we get
correction of the numerical solution compared to the first order. The Table
1.4 with the error (1.52) confirms this improvement. The numerical solution
converges to the analytical solution in case of the discontinuous data. But
another problem appears for continuous data as we can see in the figure.
This negative effect for continuous data is fixed using smaller value of the
step ∆t as it is showed in the right graph of the Figure 1.14. But more
time steps cause that the quality of the numerical solution decreases for the
discontinuous data.

Figure 1.13: Initial condition (left) and numerical solution (circles) compared with
analytical solution (solid line) at time t = 8 (right). ENO method of the first order
is used for ∆x = 0.05, ∆t = 0.02.
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Figure 1.14: Numerical (circles) and analytical (solid line) solution at time t = 8.
ENO method of the second order is used for ∆x = 0.05, ∆t = 0.02 (left) and
∆t = 0.005 (right).

Figures 1.15 and 1.16 show numerical results using ENO method of the
third order for various time step ∆t. The structure of the numerical solution
behaves similarly to the method of second order, i.e. the quality of the
numerical solution increases with decreasing step ∆t for continuous data but
it is vice versa for the discontinuous data. The figures show that we have to
be careful in case of non–smooth condition. The reason is that the numerical
solution tends to almost oscillate for bigger time step ∆t around the point
where the initial condition is non–smooth. This oscillations are not evident
from to the Table 1.4 because the error is the smallest for the method of the
third order.

Figure 1.15: Numerical (circles) and analytical (solid line) solution at time t = 8.
ENO method of the third order is used for ∆x = 0.05, ∆t = 0.02 (left) and
∆t = 0.01 (right).
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Figure 1.16: Numerical (circles) and analytical (solid line) solution at time t = 8.
ENO method of the third order is used for ∆x = 0.05, ∆t = 0.001.

k error
∆t = 0.02 ∆t = 0.01 ∆t = 0.005 ∆t = 0.001

1 1.7618 2.1389 2.3128 2.4458
2 0.7612 0.5845 0.5855 0.6357
3 0.7654 0.4600 0.3470 0.3375

Table 1.4: Error of the numerical solution at time t = 8 for ∆x = 0.05, c = 1.

We tested ENO method applied on transport equation in the previous
examples. The results showed that ENO method products more accurate
numerical solution than classical finite difference methods. But the quality
of the numerical solution for ENO scheme varies for continuous and discon-
tinuous initial condition depending on size of ∆x and ∆t. From the given
experiments, it follows that ENO scheme of the third order can provide opti-
mal approximation of the solution of transport equation for both continuous
and discontinuous inital condition.
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Chapter 2

ENO schemes in two dimen-
sional space

Since the class of essentially non–oscillatory schemes for hyperbolic partial
differential equations and systems has been constructed, there exists few
extensions to multidimensional problems. They are mainly developed for
very regular meshes. ENO methods provide this extension and they are
applied especially on triangular mesh in 2D.

In this chapter, we focus on hyperbolic partial differential equation in the
form

ut (x, y, t) + fx (u (x, y, t)) + gy (u (x, y, t)) = 0, (2.1)

u (x, y, 0) = u0 (x, y)

where [x, y] ∈ Ω ⊂ R × R, t ∈ [0, T ]. We are interested in results of both
linear and nonlinear equation but we apply ENO method also to system of
equations. In what follows, we introduce ENO schemes on triangular mesh,
we find integral formulation and we show how to find the reconstruction of
the cell averages. The theory about ENO methods in two dimensional space
can be found e.g. in [2, 3, 5, 10].

2.1 Discretization and Finite Volume Method

The partial differential equation (2.1) is defined on a domain Ω ⊂ R ×
R which is discretized for the purpose of the numerical method. We are
interested in the triangular mesh.

Let us consider a triangulation T of the domain Ω. Generally we require
each two triangles to have empty intersection. A triangle Ti stands for one
cell and the cell center is understood to be the barycenter of each such cell.
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We integrate (2.1) over the triangle Ti to get the integrated form

d

dt

∫
Ti
udΩ = −

∫
Ti

(fx + gy)dΩ. (2.2)

Similarly to 1D problem, the cell averages are denoted by the formula

ūi =
1

|Ti|

∫
Ti
udΩ. (2.3)

Now we substitute (2.3) into the expression (2.2) and the Green theorem is
used to get

d

dt
ūi (t) = − 1

|Ti|

∮
∂Ti

(f (u)nx + g (u)ny)d`. (2.4)

The line integral on the right side express the flux through whole boundary
∂Ti of the triangle Ti. We replace it by the sum of the integrals over each
side of the corresponding triangle

d

dt
ūi (t) = − 1

|Ti|

3∑
j=1

∫
Γj
i

(
f (u)njx + g (u)njy

)
d`, (2.5)

where nj =
(
njx, n

j
y

)
is a unit vector of the outer normal vector to the j-th

side Γji of the triangle Ti. Last step is to approximate the numerical flux
which gives us the equation in the following form

d

dt
Ūi (t) = − 1

|Ti|

3∑
j=1

∣∣∣Γji ∣∣∣hj (U in, U out,n
)
, (2.6)

where
∣∣∣Γji ∣∣∣ is the length of the corresponding side of the triangle Ti, the values

uin, uout are obtained by the reconstruction process described in the next sec-
tion which does not provide the exact values of the integrals. Therefore Ūi (t)
are approximations of cell averages ūi (t) and U in, U out are approximations
of uin, uout.

For example, we can use the following definitions for the function h, called
Van Leer

hV L
(
U in, U out,n

)
=

1

2
(P
(
U in,n

)
+ P

(
U out,n

)
−

−
∣∣∣∣∣∂P∂u

(
U in + U out

2
,n

)∣∣∣∣∣ (U out − U in
)
). (2.7)

P (u,n) = nxf (u) + nyg (u) where n = (nx, ny) is a unit vector of the outer
normal.
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Similarly to one dimensional case, solution of the problem can not be
considered in classical but in weak sense. Weak solution has to satisfy the
following integral identity

d

dt

∫
Ti
udΩ +

1

|Ti|

∫
∂Ti

(f (u)nx + g (u)ny)d` = 0, (2.8)

for every triangle Ti. The entropy conditions are used to get unique solution,
see [12, 13, 7].

2.1.1 Polynomial Reconstruction

The reconstruction theory was created to get the values U±
i+ 1

2

in such a way

that we avoid to the oscillations as much as possible in 1D problems. The
idea is the same in two dimensional space, we look for unknown values U in

and U out to form (2.6). We want to choose an appropriate number of the
neighbouring triangles of Ti again and an approximation is constructed over
the selected triangles using the cell averages.

First we focus on a polynomial reconstruction using cell averages (2.3).
We look for a polynomial p (x, y) in the form

p (x, y) =
k∑
s=0

∑
i+j=s

aijx
iyj, (2.9)

where k is degree of the polynomial. It leads to method of (k+1)-th order us-
ing a polynomial of degree k. Let us assume that u is an unknown solution of
a given partial differential equation. We then look for the polynomial p (x, y)
from (2.9) such that fulfill the cell average of the corresponding triangle Ti

Ūi = p̄|Ti . (2.10)

Our aim is to find the stencil as a set of triangles which we after use for
computing of the approximate polynomial. Now we show how we can choose
the triangles to the stencil. We start with method of the first order. From
the form of the polynomial (2.9), the number of necessary triangles is im-
mediately found. Because first order of the method is required, we look for
a polynomial of the degree 0, i.e. the cell averages are approximated by a
constant

p (x, y) = a00x
0y0 = a00.

Only one triangle is required to determine the unknown a00. Naturally, we
select the corresponding triangle Ti for which the reconstruction is searched.
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We want to fulfil the cell average (2.10), i.e.

Ūi = p̄|Ti =
1

|Ti|

∫
Ti
p (x, y) =

1

|Ti|

∫
Ti
a00 = a00

1

|Ti|

∫
Ti

1 = a00.

Thus the reconstruction made by a constant polynomial for each triangle Ti
is s.t. p (x, y) = Ūi. Let us now consider method of the second order, i.e.
k = 1 and the polynomial has the following form

p (x, y) = a00 + a10x+ a01y.

Certainly, three triangles are necessary to compute the values of the un-
known coefficients. Consider that we have chosen three neighbouring trian-
gles Ti, Tm, Tn (i.e. triangles that each of them has common side with at least
one other triangle) such that one of them is the current triangle for which the
reconstruction is computed. The cell averages has to be fulfilled as follows

1
|Ti|

∫
Ti

(a00 + a10x+ a01y)dΩ = Ūi,
1
|Tm|

∫
Tm

(a00 + a10x+ a01y)dΩ = Ūm,
1
|Tn|

∫
Tn

(a00 + a10x+ a01y)dΩ = Ūn.

If we denote

A =


1
|Ti|

∫
Ti

1 dΩ 1
|Ti|

∫
Ti
x dΩ 1

|Ti|
∫
Ti
y dΩ

1
|Tm|

∫
Tm

1 dΩ 1
|Tm|

∫
Tm
x dΩ 1

|Tm|
∫
Tm
y dΩ

1
|Tn|

∫
Tn

1 dΩ 1
|Tn|

∫
Tn
x dΩ 1

|Tn|
∫
Tn
y dΩ

 , (2.11)

f =

 Ūi
Ūm
Ūn

 , (2.12)

ξ =

 a00

a10

a01

 , (2.13)

then we can formulate the system in the matrix form

Aξ = f .

By solving this system, the vector of the unknown coefficients is obtained
and thus the reconstruction (2.9) is computed.

Now, we describe the algorithm how to choose appropriate triangles Ti, Tm
and Tn belonging to stencil. As mentioned above, Ti is the corresponding
triangle for which the reconstruction is computed and the three triangles
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has to have at least one common side with the other triangle. There exists
several options how to choose the triangles Tm, Tn. However, we choose a
stencil according to [2] such that it minimizes∑

i+j=1

|aij| . (2.14)

Analogously, we can continue with method of higher orders. Generally, we
can deduce the number M of the triangles in the stencil for method of the
(k + 1)-th order as follows

M =
(k + 1) (k + 2)

2
. (2.15)

Then the condition, for selecting of the most appropriate set of the neigh-
bouring triangles, is to minimize ∑

i+j=k

|aij| . (2.16)

Certainly, we do not try all possible combinations of M neighbouring tri-
angles round the triangle Ti. We always start with the first order of the
method, i.e. stencil contain only the corresponding triangle Ti. We continue
with method of the second order. We find the best stencil which minimizes
(2.16) for k = 1 and then we add the other most appropriate triangles up to
next order until we get the required order of the method.

Let us consider now total variation (TV). Total variation is for a differ-
entiable function f defined by the expression (see [17])

V (f,Ω) =
∫

Ω
‖∇f (x)‖ dΩ, (2.17)

where ‖.‖ denotes the L2 norm. Total variation in 2D, similarly to divided
difference in 1D, measures rate of oscillations, i.e. the triangles, for which
is the value of the total variation minimum, are selected because the cell
averages are expected to vary least. Sonar in [8] proves the connection be-
tween measurement of the oscillations using coefficients and total variation
for polynomial recovery.

Although Jameson, see in [17], demonstrates an example of two functions
in 2D such that one of them is more smooth than the other one. The value
of total variation should be lower for the more smooth than for less smooth
function because TV should measure the oscillation behaviour. But the op-
posite holds in the example in [17]. It is thus possible that total variation is
not optimal criteria.

32



Let us suppose that we have already chosen the stencil using least sum of
the coefficients or total variation. We thus compute the reconstruction (2.9)
for the corresponding triangle. Reconstruction of the cell averages provides
an approximation of the solution u of the hyperbolic PDE at every point, i.e.
using polynomial reconstruction we can compute the unknown values U in

and U out, for each side of the corresponding triangle Ti, and thus formulate
(2.6). The values U out can be simply computed as a value of the recovery
polynomial in the center of the sides.

U out = p
(
Sji
)
, (2.18)

where Sji is the center of j-th side of the corresponding triangle Ti. Also
an average of the values in the center and in the end points of the side of
the triangle can be used or an average over the whole side. The values U in

are not determined separately, but we take it as an outer value U out of the
neighbouring triangle with the common corresponding side. Considering the
described procedure, the values U in, U out can but need not to equal. As soon
as we get these values we can formulate (2.6).

2.1.2 Reconstruction Using Radial Basis Functions

So far, we were interested in the approximation of the solution of the hyper-
bolic conservation law in 1D and 2D depending on the recovery using polyno-
mials. Now, we ask if there exists another way of reconstruction which could
provide more accurate numerical solution. In what follows, we present recon-
struction of the solution from the cell averages using radial basis functions
(RBF). In [6, 7], the authors mention that the polynomial recostruction is
succefully used in one dimensional problem but a usage of RBFs is more
appropriate for ENO approximation in multiple space dimensions.

Let us consider a function of one real variable

ϕ : [0,∞) −→ R.

We define the radial basis function φ : RN → R in the following way, (see
e.g. [9, 16])

φi (x) = ϕ (‖x− xi‖) , (2.19)

where xi ⊂ RN is any point which is so–called the center and ‖.‖ is a norm in
RN . The following functions are examples of the function ϕ which generates
radial basis functions

ϕ (r) = e−(εr)2 , (2.20)

ϕ (r) = r2 log r, (2.21)

33



where r = ‖x‖ and ε is a parameter. We can read in [9, 14, 15] how is the
value of the parameter ε important. The generators ϕ of the RBFs are often
used in the approximation theory. We use these functions to construct the
reconstruction as linear combination of the radial basis functions, but accord-
ing to [7] we add linear polynomial. Then, we consider the approximation of
cell averages in the following form

s (x, y) =
m∑
j=1

ajφj (x, y) + am+1 + am+2x+ am+3y. (2.22)

If logarithmic generator ϕ (r) of the radial basis function is used, we call the
function (2.22) as thin plate spline. If the second generator (2.20) is applied,
we call this type of approximation Gaussian spline. The idea of the thin
plate splines is that the approximate function s (x, y) minimizes the bending
energy ∫ ∫

R2

(
s2
xx + 2s2

xy + s2
yy

)
dxdy.

More details about radial basis functions, TPS and their application can be
found in [18, 16, 9, 14].

The reason, why we build such an approximate function, is that the poly-
nomial hold a global information and the role of the RBFs is local, it keeps
the details. Hence, we suppose that RBFs improve the linear polynomial
recovery. But we actually can not consider the order of the method using
radial basis function. Further details about formal order of the accuracy can
be found e.g. in [7].

Similarly to polynomial recovery problem, also function (2.22) with radial
basis functions is used to reconstruct solution u of the PDE from cell averages.
To determine the spline (2.22), m+ 3 conditions have to be required.

Let us assume S = {T 1
i , T

2
i , . . . , T

m
i } to be a stencil, where T li , l =

1, . . . ,m are the neighbouring triangles round the corresponding triangle Ti
(including Ti). We require conservation of the cell averages for each triangle
in the stencil, i.e.

Ūl = s̄|T l
i
, l = 1, . . . ,m. (2.23)

This conditions lead to m equations for m+3 unknowns, we thus have to add
three other information. The additional conditions are considered according
to [10, 18, 24, 25] as follows∑m

j=1
1

|T j
i |
∫
T j
i
ajdΩ = 0,∑m

j=1
1

|T j
i |
∫
T j
i
ajxdΩ = 0,∑m

j=1
1

|T j
i |
∫
T j
i
ajydΩ = 0.

(2.24)
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This conditions are required for function s in (2.22) to have quare integrable
second derivatives. The conditions are called orthogonality or side conditions.
The problem to determine the approximate function (2.22) thus leads to
solving the system

B P

PT 0





a1

a2
...
am
am+1

am+2

am+3


=



Ū1
i

Ū2
i
...
Ūm
i

0
0
0


(2.25)

with matrices

B =



1

|T 1
i |
∫
T 1
i
φ1 (x, y) dΩ · · · 1

|T 1
i |
∫
T 1
i
φm (x, y) dΩ

1

|T 2
i |
∫
T 2
i
φ1 (x, y) dΩ · · · 1

|T 2
i |
∫
T 2
i
φm (x, y) dΩ

...
...

1

|Tm
i |
∫
Tm
i
φ1 (x, y) dΩ · · · 1

|Tm
i |
∫
Tm
i
φm (x, y) dΩ

 , (2.26)

P =



1

|T 1
i |
∫
T 1
i

1dΩ 1

|T 1
i |
∫
T 1
i
xdΩ 1

|T 1
i |
∫
T 1
i
ydΩ

1

|T 2
i |
∫
T 2
i

1dΩ 1

|T 2
i |
∫
T 2
i
xdΩ 1

|T 2
i |
∫
T 2
i
ydΩ

...
...

1

|Tm
i |
∫
Tm
i

1dΩ 1

|Tm
i |
∫
Tm
i
xdΩ 1

|Tm
i |
∫
Tm
i
ydΩ

 . (2.27)

Notice that using m = 2 or m = 1, the matrix of the system (2.25) is singular,
i.e. the matrix P would be of the type (1× 3) or (2× 3) and the whole
matrix in (2.25) becomes singular. It follows that the minimum number of
radial basis functions in (2.22) has to be three (i.e. m ≥ 3) and it also
implies that each stencil has to include at least three triangles if we consider
reconstruction using splines.

Moreover Sonar in [7] claims that if we use reconstruction using thin plate
spline or Gaussian spline, at least four tringles has to be used for stencil
otherwise reconstruction degenerates into linear recovery. We try to confirm
that in the numerical experiments in the following section.

If m ≥ 3, the matrix of the system (2.25) is symmetric and positive
semi-definite. Regularity of the matrix is proved e.g. in [13].

Let us suppose that all of the possible options of the stencil are available
and the approximate functions were computed over each of the stencil. Next
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step is to select the most appropriate stencil. First idea is to use similar rule
as in case of polynomial recovery, i.e. we choose such a stencil for which the
coefficients minimizes

m∑
j=1

|aj|+ |am+2|+ |am+3| . (2.28)

But in any article, which is known to us, the authors do not apply this way
of selection of the triangles. All of the authors use total variation, defined
by (2.17), as limiter of the oscillations, i.e. the stencil with the least total
variation is selected.

However, let us recall the example, mentioned in the previous subsection
about polynomial reconstruction, where total variation had smaller value for
less smooth data than for more smooth data. The theory about the selection
of stencil can be found e.g. in [9].

Let us assume that the most appropriate stencil has been chosen by one
of the criterion. The reconstruction using radial basis functions can be thus
computed. Using the approximate function, we can determine the unknown
values U in, U out as it is described in the previous subsection 2.1.1.

Special reconstruction using RBFs

We can consider one more way of the reconstruction s.t. only the combination
of the radial basis functions is used. We can modify the definition (2.22) and
look for the following recovery

s̃ (x, y) =
m∑
j=1

ajφj (x, y) . (2.29)

We do not have to require the additional conditions (2.24) to have regular
matrix which is in this case in the form

1

|T 1
i |
∫
T 1
i
φ1 (x, y) dΩ · · · 1

|T 1
i |
∫
T 1
i
φm (x, y) dΩ

1

|T 2
i |
∫
T 2
i
φ1 (x, y) dΩ · · · 1

|T 2
i |
∫
T 2
i
φm (x, y) dΩ

...
...

1

|Tm
i |
∫
Tm
i
φ1 (x, y) dΩ · · · 1

|Tm
i |
∫
Tm
i
φm (x, y) dΩ




a1

a2
...
am

 =


Ū1
i

Ū2
i
...
Ūm
i

 .
(2.30)

We consider the same way of the selection of the stencil as we use for spline
reconstruction as well as the calculation of the values U in, U out. The main
task is how many triangles to choose for the recovery using only radial basis
function (2.29). We can expect improvement in case of linear reconstruction
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with RBFs. But approximation using only RBFs is not connected to linear
polynomial at all. We thus use the analogy to the spline recovery so that
the same number of the triangles for stencil is considered as for the spline
reconstruction.

Selection methods of triangles

In the theory of the reconstruction - using both polynomials and radial basis
functions - we were only interested in number of triangles required for stencil
and criterion (i.e. sum of the coefficients or total variation) to decide which
triangle is more appropriate for reconstruction. We assumed that we selected
some triangles from the neighborhood of the given triangle Ti. Now, we
discuss which neighbouring triangles are generally considered to be tested as
possible cells for stencil.

First way is to test all of the possible triangles but certainly it is very
time–consuming for the algorithm. Authors like Sonar in [7] use special
procedure. They consider only limited number of the triangles which can be
included in the stencil.

In our work, two ways of the selection of the stencil are compared. The
first way is selection of triangles one by one. The process is showed in the
Figure 2.1. We start with the given triangle Ti, i.e. the stencil S = {Ti}. The
triangle Ti has generally three neighbours, which are candidates for stencil.
We apply procedure described in this section so that we select one of the
three neighbours (e.g. Tl) using sum of the coefficients or total variation.
Thus we get stencil including two triangles S = {Ti, Tl}, which is illustrated
in the first graph in the Figure 2.1.

Ti Ti Ti

Figure 2.1: Possible expansion of the stencil using first selection method.

To add one more triangle, we proceed similarly to previous step. The
difference is that also the neighbours of the added triangle Tl are candidates
for the stencil. Overall, we have to test four possibilities and for instance
triangle Tn is selected, i.e. S = {Ti, Tl, Tn}. It is possible that the triangle
Tn does not have to be direct neighbour of the corresponding triangle Ti (see
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middle graph of the Figure 2.1) using the described process. We proceed in
the similar way until reaching m triangles in the stencil.

Another approach is to try to choose such triangles which are nearest
to the given triangle Ti as much as possible. The Figure 2.2 shows the
possibilities which we consider if we want three triangles included in the
stencil. To add other triangles, we continue by the same way for each already
chosen triangle in the stencil.

Ti Ti Ti

Figure 2.2: Possible configurations of the stencil using second selection method.

In what follows, we test both of the described approaches. The first way
(resp. the second way) of the selection method of the triangles, we will mark
W1 (resp. W2)

2.2 Numerical Results

Now we present some numerical experiments of application of the ENO
method for the hyperbolic conservation law in two dimensional space. We use
both the polynomials and RBFs for reconstruction. Our aim is to compare
which method provides better – lets say more accurate – result.

Above, we introduced two possible selection methods (W1 and W2) how
to add triangles into the stencil. We study which one of them can give us
numerical solution with higher quality.

We apply ENO method in 2D for linear scalar equation, system of linear
equations and nonlinear equation. We use continuous and also discontinuous
initial condition.

2.2.1 Linear Equation

Let us commence by solution of the transport equation – scalar linear hyper-
bolic equation – with an initial condition

ut + aux + buy = 0, x ∈ [−1, 1]× [−1, 1] , t ∈ (0, T ) , (2.31)
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u (x, y, 0) = u0 (x, y) , x ∈ [−1, 1]× [−1, 1] .

Similarly to 1D problems, outflow boundary conditions are applied. The
advantage of the transport equation is that the analytical solution is known
similarly to 1D problem. The analytical solution at time t in 1D is just
shift of the initial condition with respect to the value of the constant c. In
2D, there we have given a directional vector (a, b). The constant a (resp.
b) represents move in the direction of the axis x (resp. y). The analytical
solution of the transport equation in 2D is the shift of the initial condition
u0 in the direction of the vector (a, b)

u (x, y, t) = u0 (x− at, y − bt) . (2.32)

Because the analytical solution is available, we are thus interested in the
error of the numerical solution. Let us consider that û (xi, tn) is the average
of the analytical solution and Ūn

i are the averages of the numerical solution
of the transport equation at the centers xi of the triangle Ti and in the time
tn. We can define then the error of the numerical solution in the following
way

N∑
i=1

|Ti|
∣∣∣û (xi, tn)− Ūn

i

∣∣∣ , (2.33)

where |Ti| is the area of the triangle Ti and N is the number of the triangles.
We introduced ENO scheme in 2D on triangulation mesh in the beginning

of the section 2.1. Transport equation (2.31) is defined in the square [−1, 1]×
[−1, 1]. The Figures 2.3 and 2.4 show various triangulations of this domain
which we use in the following numerical experiments.
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Figure 2.3: Right–angled (left) triangulation T1 with 800 triangles and general
(right) triangulation T2 with 856 triangles.
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We used software Matlab to generate the first right–angled triangulation
with 800 triangles showed in the left graph of the Figure 2.3 s.t. all of the
triangles have the same area. We mark this triangulation by T1.

The remaining triangulations in the graphs were generated in the software
GMSH which makes triangular meshes of arbitrary domain in plane and
in space too. This software generates general triangulations close to the
equilateral triangles. Triangulation in the right graph of the Figure 2.3 is
created by 856 triangles. Let us mark this triangulation by T2. Triangulations
in the Figure 2.4 contain 2054, resp. 3770, triangles which we mark by T3,
resp. T4.
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Figure 2.4: Triangulation T3 with 2054 (left) and triangulation T4 with 3770 (right)
triangles.

In the following experiments, we apply ENO method to transport equa-
tion for various initial conditions. ENO method is tested using both polyno-
mials and radial basis functions for reconstruction. Also, we apply mentioned
selection methods of stencil W1, W2 and all of the triangulations T1 - T4 are
used.

Experiment 1

Let us consider transport equation (2.31) for which we consider continuous
initial condition as in the Figure 2.5.

First, ENO method is tested using polynomial reconstruction. We com-
pare quality of the numerical solution depending on the degree of the poly-
nomial for reconstruction. We consider time discretization ∆t = 0.0025 and
direction of the shift of the solution (a, b) = (1, 1). Analytical solution after
300 time steps is showed in the Figure 2.6.
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Figure 2.5: Continuous initial condition.

Figures 2.7 – 2.8 show numerical solution using constant reconstruction
for every triangulations T1–T4 of the domain. Euler method is used for time
discretization. Notice that using constant polynomial, the selection methods
of triangles W1 and W2 are the same because only one triangle is needed for
stencil.

We can compare the structure of the numerical solution in the graphs
with analytical solution in the Figure 2.6. Evidently, numerical solution
using constant polynomial is very inaccurate because the contours spread
a lot to the neighbourhood. We can notice that quality of the numerical
solution rises with increasing number of the triangles in the mesh.

Figure 2.6: Analytical solution.

41



Figure 2.7: Numerical solution using constant recovery after 300 time steps on
triangulation T1 (left) and T2 (right).

Figure 2.8: Numerical solution using constant recovery after 300 time steps on
triangulation T3 (left) and T4 (right).

Numerical solution using ENO method with linear reconstruction after
300 time steps is showed in the Figures 2.9 and 2.10. Stencil has to include
three triangles to determine linear polynomial. The selection methods of
triangles W1 and W2 can thus be compared. The first method W1, resp.
second method W2, is showed in the Figure 2.9, resp. Figure 2.10.

Overall, the quality of the numerical solution is much higher in case of
the fine grid than in case of coarse grid. It does not spread so much and the
shape of the contours is more rounded. Also, numerical solution using linear
recovery improves previous case with constant approximation according to
the figures.

But there is no big difference between the numerical solution using W1

and W2 in the figures. It only seems that the contours are closer to each
other for W2 than for W1.
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Figure 2.9: Numerical solution using linear recovery after 300 time steps on trian-
gulation T2 (left) and T4 (right) for selection method W1.

Figure 2.10: Numerical solution using linear recovery after 300 time steps on
triangulation T2 (left) and T4 (right) for selection method W2.

We show the error of the numerical solution after 300 time steps in the
Table 2.1 according to the degree of the polynomial k and the number of
the triangles using both selection methods W1 and W2. The table confirms
described behaviour of the numerical solution showed in the previous graphs.
The value of the error decreases as the number of the triangles and order of
the method increase. It holds except method of the third order in case of
selection method W2. The value of the error is unlimited. This example show
how is the way of the selection of the triangles important and that we can
not choose arbitrary stencil.

We mentioned that the selection method W2 is similar to selection which
use Sonar in [6, 7, 13]. We can ask why such selection would be used if it
products low quality of the numerical solution. In fact, Sonar developed this
way to use it specially for linear recovery and reconstruction using radial
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basis functions with linear polynomial. For higher degree of the polynomial,
we recommmend to use different selection. For example Abgrall in [2] studies
special process for high degree polynomial.

For the same reason mentioned above, the error for ENO method using
constant polynomial is equal for both selection methods W1 and W2.

k error
triangulation T1 triangulation T2 triangulation T3 triangulation T4

selection method W1

0 0.3750 0.2988 0.2171 0.1726
1 0.2114 0.1664 0.0898 0.0616
2 0.1339 0.0975 0.0548 0.0374

selection method W2

0 0.3750 0.2988 0.2171 0.1726
1 0.1644 0.1223 0.0633 0.0458
2 0.1068 — — —

Table 2.1: Error of the numerical solution after 300 time steps.

Similarly to 1D problem, we are interrested in maximum height of the
numerical solution because we know that the numerical method smoothed
down the data. The same behaviour we have in two dimensional space ac-
cording to the Table 2.2. The maximum height changes as it can be expected
according to the values of the error in the Table 2.1, i.e. the maximum height
rises with increasing number of triangles and order of the method.

k maximum height
triangulation T1 triangulation T2 triangulation T3 triangulation T4

selection method W1

0 0.8548 1.1343 1.4133 1.5393
1 1.3031 1.5230 1.7751 1.8278
2 1.8205 1.8929 1.9584 1.9681

selection method W2

0 0.8548 1.1343 1.4133 1.5393
1 1.4256 1.6602 1.8316 1.8825
2 1.8163 — — —

Table 2.2: Maximum height of the numerical solution after 300 time steps.
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We can see that the quality of the numerical solution is very low on
triangulation T1. The maximum height is under the value 1 in this case, while
the maximum height of the analytical solution is 2. By contrast, maximum
height of the numerical solution using ENO method of the third order on
triangulations T3 and T4 is very satisfying in case of selection method W1.

From the existing results, it follows that the possible best choice to get
the highest quality of the numerical solution is to use higher order of the
method and the most fine grid. But according to the values of efficiency of
the algorithm in the Table 2.3, more triangles and higher order of the method
imply higher time–consuming. In the table, it is entered time required for one
time step of the ENO method using W1. The efficiency for selection method
W2 is almost the same, we thus do not display extra table for it. We leave
choice to the reader if it is more satisfactory to get approximate solution in
short time or numerical solution with smaller error against higher efficiency.

k Efficiency [s]
triangulation T1 triangulation T2 triangulation T3 triangulation T4

0 0.1 0.2 0.5 1.0
1 0.5 0.5 1.3 2.5
2 1.1 1.2 3.0 5.7

Table 2.3: Efficiency of the algorithm for one time step.

In what follows, ENO scheme using linear recovery in combination with
radial basis functions are tested. We are interested if reconstruction using
splines improves classical linear recovery. Method is applied to the transport
equation (2.31) using continuous initial condition in the Figure 2.5. Direction
of the shift is still (a, b) = (1, 1) and time size ∆t = 0.0025.

Both spline (2.22) and approximation (2.29) are defined using m radial
basis functions. Gaussian approximation with parameter ε is used in our
experiments and thin plate spline is applied in the end of this section too.

Figures 2.11 and 2.12 show dependence of the error of the numerical
solution on choice of the parameter ε. Gaussian spline was used in the first
figure and RBF approximation without linear polynomial was used in the
second figure. Three radial basis functions, i.e. m = 3, are used in the left
graphs of the figures and six RBFs, i.e. m = 6, are used in the right graphs.

According to the figures, quality of the numerical solution using Gaussian
reconstruction is almost the same for all values of the parameter ε. Only the
least value of the parameter ε = 0.5 causes unlimited error. By contrast,
error of the numerical solution using only RBF approximation is different
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for various values of the parameter. An advantage thus implies for Gaussian
recovery compared to reconstruction using only RBFs because the quality of
the numerical solution is not so dependent on the parameter ε.

We choose parameter ε ≈ 3 for approximation using three and four RBFs
(m = 3 and m = 4) and ε ≈ 5 using six RBFs (m = 6) in the experiments.
We use the same values for Gaussian recovery.

Figure 2.11: Error of the numerical solution in time compared for various values
of the parameter ε. Reconstruction uses only RBFs, m = 3 (left), m = 6 (right).

Figure 2.12: Error of the numerical solution in time compared for various values
of the parameter ε. Reconstruction uses Gaussian splines, m = 3 (left) and m = 6
(right).

The Figures 2.13 – 2.16 show numerical solution after 300 time steps for
triangulation T2. We display one graph using m = 3 and one for m = 6 in
each figure. All of the cases of the reconstruction are showed, i.e. reconstruc-
tion using Gaussian spline or using only RBFs. We decide about the stencil
using both coefficients and total variation and W2 - as selection method of
triangles - is used.
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According to the figures below, the highest quality is reached in case of the
reconstructions using only RBFs via coefficients (i.e. we choose stencil by the
sum of the coefficients) for m = 3, m = 6 and next using both of the Gaussian
recovery for m = 6. The contours are close to each other and the shapes are
the most symmetric and most similar to the analytical solution in Figure 2.6.
Also, let us notice that the quality of the mentioned cases implies superiority
of RBF approximation to linear polynomial reconstruction on triangulation
T2 which is in the Figure 2.9. But for example the structure of the numerical
solution showed in the left graphs of the Figures 2.15 – 2.16 is similar to
linear recovery in the Figure 2.9.

Figure 2.13: Numerical solution after 300 time steps using only RBFs for m = 3
(left) and m = 6 (right) on T2. The stencil is chosen via coefficients.

Figure 2.14: Numerical solution after 300 time steps using only RBFs for m = 3
(left) and m = 6 (right) on T2. The stencil is chosen via Total variation.
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Figure 2.15: Numerical solution after 300 time steps using Gaussian splie for m = 3
(left) and m = 6 (right) on T2. The stencil is chosen via coefficients.

Figure 2.16: Numerical solution after 300 time steps using Gaussian spline for
m = 3 (left) and m = 6 (right) on T2. The stencil is chosen via TV.

We try to confirm our observations in the Tables 2.4, 2.6 and 2.8 (resp.
2.5, 2.7 and 2.9) which show the error (resp. maximum height) of the numer-
ical solution depending on the type of the reconstruction for m = 3, m = 4
and m = 6. In the tables, we mark RBF, resp. RBF+TV, as reconstruction
of the cell averages using only radial basis functions via coefficients, resp.
total variation. Next GS, resp. GS+TV, represents reconstruction using
Gaussian spline via coefficients, resp. total variation.

First of all, the error decreases with increasing number of the triangles.
Let us consider now only approximation using Gaussian spline. We get values
of the error for m = 3 similar to linear polynomial which is entered in the Ta-
ble 2.1. The error decreases as we add the radial basis functions to Gaussian
spline and the maximum height converges to exact maximum height which is
equal to 2. It thus seems that the statement of Sonar in [7] holds, i.e. at least

48



four radial basis functions have to be used to improve linear polynomial.

error
selection method W1 selection method W2

RBF RBF+TV GS GS+TV RBF RBF+TV GS GS+TV
T1 0.1994 0.2132 0.2066 0.2082 0.1162 0.1589 0.8273 0.8301
T2 0.1588 0.1695 0.1650 0.1643 0.0895 0.1179 0.1223 0.1187
T3 0.0801 0.0900 0.0887 0.0881 0.0536 0.0643 0.0633 0.0643
T4 0.0559 0.0601 0.0608 0.0603 0.0449 0.0427 0.0458 0.0431

Table 2.4: Error of the numerical solution after 300 time steps for m = 3.

maximum height
selection method W1 selection method W2

RBF RBF+TV GS GS+TV RBF RBF+TV GS GS+TV
T1 1.6281 1.4823 1.3266 1.3269 1.7736 1.7015 1.9218 1.9403
T2 1.7784 1.7001 1.5292 1.5287 1.9650 1.8141 1.6602 1.6918
T3 2.0172 1.9205 1.7740 1.7752 1.9941 1.9721 1.8316 1.8322
T4 1.9991 1.9286 1.8262 1.8276 2.0410 1.9897 1.8825 1.8831

Table 2.5: Maximum height of the numerical solution after 300 time steps for
m = 3.

error
selection method W1 selection method W2

RBF RBF+TV GS GS+TV RBF RBF+TV GS GS+TV
T1 0.1732 0.1815 0.1797 0.1647 0.0737 0.1717 0.0944 0.1300
T2 0.1148 0.1188 0.1108 0.1114 0.0660 0.1202 0.0703 0.0935
T3 0.0636 0.0619 0.0584 0.0585 0.0473 0.0579 0.0486 0.0545
T4 0.0464 0.0456 0.0432 0.0439 0.0466 0.0399 0.0495 0.0445

Table 2.6: Error of the numerical solution after 300 time steps for m = 4.

Error of the numerical solution using Gaussian recovery with total vari-
ation, selection method W1 and m = 6 is half of the error than for linear
polynomial on triangulations T2, T3, T4. This error is even smaller than er-
ror for ENO method of the third order using polynomial. On contrary, the
previous observation holds for selection method W2 only on triangulation T2.
In other cases, the improvement is not so important for selection method W2
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as for W1. According to the tables, quality of the numerical solution using
Gaussian spline via both coefficients and total variation is similar.

Now, we focus on approximation using only the radial basis function
without linear polynomial. According to the tables, the reconstruction using
only RBFs does not product satisfactory results because the changes of error
and maximum height does not hold any rule as we increase number of RBFs
m. Error decreases in some cases if we change m from 3 to 4, but error then
rises changing m from 4 to 6. Similar behaviour holds for maximum height
too.

maximum height
selection method W1 selection method W2

RBF RBF+TV GS GS+TV RBF RBF+TV GS GS+TV
T1 1.7704 1.6626 1.5201 1.5613 1.9901 1.4608 1.9922 1.7829
T2 1.9946 1.9554 1.6984 1.7004 2.0452 1.8212 2.1654 2.0553
T3 2.0599 2.0324 1.8715 1.8697 2.0421 1.9388 2.0730 2.0447
T4 2.0443 2.0335 1.8997 1.8998 2.0398 1.9773 2.0379 2.0396

Table 2.7: Maximum height of the numerical solution after 300 time steps for
m = 4.

error
seslection method W1 selection method W2

RBF RBF+TV GS GS+TV RBF RBF+TV GS GS+TV
T1 0.1417 0.2020 0.1496 0.1392 0.1049 0.1321 0.0990 0.0993
T2 0.0993 0.1510 0.0890 0.0735 0.0788 0.1095 0.0801 0.0684
T3 0.0567 0.0936 0.0567 0.0471 0.5503 0.0680 0.0446 0.0408
T4 0.0426 0.0730 0.0371 0.0355 0.0449 0.0524 0.0355 0.0364

Table 2.8: Error of the numerical solution after 300 time steps for m = 6.

maximum height
selection method W1 selection method W2

RBF RBF+TV GS GS+TV RBF RBF+TV GS GS+TV
T1 2.1260 1.6137 1.7731 1.7374 2.1548 1.9070 1.9112 1.9734
T2 2.1248 1.8883 1.8835 1.9555 2.1399 1.8828 2.0484 2.0572
T3 1.9833 1.8783 1.9833 1.9721 101.7653 1.8811 2.0316 2.0471
T4 1.9853 1.8628 1.9968 1.9702 2.0319 1.9197 2.0271 2.0395

Table 2.9: Maximum height of the numerical solution after 300 time steps for
m = 6.
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Experiment 2

Most of the real problems contain discontinuities. The results in previous
chapter for one dimensional problem showed that the quality of the numerical
solution depends on initial condition. We are thus interested in quality of
the numerical solution of transport equation (2.31) using discontinuous initial
condition in two dimensional space.

The initial condition showed in the Figure 2.17 is used. We choose again
(a, b) = (1, 1), ∆t = 0.0025 and parameter ε = 3 for m = 3, m = 4 and
ε = 5 for m = 6 in case of the reconstruction using radial basis functions.
We study quality of the numerical solution after 300 time steps.

Figure 2.17: Discontinuous initial condition.

Let us begin with the experiments using polynomial reconstruction. We
again show the improvement of the numerical solution if we increase the
order of the method in the Figures 2.18 and 2.19 using selection method of
triangles W1. In the first figure, we compare first order method for different
number of the triangles. Certainly, the method on more fine grid provides
higher quality.

Table 2.10 confirms our observation from the figures where polynomial
reconstruction is used. Error and maximum height of the numerical solution
of ENO method using RBFs are entered in the Tables 2.11 (for m = 3), 2.12
(for m = 4) and 2.13 (for m = 6).

First, let us focus on error using selection method W2 in the tables. Error
is unlimited using quadratic polynomial again similarly to previous experi-
ment for continuous initial condition. Also in case of reconstruction using
radial basis functions, the maximum height increases too much over the exact
value 1 using m = 4 and m = 6 for almost all of the types of the reconstruc-
tion. It happens using RBFs and Gaussian spline via coefficients for m = 4,
but it is in all cases of the reconstruction for m = 6. From the given results, it
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Figure 2.18: Numerical solution of first order of the method after 300 time steps
on triangulation T3 (left) and T4 (right).

follows that numerical solution using W2 does not provide satisfactory results
for any type of the reconstruction.

Figure 2.19: Numerical solution of second (left) and third (right) order ENO
method after 300 time steps on triangulation T4.

The error using selection method W1 changes similarly to continuous ini-
tial condition. Approximation using only RBFs via total variation provides
the worst results. But quality of the numerical solution using approximation
with only RBFs via coefficients and Gaussian spline is comparable for m = 3
and m = 4. Also, both Gaussian spline via coefficietns and total variation
produces similar results. For m = 3, quality of the numerical solution de-
generates again to linear recovery. As the number of radial basis functions
rises, the error degreases. Moreover, the error for m = 6 is smaller than error
for ENO method using quadratic polynomial and the maximum height keeps
exact value 1.
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selection method W1 selection method W2

triangulation T3 triangulation T4 triangulation T3 triangulation T4

k error
0 0.5216 0.4490 0.5216 0.4490
1 0.2819 0.2262 0.2075 0.1625
2 0.1912 0.1512 — —
k maximum height
0 0.9590 0.9858 0.9590 0.9858
1 0.9982 0.9998 1.0031 1.0029
2 1.0000 1.0003 — —

Table 2.10: Error and maximum height of the numerical solution after 300 time
steps for polynomial reconstruction.

selection method W1 selection method W2

RBF RBF+TV GS GS+TV RBF RBF+TV GS GS+TV
error

T3 0.2787 0.3171 0.2814 0.2813 0.2869 0.2432 0.2075 0.2131
T4 0.2267 0.2541 0.2256 0.2259 0.2415 0.2204 0.1625 0.2204

maximum height
T3 1.0114 1.0099 0.9983 0.9983 1.0426 1.0255 1.0031 1.0018
T4 1.0071 1.0041 0.9998 0.9998 1.0227 1.0198 1.0029 1.0198

Table 2.11: Error and maximum height of the numerical solution after 300 time
steps, using RBFs and m = 3.

selection method W1 selection method W2

RBF RBF+TV GS GS+TV RBF RBF+TV GS GS+TV
error

T3 0.2148 0.2167 0.2111 0.2100 0.2628 0.2353 0.1938 0.1936
T4 0.1667 0.1781 0.1625 0.1621 0.2334 0.1764 0.2030 0.1510

maximum height
T3 1.0182 1.0196 0.9999 0.9999 1.4336 1.0021 1.4275 1.0251
T4 1.0101 1.0128 1.0000 1.0000 1.7665 1.0011 1.8270 1

Table 2.12: Error and maximum height of the numerical solution after 300 time
steps, using RBFs and m = 4.
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selection method W1 selection method W2

RBF RBF+TV GS GS+TV RBF RBF+TV GS GS+TV
error

T3 0.2366 0.2839 0.1802 0.1705 — 0.3483 0.1499 0.1529
T4 0.1761 0.2549 0.1354 0.1265 — 0.1921 0.1121 0.1150

maximum height
T3 1.0346 1.0083 1.0000 1.0000 — 2.7819 1.0927 1.1180
T4 1.0273 1.0049 1 1.0000 — 1.0093 1.2462 1.2501

Table 2.13: Error and maximum height of the numerical solution after 300 time
steps, using RBFs and m = 6.

We want to develope method which is stable for various settings and initial
conditions. It follows, from the results above which tested several types of
the reconstruction, that ENO method using Gaussian spline via coefficients
or total variation provides the most appropriate numerical solution so that
at least four radial basis functions is used and selection method of triangles
W1 is applied.

The similar quality of numerical solution using Gaussian spline via co-
efficients and total variation can implies that there exists connection - as
for polynomials - between coefficients and total variation which we use as
criteria of oscillatory behaviour. Because total variation is more used in var-
ious problems, we will prefer approximation using Gaussian splines via total
variation.

Figure 2.20: Numerical solution after 300 time steps. Reconstruction uses only
RBFs for m = 3 (left) and m = 6 (right) on T4. Stencil is chosen via coefficients.

Numerical solution using selection method W1 on the triangulation T4 is
showed in the following figures. Reconstruction using only RBFs is applied
in the Figure 2.20, resp. in the Figure 2.21, s.t. the stencil is chosen via
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coefficients, resp. via total variation. Gaussian spline is applied in the Figures
2.22 and 2.23. In each figure, m = 3 and m = 6 is used.

According to the graphs, the structure of the results for m = 3 is similar
to results using linear recovery (see Figure 2.19). On contrary, all graphs
for m = 6 show superiority of reconstruction using RBFs to linear recovery
(except case in the Figure 2.21) because the contours are closer and keep more
the square shape. The quality of the numerical solution of the just mentioned
cases is similar to quality of numerical solution using ENO method of the
third order (see Figure 2.19) according to the figures.

Figure 2.21: Numerical solution after 300 time steps. Reconstruction uses only
RBFs for m = 3 (left) and m = 6 (right) on T4. Stencil is chosen via total
variation.

Figure 2.22: Numerical solution after 300 time steps. Reconstruction uses Gaus-
sian spline for m = 3 (left) and m = 6 (right) on T4. Stencil is chosen via
coefficients.
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Figure 2.23: Numerical solution after 300 time steps. Reconstruction uses Gaus-
sian spline for m = 3 (left) and m = 6 (right) on T4. Stencil is chosen via total
variation.

The previous experiments indicate that ENO method which applies recon-
struction of cell averages using at least four radial basis functions improves
linear recovery. But to reach this correction, higher time efficiency of the
algorithm is needed. Tables 2.14 and 2.15 for m = 3 and m = 6 show
efficiency of one time step. Time-consuming is comparable to linear recov-
ery problem using three RBFs in reconstruction. By contrary, algorithm for
reconstruction using six RBFs takes about two times more.

Efficiency [s]
RBF RBF+TV GS GS+TV

T1 0.38 0.37 0.48 0.49
T2 0.45 0.46 0.57 0.56
T3 1.11 1.15 1.38 1.38
T4 2.11 2.38 2.66 2.63

Table 2.14: Efficiency of the algorithm for one time step using m = 3.

Efficiency [s]
RBF RBF+TV GS GS+TV

T1 0.68 0.72 1.08 1.09
T2 0.85 0.90 1.27 1.29
T3 2.08 2.19 3.18 3.23
T4 3.91 4.14 5.96 6.1

Table 2.15: Efficiency of the algorithm for one time step using m = 6.
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Experiment 3

ENO method has been tested in 2D using both continuous and discontinuous
initial conditions. Although numerical experiments showed superiority of
reconstruction using radial basis functions to linear recovery, diffusion effect is
still problem of ENO method. We thus use special initial condition according
to the Figure 2.24 where two discontinuities are located close to each other.
We are interested if ENO method causes connection of the two shocks in
time.

Figure 2.24: Initial condition.

The results of numerical experiments with the initial condition are pre-
sented in the Figures 2.25 – 2.29 on triangulation T4. We apply (a, b) = (1, 1)
and ∆t = 0.0025. Numerical solution after 200 time steps, s.t. constant re-
construction is applied, is showed in the Figure 2.25.

Figure 2.25: Numerical solution after 200 time steps. Reconstruction applies con-
stant polynomial on triangulation T4.

Certainly, the quality of the numerical solution is in this case very low but
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the smoothing causes that the two discontinuities bumps to blur together.
We thus expect that we avoid this by using method of higher order which we
demonstrate in the rest Figures 2.26 – 2.29.

Numerical solutions using linear recovery and Gaussian spline - via total
variation and for m = 6 - are showed on triangulation T4 (for which we
expect the highest quality). Moreover, the numerical solution is demostrated
in more phases, specifically after 50, 150, 200 and 300 time steps. We thus
can compare the progress of the numerical solution and study the progress
of numerical diffusion.

Figure 2.26: Numerical solution after 50 (left) and 150 (right) time steps. Recon-
struction applies linear polynomial on triangulation T4.

Figure 2.27: Numerical solution after 200 (left) and 300 (right) time steps. Re-
construction applies linear polynomial on triangulation T4.

We observe that the numerical solution starts to join already around 150
steps using polynomial recovery and it is getting worse and worse over the
time. By contrast, the reconstruction using Gaussian spline provides higher
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quality, because the contours do not seem to begin to join even after 300 time
steps according to the figures. This experiment really shows the superiority
of RBFs recovery to linear polynomial. Although we remind higher efficiency
of the algorithm.

Figure 2.28: Numerical solution after 50 (left) and 150 (right) time steps. Recon-
struction applies Gaussian spline for m = 6 on triangulation T4. Stencil is chosen
via total variation.

Figure 2.29: Numerical solution after 200 (left) and 300 (right) time steps. Recon-
struction applies Gaussian spline for m = 6 on triangulation T4. Stencil is chosen
via total variation.

Finally, the error of the numerical solution after 200 time steps is showed
in the Tables 2.16 – 2.18 on the triangulation T4. In the previous examples,
there were applied the direction of the shift of the solution (a, b) = (1, 1).
Now we add another choice (a, b) = (1, 0), i.e. the initial condition moves to
the right as we can see in the Figure 2.30.
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Figure 2.30: Numerical solution after 200 time steps using (a, b) = (1, 0). Recon-
struction applies Gaussian spline for m = 6 on triangulation T4. Stencil is chosen
via total variation.

The tables contain results for cases m = 4 and m = 6 using RBFs, be-
cause the result in the case m = 3 is similar to linear polynomial. According
to the tables, we can see that the error changes by the same way for more
complicated initial condition as in the previous experiments. Reconstruction
via total variation using only radial basis function without linear polynomial
provides the worst quality of the numerical solution again. The error even
rises with increasing m in this case. It seems that total variation is not ap-
propriate criteria to measure smoothness of approximation using only radial
basis functions.

k error
(a, b) = (1, 1) (a, b) = (1, 0)

0 0.2472 0.1844
1 0.1396 0.1258

Table 2.16: Error of the numerical solution using polynomial recovery after 200
time steps for T4.

error
RBF RBF+TV GS GS+TV

(a, b) = (1, 1) 0.0978 0.0998 0.1021 0.1020
(a, b) = (1, 0) 0.0989 0.1016 0.1022 0.1021

Table 2.17: Error of the numerical solution using Gaussian spline after 200 time
steps for T4, m = 4.
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error
RBF RBF+TV GS GS+TV

(a, b) = (1, 1) 0.0793 0.1404 0.0832 0.0782
(a, b) = (1, 0) 0.0925 0.1422 0.0924 0.0925

Table 2.18: Error of the numerical solution using Gaussian spline after 200 time
steps for T4, m = 6.

Gaussian spline has been applied for ENO method so far. Let us study
now how the quality of the numerical solution changes if thin plate splines
are used, i.e. instead of Gaussian as generator of radial basis function, we
use logarithm function defined by (2.21).

The error of the numerical solution of the transport equation in 2D for
two discontinuities in the initial condition is showed in the Table 2.19 for
m = 4 and in Table 2.20 for m = 6. The values of the error are similar to
Gaussian spline, except that the error decreases in all cases of reconstruction
with increasing number of RBFs m.

error
RBF RBF+TV TPS TPS+TV

(a, b) = (1, 1) 0.2227 0.1196 0.1025 0.1030
(a, b) = (1, 0) 0.1535 0.1624 0.1055 0.1057

Table 2.19: Error of the numerical solution using thin plate spline after 200 time
steps for T4, m = 4.

error
RBF RBF+TV TPS TPS+TV

(a, b) = (1, 1) 0.1064 0.1196 0.0931 0.0988
(a, b) = (1, 0) 0.0939 0.0907 0.0943 0.1013

Table 2.20: Error of the numerical solution using thin plate spline after 200 time
steps for T4, m = 6.

The aim of this chapter was to develope method which improves ENO
method using linear recovery. All of the experiments above indicate that
ENO method using linear reconstruction in combination with radial basis
functions provides the correction.
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We can ask if it is possible to improve also another degree of the polyno-
mial. Although reconstruction using constant polynomial does not implies
high quality of the numerical solution, but we tried to apply constant recon-
struction with Gaussian spline. The experiments results in highly oscillatory
numerical solution.

Parabolic polynomial is next candidate to correction. If the analogy to
linear improvement holds, seven triangles would be minimum number of tri-
angles for stencil to get correction of the parabolic reconstruction. We rather
refer to efficiency of the algorithm at this time because already using at
least four radial basis functions to improve linear recovery inplies too much
time-consuming.

2.2.2 Nonlinear Equation

Previous section concentrated on application of ENO method on transport
equation. In case of linear equation, there can be determined analytical solu-
tion and thus exactly computed error of numerical solution. In what follows,
we will be interested in the application of ENO methods for nonlinear hyper-
bolic equations for which we do not generally know the analytical solution.

Numerical experiments for the linear equation lead to the conclusion that
a numerical solution of ENO method using only radial basis functional re-
construction is not satisfactory which was caused mainly for discontinuous
initial condition. Nonlinear equations describe various problems so that the
initial condition can be continuous but evolution of the solution products dis-
continuities in the time. We thus do not recommend to apply reconstruction
using only radial basis function to nonlinear equations. We study quality
of the numerical solution using ENO method using Gaussian spline or thin
plate splines.

Common example of a nonlinear hyperbolic equations is Burger’s equation

ut +
(

1

2
u2
)
x

+
(

1

2
u2
)
y

= 0, x ∈ [−1, 1]× [−1, 1] , t ∈ (0, T ) ,

with the identical continuous initial condition from the Figure 2.5. The
Figure 2.31 show numerical solution after 300 time steps using linear recovery.
It present comparison of a quality of the results on triangulation T2 and T4

is compared.
Numerical solution in the Figure 2.32 was computed using linear recov-

ery on triangulation T4 and selection method of the triangles is used W2.
This selection method is obviously not appropriate again because numerical
solution tends to oscillate.
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Numerical solution after 50, 150, 200 and 300 time steps is showed in the
Figures 2.33 and 2.34 on fine grid T4 using Gaussian spline via total variation.
W1 is used as the selection method.

Figure 2.31: Numerical solution of ENO method of the second order after 300 time
steps using polynomial recovery on triangulation T2 (left) and T4 (right). Selection
method of triangles is used W1.

Figure 2.32: Numerical solution of ENO method of the second order after 300 time
steps using polynomial recovery on triangulation T2 (left) and T4 (right). Selection
method of triangles is used W2.
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Figure 2.33: Numerical solution after 50 (left) and 150 (right) time steps. Recon-
struction applies Gaussian spline for m = 6 on triangulation T4. Stencil is chosen
via total variation.

Figure 2.34: Numerical solution after 200 (left) and 300 (right) time steps. Recon-
struction applies Gaussian spline for m = 6 on triangulation T4. Stencil is chosen
via total variation.

2.2.3 System of Linear Equations

So far, we were interested in a quality of a numerical solution in the case of
one linear or nonlinear equation in R2. Now we focus on a system of linear
equations. System of hyperbolic partial differential equations describes a
wide variety of real problems. E.g. propagation of acoustic wave is given by

qt + Aqx + Bqy = 0, x ∈ [−1, 1]× [−1, 1] , t ∈ (0, T ) ,

where

u =

 P
u
v

 ,A =

 0 K0 0
1
ρ

0 0

0 0 0

 ,B =

 0 0 K0

0 0 0
1
ρ

0 0

 (2.34)
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where ρ is the background of gas density and K0 is the modulus of compress-
ibility of gas. We use the initial conditions as follows

P (x, y, 0) = e−20(x2+y2), x ∈ [−1, 1]× [−1, 1]

u (x, y, 0) = v (x, y, 0) = 0, x ∈ [−1, 1]× [−1, 1]

We demonstrate evolution of the numerical solution of components P and u in
the Figures 2.35 - 2.38, i.e. after 1, 100, 200 and 300 time steps. ENO method
using Gaussian spline recovery via total variation is applied on triangulation
T4. According to the figures, it leads to the hypothesis that the quality of
the solution is very high even near the boundary where the wave travels out
of the domain.

Figure 2.35: Numerical solution of component P after 1 (left) and 100 (right)
time steps. Reconstruction applies Gaussian spline for m = 6 on triangulation T4.
Stencil is chosen via total variation.

Figure 2.36: Numerical solution of component P after 200 (left) and 300 (right)
time steps. Reconstruction applies Gaussian spline for m = 6 on triangulation T4.
Stencil is chosen via total variation.
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Figure 2.37: Numerical solution of component u after 1 (left) and 100 (right)
time steps. Reconstruction applies Gaussian spline for m = 6 on triangulation T4.
Stencil is chosen via total variation.

Figure 2.38: Numerical solution of component u after 200 (left) and 300 (right)
time steps. Reconstruction applies Gaussian spline for m = 6 on triangulation T4.
Stencil is chosen via total variation.

Let us choose the component v. The quality of the numerical solution
using ENO method is compared for linear recovery and Gaussian spline via
total variation in the Figures 2.39 - 2.42 again after 1, 100, 200 and 300 time
steps.

According to the figures, the quality of the numerical solution shows
superiority of Gaussian spline to linear polynomial. Mainly, the shape of
the contours after one time step produces very low quality using polyno-
mial recovery. According to the figures, it implies that numerical solution
is smoother in case of reconstruction using linear polynomial than Gaus-
sian spline. Especially, it is obvious in the last figure because the contours
are more narrow for linear recovery. It thus implies also for system of linear
equations that linear recovery is improved if radial basis functions are added.
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Figure 2.39: Numerical solution of component v after one time step. Reconstruc-
tion applies Gaussian spline for m = 6 (left) and linear polynomial (right) on
triangulation T4.

Figure 2.40: Numerical solution of component v after 100 time step. Reconstruc-
tion applies Gaussian spline for m = 6 (left) and linear polynomial (right) on
triangulation T4.
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Figure 2.41: Numerical solution of component v after 200 time step. Reconstruc-
tion applies Gaussian spline for m = 6 (left) and linear polynomial (right) on
triangulation T4.

Figure 2.42: Numerical solution of component v after 300 time step. Reconstruc-
tion applies Gaussian spline for m = 6 (left) and linear polynomial (right) on
triangulation T4.
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Conclusion

In the thesis, we study the properties of the essentially non–oscillatory meth-
ods so–called ENO methods or ENO schemes. These finite volume methods
use for the reconstruction of solution in spatial variable (or variables) a flex-
ible stencil. The introduction to the ENO schemes was presented for the
approximation of the solution in the case of 1D hyperbolic conservation law.
The second primary question studied in the thesis was the extension of ENO
method by the usage of radial basis functions or combination of polynomials
and RBFs. Thus, the second part of this thesis is devoted to the analysis of
the 2D hyperbolic conservation laws.

Quality of the numerical solution is increased for a higher degree of poly-
nomial used for the reconstruction for both 1D and 2D problems. Therefore,
we focused our attention on ENO methods which use polynomial recovery.
Moreover, we studied their enhancement by Gaussian spline or thin plate
spline for 2D problem. These techniques were compared to the reconstruc-
tion based only on RBF too.

ENO method was implemented for both continuous and discontinuous
initial conditions. According to the numerical experiments, ENO method
provides similar quality of the numerical solution using Gaussian spline or
thin plate spline. The results show superiority of the reconstruction using ra-
dial basis functions to linear recovery. Mostly, transport equation was tested
due to the fact that the analytical solution is known. Thus, we can determine
the error of the numerical solution. This implies that at least four radial basis
functions are required to improve linear reconstruction. But higher efficiency
of the algorithm is required. In case of reconstruction using only radial basis
functions without linear polynomial, the quality of the numerical solution
changes according to various initial conditions.

A radial basis function, which is generated using Gaussian function, de-
pends on parameter ε. Various values of the parameter ε almost do no affect
reconstruction using Gaussian spline. On contrary, an approximation using
only radial basis functions depends significantly on a value of the parameter
ε.

Two seletion methods of triangles were introduced for 2D problem. First
selection method W1 provides higher quality of the numerical solution than
the second selection method W2 which has tendency to oscillate in case of
reconstruction using only RBFs or in the case of nonlinear equation. The
procedures W1 and W2 determine possible configurations of triangles for sten-
cil.
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A total variation or a sum of the coefficients (i.e. the coefficients of linear
combination of radial basis functions and linear polynomial) were applied to
decide which stencil is the most appropriate so that the numerical solution
does not oscillate. In case of polynomial reconstruction, the connection be-
tween measurement of the oscillations using coefficients and total variation
is proved. This connection is not available in case of reconstruction using
radial basis functions, we thus apply both criterion. Experiments show simi-
lar results in case of Gaussian spline reconstruction via both coefficients and
total variation. Higher quality of the numerical solution was obtained using
the sum of coefficients than the total variation in case of an approximation
of RBFs without a linear polynomial.

The numerical experiments approved that the ENO schemes based on the
Gaussian splines increase the quality and the precision of the approximate so-
lution. The recovery has to use at least 4 radial basis functions accompanied
with linear polynomial. On contrary, usage of standalone RBF recovery can-
not be recommended due to its high dependence on the value of parameter
ε.
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