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The subject of the diploma thesis is the Heston model. One part of the thesis illustrates
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local and global optimizers. Results are presented for two consecutive days.

Another part of the thesis deals with the various Monte Carlo schemes for simula-
tion of the Heston processes. Introduction is given to the known schemes - log-Euler,
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Milstein scheme with an approximation to the Exact scheme is suggested. Parameters
obtained from the market are used to test the schemes while also the range of options
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Chapter 1

Introduction

Financial models are an essential tool in today’s world of finance and economics. They
are needed to estimate fair values of various securities, to estimate their risks and to
show how to control these risks. However, the world changes as well as the market
does and in response to that newer models always become necessary. As pointed out
on Paul Wilmott’s Blog 1, the most important question about any financial model is
how wrong it is likely to be, and how useful it is despite its assumptions.

Since the introduction of the Black Scholes model [5] a number of complex models
have been proposed to reflect the behavior of markets and the derivatives. Particu-
larly, the Black Scholes model of option valuation relied on constant volatility, which
does not represent the dynamics in the financial markets sufficiently anymore. Relax-
ing this assumption led to the models called stochastic volatility models. Among the
first publications on the class of stochastic volatility models were Hull and White [16]
in 1987, Scott [31] in 1987, Stein and Stein [33] in 1991 and Heston [14] in 1993. Hes-
ton model was the first model that allowed reasonable calibration to the market option
data together with semi-closed2 form solution for European call/put option prices. He-
ston model also allows correlation between the asset price and the volatility process as
opposed to Stein and Stein [33]. We discuss the Heston model in Chapter 4, whereas
the particular drawbacks of the Black Scholes model and motivation for more complex
models is given as a part of Chapter 3.

Heston model is one of the most popular models for option pricing. It can be cal-
ibrated using the vanilla option prices and then used to price exotic derivatives for
which there is no closed form valuation formula. For this purpose a method for sim-
ulating the evolution of variable of interest is necessary. Although the Heston model
was already introduced in 1993, the research on discretization methods of its dynamics
appeared only very recently. Different Euler schemes implementations were examined
and various ways how to deal with negative values of the variance process were sug-
gested, for example Higham and Mao [15] in 2005 or Lord et. al. [24] in 2010. An
exact scheme was developed by Broadie and Kaya [6] in 2006, which simulates the He-

1http://www.wilmott.com/blogs/paul/
2It involves numerical integral.
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ston processes from its exact distributions. This topic is covered in detail in Chapter
5, where we also discuss higher order Milstein schemes and QE scheme, which is the
most popular one right now. It was introduced by Andersen [2] in 2008.

Most of the tests for pricing using Monte Carlo in the papers omit certain schemes
and also choose their parameters and discretization rather wisely when comparing the
schemes or showing their performance. We aimed to eliminate this phenomenon by
calibrating the Heston model to real market data and obtaining a set of parameters
which explained the prices of European call options on the real market. We used them
afterwards in the Monte Carlo simulations in Chapter 5 and compared the Monte Carlo
results with the prices implied by the Heston model.

The calibration of the model is a crucial process and a price to pay with more com-
plex model is the increased complexity of the calibration process. The industry stan-
dard approach is to minimize the difference between the observed prices and the model
prices. We can follow for example Nögel and Mikhailov [29], they used the method of
Adaptive Simulated Annealing and weights of their fine choice. Unfortunately it is
quite common in the literature that only few data and mostly at the money options are
used to demonstrate the calibration process, which of course leads to small errors, it
makes the calibration problem easy to solve. Also synthetic option prices with simple
parameters are often calculated and used for the calibration. See for example Kienitz
and Wetterau [22], where synthetic option prices are calculated and the model param-
eters are recovered from the calibration process. A significant role is played by the
optimizer, because local optimizers heavily depend on the initial guess and thus the
distance between the model prices and the market prices does not necessarily be be-
cause of the model but it can be due to the calibration process.

Chapter 6 demonstrates the complexity of the calibration process and employs va-
riety of optimizers. We used the newest available version of Adaptive Simulated An-
nealing, we also tested the Genetic algorithm from the MATLAB’s Optimization Tool-
box. In Chapter 7 we use the different optimizers with a specific approach to calibrate
the model to data obtained from the real market, namely we used daily data for DAX
Options obtained using the Bloomberg Terminal 3. We presented the results of the cali-
bration for two consecutive days.

The structure of the thesis is as follows. We start with addressing mathematical
preliminaires in Chapter 2. In Chapter 3 we define option contract and give theoretical
and graphical motivation for stochastic volatility models. Chapter 4 introduces the
Heston model. In Chapter 5 we present various simulation schemes and results of their
test. Chapter 6 discusses the calibration problem and introduces the used optimizers.
Chapter 7 contains the results of calibration to real market data. The final conclusion is
given in Chapter 8.

3Computer system provided by Bloomberg L.P. enabling access to the Bloomberg Professional service
for the purpose of monitoring and analyzing real-time financial market data.
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Chapter 2

Preliminaries

The purpose of this section is to introduce basic definitions and concepts that will
be used throughout the thesis. This is not intended to be a complete comprehensive
overview of the stochastic theory with proofs. We will follow Steven E. Shreve [32],
Paul Glasserman [12] and Bohdan Maslowski [26].

We will start with defining the Brownian motion1, that is the most common stochas-
tic building block used for random walks in finance. At first, let us define a probability
space and a stochastic process.

Definition 1. Let Ω be a nonempty set, and let F be a σ-algebra of subsets of Ω. A proba-
bility measure P is a function that, to every set A ∈ F , assigns a number in [0, 1], called the
probability of A and written P(A). We require

(i) P(Ω) = 1,

(ii) P(∅) = 0, and

(iii) whenever A1, A2,... is a sequence of disjoint sets in F , then

P

( ∞⋃
n=1

An

)
=

∞

∑
n=1

P(An).

The triple (Ω,F , P) is called a probability space.

Having the probability space (Ω,F , P) we will now proceed to the definition of
stochastic process.

Definition 2. Let (Ω,F , P) be a probability space. A stochastic process is a collection of
random variables X = {X(t, ω], t ∈ [0, T], ω ∈ Ω} on (Ω,F , P) that takes values in R. By
sample path (or trajectory) of the process we understand the function

t→ X(t, ω) for each given ω ∈ Ω,

1Also called Wiener process.
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alternatively the process X can be viewed as a random variable

ω → X(t, ω) for for any fixed parameter t ∈ [0, T].

In what follows we use the notation X = (t, ω) = X(t), i.e. for simplicity we omit
writing the dependence on ω ∈ Ω.

2.1 Brownian motion

Definition 3. Let (Ω,F , P) be a probability space. For each ω ∈ Ω, suppose there is a
continuous function W(t) of t ≥ 0 that satisfies W(0) = 0 and that depends on ω. Then W(t),
t ≥ 0, is a Brownian motion if for all 0 = t0 < t1 < ... < tm the increments

W(t1) = W(t1)−W(t0), W(t2)−W(t1), ..., W(tm)−W(tm−1)

are independent and each of these increments is normally distributed with

E[W(ti+1)−W(ti)] = 0,
Var[W(ti+1)−W(ti)] = ti+1 − ti,

where E denotes mathematical expectation (mean value) and Var denotes variance.

Remark 1. We can think of ω as one particular Brownian motion path, as an outcome of a
random experiment, which value at time t is W(t). Thus, the sample space Ω is the set of all
possible outcomes of this random experiment, F is the σ-algebra of subsets of Ω and their prob-
abilities are defined by P, which is a probability measure. For each A ∈ F , the probability of A
is a number in [0, 1].

Simulation of the Brownian motion can be done in the following way. We use the
fact that the increments are normally distributed with mean zero and variance equal to
ti+1− ti. Setting t0 = 0 and starting with W(0) = 0, subsequent values of one Brownian
motion path can be obtained as follows

W(ti+1) = W(ti) +
√

ti+1 − tiZi+1, i = 0, ..., n− 1, (2.1)

where Zi is a sequence of standard normal variables.

Definition 4. Let X be a random variable defined on a nonempty sample space Ω. Let G be a
σ-algebra of subsets of Ω. If every set in σ(X) is also in G, we say that X is G-measurable.

A random variable X is G-measurable if and only if the information in G is suffi-
cient to determine the value of X. Our next aim is to define the filtration for Brownian
motion. The term filtration represents the increasing collection of σ-algebras F (t), t ≥ 0
generated in our case by W(t), t ≥ 0 and containing the information available at time t.
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Definition 5. Let (Ω,F , P) be a probability space on which a Brownian motion W(t) is de-
fined, t ≥ 0. A filtration for the Brownian motion is a collection of σ-algebras F (t) ⊂ F , t ≥ 0,
satisfying:

(i) For 0 ≤ s < t, every set in F (s) is also in F (t).

(ii) For each t ≥ 0, the Brownian motion W(t) at time t is F (t)-measurable (the information
at time t is sufficient enough to evaluate the the Brownian motion W(t) at time t).

(iii) For 0 ≤ t ≤ u, the increment W(u)−W(t) is independent of F (t) .

In the view of the previous definition we will also define a stochastic process adapted
to a filtration.

Definition 6. Let us consider a stochastic process X(t), t ≥ 0. We say that X(t) is adapted to
the filtration F (t) if for each t ≥ 0 the random variable X(t) is F (t)-measurable.

If it is obvious to what filtration F (t) the process X(t) is adapted, we may simply
write that X(t) is adapted. Next we give a definition of martingale and then show that
Brownian motion is a martingale.

Definition 7. Let (Ω,F , P) be a probability space, let T be a fixed positive number, and let
F (t), 0 ≤ t ≤ T, be a filtration of sub-σ-algebras of F . Consider an adapted process M(t),
0 ≤ t ≤ T. We say M(t) is a martinglale if

E[M(t)|F (s)] = M(s) for all 0 ≤ s ≤ t ≤ T,

where E[M(t)|F (s)] denotes condional expectation of M(t) given F (s).

In other words, a martingale has no tendency to rise or fall.

Lemma 1. Brownian motion is a martingale, i.e. for 0 ≤ s < t we have that

E[W(t)|F (s)] = W(s).

Proof. Let 0 ≤ s < t be given. Then

E[W(t)|F (s)] = E[(W(t)−W(s)) + W(s)|F (s)]
= E[W(t)−W(s)|F (s)] + E[W(s)|F (s)]
= E[W(t)−W(s)] + W(s)
= W(s).
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When simulating the paths of financial assets later in the thesis, we will need to con-
struct two correlated Brownian motions. We will do this by Cholesky decomposition of
the correlation matrix.

Definition 8. The correlation matrix of m random variables X1, ..., Xm is the m×m symmetric
matrix whose i, j entry is ρ(Xi, Xj) defined as

ρ(Xi, Yj) =
Cov(Xi, Xj)

σ(Xi)σ(Xj)
=

E[(Xi − µi)(Xj − µj)]

σ(Xi)σ(Xj)
,

where σ(Xi) stands for standard deviation, Cov for covariance and

µi = E[Xi].

Remark 2. In our case we will deal with standard normal variables X and Y, hence standard
deviations will be 1 for both X and Y and Cov(X, Y) = ρ(X, Y).

We would like to simulate two correlated Brownian motions W(t)(1) and W(t)(2),
with correlation ρ. We showed how to simulate one Brownian motion, thus we will
now need to generate two correlated random numbers Z(1) and Z(2). A correlation
matrix C for two random variables is according to the definition above given by

C =

[
1 ρ
ρ 1

]
, (2.2)

where ρ is the correlation between W(t)(1) and W(t)(2).

Lemma 2. Let ρ ∈ [−1, 1] and C be given by 2.2. Then there exists an upper triangular matrix
U such that

C = UTU, (2.3)

namely

U =

[
1 ρ

0
√

1− ρ2

]
.

Proof.

UTU =

[
1 0
ρ
√

1− ρ2

]
·
[

1 ρ

0
√

1− ρ2

]
=

[
1 ρ
ρ ρ2 + (1− ρ2)

]
= C.

Remark 3. The matrix U can be found using the Cholesky decomposition, if C is positive
definite. It is satisfied for ρ ∈ (−1, 1). For ρ = ±1 the assertion (2.3) is also true.
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Two correlated random numbers Z(1), Z(2) with correlation ρ are then generated by
transforming two uncorrelated independent random numbers z1, z2 by[

Z(1)

Z(2)

]
=
[
z1 z2

] [1 ρ

0
√

1− ρ2

]
,

thus we arrive to Z(1) = z1 and Z(2) = ρz1 +
√

1− ρ2z2.

2.2 Stochastic integral and SDE

We have already defined the Brownian motion and a filtration for the Brownian motion,
these are necessary for the forthcoming definition of the stochastic integral, which will
be followed by the definition of the stochastic differential equation in this section.

Definition 9. Let W(t), t ≥ 0, be a Brownin motion and φ(t),t ≥ 0, be a stochastic process
adapted to the filtration F (t), t ≥ 0, such that

E

∫ T

0
φ2(t)dt < ∞.

We define the Itô stochastic integral of φ(t) with the driving process W(t) by the formula

∫ T

0
φ(u)dW(u) = lim

||Dn||→0

n−1

∑
i=0

φ(ti)
(
W(ti+1)−W(ti)

)
, (2.4)

where Dn = {0 = t0 < t < ... < tn = T} is the partition of the interval [0, T] and

||Dn|| = max
j∈{0,...,n−1}

|tj+1 − tj|.

Some of the properties properties of Itô stochastic integral are given in the following
theorem.

Theorem 1. Let I(t) =
∫ t

0 φ(u)dW(u) be a random variable as defined above. The stochastic
integral I(t) has the following properties

(i) For each t, I(t) is F (t)-measurable.

(ii) Var[I(t)] = E[I(t)2] = E
∫ t

0 φ2(u)dW(u).

(iii)
∫ t

0 (aφ(u) + bφ(u))dW(u) = a
∫ t

0 φ(u)dW(u) + b
∫ t

0 φ(u)dW(u),

where a and b are constants.

(iv) I(t) is a martingale.
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Theorem 1 is provided without a proof, reader is referred to section 3.2.A and 3.2.B
of Karatzas and Shreve [21] or 4.2 and 4.3 of Shreve [32]. Itô stochastic integral is first
constructed for so called simple processes (also step functions). For such integrands
it is not too difficult to verify the above properties of Itô stochastic integral. General
integrands φ are then approximated using a sequence of simple processes converging
to φ. The properties of I(t) are then inherited from the properties of Itô stochastic
integral for simple integrands as pointed out in Theorem 4.3.1 by Shreve in [32].

Definition 10. Let (Ω,F , P) be a probability space and let W(t) be a Brownian motion on Ω
with respect to F (t). Also let a : [0, T] ×R → R and b : [0, T] ×R → R be measurable
functions and X(0) be F (0)-measurable random variable. The stochastic differential equation
is a stochastic differential:

dX(t) = a(t, X(t))dt + b(t, X(t))dW(t), t ∈ (0, T) (2.5)

with an initial condition

X(0) = x0 ∈ R, (2.6)

which may be random. A solution to the equation is a continuous stochastic process X(t) with
respect to F (t) satisfying

X(t) = x0 +
∫ t

0
a(s, X(s))ds +

∫ t

0
b(s, X(s))dW(s), t ∈ [0, T],

where the first integral is Lebesgue integral and the second one is an Itô stochastic integral. The
solution is also called strong solution.

The existence of the solution for the above defined stochastic diferential equation
and its uniqueness is provided by the following Existence and uniqueness of solutions
theorem for stochastic differential equations.

Theorem 2. Let a : [0, T] × R → R and b : [0, T] × R → R be measurable functions
satisfying

|a(t, x)|+ |b(t, x)| ≤ C(1 + |x|), x ∈ R; t ∈ [0, T],

for some constant C and

|a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| ≤ D|x− y|; x, y ∈ R, t ∈ [0, T]

for some constant D. Then the equation (2.5) - (2.6), where X(0) is F (0)-measurable random
variable satisfying E|X(0)|2 < ∞ has a continous and unique solution X(t) with respect to
F (t).

Proof 1. Proof can be found in Maslowski [26] under Theorem 5.2.
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The first linear growth condition ensures that the solution process X(t) does not
explode, i.e. that X(t) does not tend to go to infinity in finite time. The second, Lipschitz
condition guarantees that equation has a unique solution. Here uniqueness means that
if X(t) and Y(t) are two continuous processes satisfying the differential equation (2.5) -
(2.6) then

X(t) = Y(t), t ∈ [0, T], almost surely.

Such processes as X(t) and Y(t) are called indistinguishable.

Lemma 3. Itô formula. Let V be a twice continuously differentiable function and let X(t),
t ≥ 0, be a process defined in Definition 10, where σ and b satisfy the conditions from Theorem
2. Then the process Y(t) = V(t, X(t)) has a stochastic differential

dY(t) =
(

∂V
∂t

+ a
(
t, X(t)

)∂V
∂x

+
1
2

b2(t, X(t)
)∂2V

∂x2

)
dt + a

(
t, X(t)

)∂V
∂X

dW(t). (2.7)

Proof 2. The proof of Itô formula can be found for example in Karatzas and Shreve [21] as
Theorem 3.3.

2.3 Numerical solution for SDE

2.3.1 Euler scheme

One of the simplest time discrete approximations of a stochastic differential equation is
the Euler approximation, also known as Euler-Maruyama approximation. We consider
stochastic process X = X(t), 0 ≤ t ≤ T following stochastical differential equation

dX(t) = a(t, X(t))dt + b(t, X(t))dW(t) (2.8)

on 0 ≤ t ≤ T with initial value

X(0) = X0. (2.9)

Taking time discretization 0 = τ0 < τ1 < ... < τn < ... < τN = T of the interval
[t0, T], an explicit Euler approximation is a continuous time stochastic process Y =
{Y(t), t0 ≤ t ≤ T} following the iterative scheme

Yn+1 = Yn + a(τn, Yn)(τn+1 − τn) + b(τn, Yn)(Wτn+1 −Wτn), (2.10)

where n = 0, 1, 2..., N − 1 with initial value

Y0 = X0, (2.11)

and where Yn denotes the value of approximation at the time of discretization τn

Yn = Y(τn). (2.12)
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We will denote

∆n = τn+1 − τn (2.13)

the nth time increment. Note that for b ≡ 0, the equation (2.10) reduces to deter-
ministic Euler scheme.
In order to compute the sequence Yn, n = 0, 1, ...N of values of the Euler approximation
we need to generate the random increments

∆Wn = Wτn+1 −Wτn , (2.14)

for n = 0, 1, .., N − 1 of the Brownian motion W(t), t ≥ 0. As described earlier these
increments are independent Gaussian random variables with

E[Wn] = 0 (2.15)

and

E
[
(∆Wn)

2] = ∆n. (2.16)

For this purpose we can use a sequence of independent Gaussian pseudo-random
numbers and we can simulate ∆Wn by

∆Wn = Zn
√

∆n, (2.17)

where Zn is a sequence of standard normal random variables, Zn ∼ N (0, 1) 2. We
will shorten the scheme and from now on use the following form

Yn+1 = Yn + a∆n + bZ
√

∆n, (2.18)

for n = 0, 1, ..., N − 1, where Z is a sample generated from the standard normal
distribution.

To measure the convergence of the approximations we shall define the following
criterions. Let

δ = max
n

∆n (2.19)

and call it the time step. Yδ denotes the discrete time approximation with time
step δ.

Definition 11. We say that the time discrete approximation Yδ converges weakly with order
β > 0 to X at time T if for any polynomial g there exists a constant C > 0 such that

|E(g(X(T))−E(g(YN))| ≤ Cδβ,

for each δ, 0 < δ < T.

2In MATLAB we can use for example function randn.
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Definition 12. We say that the time discrete approximation Yδ converges strongly with order
γ > 0 to X at time T if there exists a constant C > 0, such that

E(|X(T)−Yδ
N |) ≤ Cδγ,

for each δ, 0 < δ < T.

The Euler approximations (2.18) converge in the strong sense with order γ = 0.5
and in the weak sense with order β = 1, the proof can be found in Kloeden and Platen
[23].

2.3.2 Milstein scheme

Refining the Euler scheme (2.18) by adding an extra term using Itô lemma, see for ex-
ample [12], results in

Yn+1 = Yn + a∆n + bZ
√

∆n +
1
2

b′b(Z2 − 1)∆n. (2.20)

The above scheme was derived by Milstein [28] and thus is referred to as Milstein
scheme. Milstein approximations (2.20) converge in strong order γ = 1 and weak order
β = 1.5, for proof see Kloeden and Platen [23].
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Chapter 3

Options

Before we get to the point and define an option, let us describe what is an asset. We will
use the asset to describe any financial object whose value is known at the present time
but subject to changes in the future. We would mention following examples, which
would qualify as an asset

• shares in company,

• commodities such as gold, oil or wheat,

• currencies, for example, the value of $1 in e.

Definition 13. A European call option gives its holder the right, but not the obligation to
purchase from the writer a prescribed asset for a prescribed price at a prescribed time in the
future.

The right, but not the obligation is what distinguishes options from other deriva-
tives1 such as forwards and futures, where the holder is obligated to buy or sell the
underlying asset. We will further refer to the prescribed purchase price as the strike
price and the prescribed time in the future as the expiry date (also maturity).

The opposite of a European call option is a European put option.

Definition 14. A European put option gives its holder the right, but not the obligation to sell
to the writer a prescribed asset for a prescribed price at a prescribed time in the future.

Options are very popular, sometimes more money is invested in the options and
other than in the underlying assets. There are at least two good reasons to do so

(i) Options are attractive to investors for both speculation and hedging.

(ii) There is a particular way to determine how much they are worth, and thus they
can be bought and sold with some confidence.

1By derivative we understand a financial instrument whose value depends on the price of an underly-
ing asset.
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Hedgers use derivatives to reduce risk they face from future movements on the
market, whereas speculators use them to bet on the future direction of the market. For
more on types of trading, see for example Hull [17].

Let K denote the strike price and S(T) denote the asset price at the expiry date T.
S(t) is then the asset price at a general time t. We say that the value of the European
call option at the expiry date, denoted by c, is

c = (S(T)− K)+, (3.1)

which means, that at expiry date, if S(T) > K, then the holder can buy the asset
for K and sell it on the market for S(T), making profit S(T) − K. On the other hand,
if S(T) ≤ K, then the holder gains nothing. We can see this illustrated on the payoff
diagrams in Figure 3.1, the piecewise linear payoff curves are sometimes called (ice)
hockey sticks. The value of the European put option, denoted as p is then

p = (K− S(T))+. (3.2)

We will consider data on index options, where settlement is always in cash, rather
than by delivering the portfolio underlying the index. Also one contract is usually
to buy or sell 100 times the index at specified strike price. These are called contract
multipliers. Consider for example one call contract with a strike price of K. If it is
exercised when the value of the index is S, the writer of the contract pays the holder
(S− K) ∗ 100 in cash.

S(T)

c

K0

(a)

S(T)

p

K

K

0

(b)

Figure 3.1: Payoff diagram for a European call option (a) according to formula (3.1) and
for a European put (b) following formula (3.2).
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3.1 Option markets

Options are traded on a number of official exchanges. First of them, Chicago Board
Options Exchange (CBOE), was established by Chicago Board of Trade in 1973. Most
exchanges work through the use of market makers, individuals, who are obliged to buy
or sell options at any time they are asked to do so. Market makers will quote two prices,
the bid and the ask. They will buy the option for the bid price and they will sell it for
the ask price. Bid-ask spread is the difference between the ask and bid price and that is
how the market makers make their profit, they do not speculate on the market.

Options are also traded directly between financial institutions, fund managers or
corporations, these are called over-the-counter (OTC) deals. The trades in the over-the-
counter market are typically much larger than trades in the exchange-trade market.

Another derivatives exchange is Eurex, established in 1998. One of the products it
offers are the options on DAX (Deutscher Aktien IndeX). DAX is a stock market index
consisting of the 30 major German companies trading on the Frankfurt Stock Exchange.
The following Figure 3.2 is a snapshot of Bloomberg Option Monitor (OMON)2 list-
ing the bid and ask prices for the European Call options on DAX with expire date on
September 20, 2013. Picture was taken on March 19, 2013 (185 days before expiry date).

Figure 3.2: DAX index Call Option Price Quotations. Source: Bloomberg Finance L.P.

2Option Monitor is a screen providing all current and future Calls and Puts for the particular equity.
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3.2 Option prices

Option prices are available for a range of strike prices and expiry dates. Figure 3.2
shows prices only for a particular expiry date. The next Figure 3.3 shows market values
for S&P500 index call and put options, that were calculated as

Mid =
(Bid + Ask)

2
(3.3)

and for various strike prices and expiry dates3. We can see that for a given expiry
date, the call option decreases as the strike price increases. Increasing the strike price
has a negative effect on the payoff and hence it reduces the call option’s worthiness.
Similarly with the price of the put option, where the put price increases with increasing
strike price.
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Figure 3.3: Market values for S&P500 Index call (a) and put (b) options for a range of
strike prices and expiry dates from March 21, 2013.

Another observation can be made from the figures above. For a given strike price,
both the call and the put option prices increase with time increasing to expiry date.

We will now introduce more financial jargon. At time t, a European call option is
said to be

• In the money (ITM) if S(t) > K

• out of the money (OTM) if S(t) < K, and

• at the money (ATM) if S(t) = K.

Together, this concept is called "Moneyness of Options". In general, in the money
means that there will be a positive payoff if the asset price stays as it is. Out of the

3Source for bid and ask prices: Bloomberg Option Monitor.
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money means the asset must change by significant amount in order for a positive pay-
off. The interval between in and out of the money is then defined as at the money.

3.3 Option valuation

In the early 1970s, Merton tackled a problem that had been partially solved by two other
economists, Fischer Black and Myron S. Scholes: deriving a formula for the ‘correct’ price of a
stock option. Grasping the intimate relation between an option and the underlying stock, Mer-
ton completed the puzzle with an elegantly mathematical flourish. Then he graciously waited
to publish until after his peers did; thus the formula would ever be known as the Black–Scholes
model. Few people would have cared given that no active market for options existed. But coinci-
dentally, a month before the formula appeared, the Chicago Board Options Exchange had begun
to list stock options for trading. Soon, Texas Instruments was advertising in The Wall Street
Journal, ‘Now you can find the Black–Scholes value using our . . . calculator.’ This was the
true beginning of the derivatives revolution. Never before had professors made such an impact
on Wall Street.

- Roger Lowenstein [25].

In this section we will briefly discuss the drawbacks and broken assumptions of
the Black-Scholes-Merton model. But first we will give a very brief introduction to the
Black Scholes model. In 1973 Fischer Black and Myron Scholes published their paper
called "The Pricing of Options and Corporate Liabilities" [5]. Price of a call option c(S, t)
follows the Black-Scholes-Merton4 partial differential equation

∂c
∂t

+
1
2

σ2S2 ∂2c
∂S2 + rS

∂c
∂S
− rc = 0, (3.4)

where r is the risk free interest rate, σ is volatility, both constant parameters, t is
time and S is the stock price, satisfying terminal condition

c(S, T) = (S− K)+ (3.5)

and boundary conditions

c(0, t) = 0, for 0 ≤ t ≤ T (3.6)

and

c(S, t)→ S, as S→ ∞. (3.7)

4It is well documented that the three men cooperated on development of the option-pricing formula
and in recognition of this Scholes and Merton were awarded by the 1997 Nobel Prize in Economics and it
is widely accepted that Fischer Black, who died in 1995, would have also shared the prize if he had been
still alive.
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Analytical solution to the value of a European call option at time t is

C(S, t) = SN(d+)− Ke−r(T−t)N(d−), (3.8)

where

d± =
1

σ
√

T − t

[
ln

S
K
+

(
r± σ2

2

)
(T − t)

]
, (3.9)

and N is the cumulative distribution function for the standard normal variable
N (0; 1). (T − t) is the time to expiry date, K is the strike price as previously defined.
S is the stock price at time t and the formula assumes it follows a geometric Brownian
motion

dS(t) = rS(t)dt + σS(t)dW(t), (3.10)

where r and σ are constant defined as above. W(t) is Brownian motion. We will be
particularly interested in the constant volatility assumption, which is listed in Willmot
[35] as first assumption or as ideal condition (b) in Black and Scholes [5], since the
volatility parameter does not need to be constant as stated in Willmot [35] and still we
can find solution. We will give some arguments to break this assumption in the next
parts of this chapter. Paul Willmot discusses some more assumptions in [35] as well as
the consequences of dropping them.

Despite the forthcoming arguments, the formula (3.8) is still very popular among
option traders because it is simple and easy to use, with very few parameters. Also its
drawbacks are quite well understood.

3.3.1 Volatility smile

The Black–Scholes call and put values depend on S, K, r , T − t and σ. Of all these
parameters, only the asset volatility σ can not be observed directly. One approach is
to extract the volatility from the observed market data. Knowing a quoted option call
value c, and based on observed S, t, K, r and T , we can find such σ that leads to this
value. A σ computed this way is known as an implied volatility (σ is implied by data
on the market). To find such σ we can use for example MATLAB function

sigma = blsimpv(S, K, r, tau, c) %tau=T-t

Let us use the following quote as a bridge to the definition of the phenomenon men-
tioned in the name of the section.

"A smiley implied volatility is the wrong number to put in the wrong formula to obtain the
right price."

- Riccardo Rebonato [30].
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Volatility smile is the pattern we can observe on a graph of implied volatility vs.
strike price for a given expiry date. It will form an upturned curve similar to the shape
of a smile, because in the money and out of the money options are observed to have
higher implied volatilities than at the money options. However, as mentioned in Hull
[17] equity options traded in American markets did not show a volatility smile be-
fore the Crash of 1987 but began showing one afterwards. Despite the disparities, the
Black–Scholes theory continues to be highly regarded by both academics and market
traders. It is common among traders for option values to be quoted in terms of volatil-
ity rather than price, because the implied volatility tends to be less variable than the
option price.

A related concept is that of term structure of volatility. It describes how (implied)
volatility differs for related options with different maturities. The next Figure 3.4 shows
an implied volatility surface 3D plot that plots volatility smile and term structure of
volatility in a three-dimensional surface for DAX call options.

Figure 3.4: Graph of the DAX-implied volatility surface on March 21, 2013. Source:
Bloomberg Finance L.P.

3.3.2 Historical volatility

Another approach to obtain the volatility parameter σ for the Black-Scholes model is to
use the historical data. But as we can see in Figure 3.5 the volatility in real life is not
constant, but changes over time.
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Figure 3.5: 10/30/50-day historical volatilities for S&P 500 Index.

Whatsmore, fall in the stock price is often accompanied by a rise in volatility. It is
easy to observe this in the second half of 2008 in Figure 3.6 and especially in the weeks
following the bankruptcy of Lehman Brothers (September 15, 2008) and problems of
other financial companies.
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Figure 3.6: Historical quotes for S&P 500 Index.

Another valid point against using historical volatility is that we should be estimat-
ing volatility for the time period that is about to come, but measuring volatility from a
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stock price series only yields an estimate for the volatility over the past time period.

3.3.3 Other models

Last but not least the Black-Scholes stochastic differential equation results in a lognor-
mal distribution of the random variable S(t) (its log is normally distributed). This is not
the case for the real market data, fat tails and the high central peaks can be observed
and are characteristics of mixtures of distributions with different variances [11]. We can
see the fat tails and highly skewed central peak in the following Figure 3.7, extreme
events indeed occur more frequently than a model based on normal random variables
would predict.
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Figure 3.7: DAX daily log-returns vs. the normal distribution in red. Frequency distri-
bution of 10 years in picture (a) and Q-Q plot in (b).

There have been numerous attempts to develop generalizations or alternatives to
the lognormal asset price model. Many of these were motivated by the observations of
the real market data. One known approach is to allow the volatility to be stochastic,
another is to allow the asset to undergo ‘jumps’. In the next section we will introduce
the Heston model, which allows the volatility to be stochastic.
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Chapter 4

Heston model

4.1 Model dynamics

In this chapter we focus on stochastic volatility model introduced by Steven Heston in
[14]. The spot asset S at time t follows the stochastic differential equation

dS(t) = rS(t)dt +
√

v(t)S(t)dWS(t), (4.1)

where WS(t) is a Wiener process. The parameter r stands for the interest rate and
for simplicity it is assumed to be a constant. The square root of v(t) is assumed to be an
Ornstein-Uhlenbeck process satisfying

d
√

v(t) = −β
√

v(t)dt + δdWv(t), (4.2)

where β > 0 and δ are real constants and Wv(t) is another Wiener process, that has
a correlation ρ with WS(t), i.e.

dWS(t)dWv(t) = ρdt. (4.3)

We can show that v(t) is the CIR process named after its creators John C. Cox,
Jonathan E. Ingersoll, and Stephen A. Ross [8]. Supposing X(t) =

√
v(t) and using

Itô’s lemma we can calculate the differential of v(t) = X2(t)

dv(t) = 2X(t)dX(t) + (dX(t))2

= 2
√

v(t)[−β
√

v(t)dt + δdWv(t)] + δ2dt,

= [δ2 − 2βv(t)]dt + 2δ
√

v(t)dWv(t),

this can be rewritten as

dv(t) = κ[θ − v(t)]dt + σ
√

v(t)dWv(t), (4.4)
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which is the square-root mean reverting process with the long run variance θ, mean
reversion rate κ and with parameter σ, which is referred to as the volatility of the vari-
ance. It was described by Cox, Ingersoll and Ross in [8]. The variance process is always
positive and can not reach zero if 2κθ > σ2, this is often referred to as the Feller condi-
tion [10].

4.2 Option valuation

Using the standard arbitrage arguments from Merton [27] and Black-Scholes [5], the
value of any asset asset c(S, v, t) must satisfy the partial differential equation

1
2

S2v
∂2c
∂S2 + ρσSv

∂2c
∂Sv

+
1
2

σ2v
∂2c
∂v2 + rS

∂c
∂S

+ {κ[θ − v(t)]− λ(S, v, t)} ∂c
∂v
− rc +

∂c
∂t

= 0,
(4.5)

where ρ, σ, κ are as above and the term λ(S, v, t) represents the price of volatility
risk and must be independent of the particular asset. Heston [14] assumed the risk is
proportional to v

λ(S, v, t) = λv. (4.6)

A European call option maturing at time T with strike price K satisfies the PDE (4.5)
subject to the boundary conditions:

c(S, v, T) = (S− K)+ (4.7)

c(0, v, t) = 0 (4.8)

cS(∞, v, t) = 1 (4.9)

rS
∂c
∂S

(S, 0, t) + κθ
∂c
∂v

(S, 0, t)− rc(S, 0, t) +
∂c
∂t
(S, 0, t) = 0 (4.10)

c(S, ∞, t) = S (4.11)

Heston was looking for the solution of (4.5) in the form corresponding to Black-
Scholes formula

c(S, v, t) = SP1 − KP(t, T)P2, (4.12)

where the first term represents the present value of the spot asset upon optimal
exercise and the second term is the present value of the strike price payment

P(t, T) = e−r(T−t). (4.13)

24



"P1 is the delta of the European call option and P2 is the conditional risk neutral
probability that the asset price will be greater then K at the maturity." Both of these
terms must satisfy the original PDE. Heston wrote them in terms of the logarithm of
the spot price

x = lnS. (4.14)

When we substitute the solution (4.12) to the original equation (4.5), it shows that
P1 and P2 must satisfy

1
2

v
∂2Pj

∂x2 + ρσv
∂2Pj

∂x∂v
+

1
2

σ2v
∂2Pj

∂v2 + (r + ujv)
∂Pj

∂x
+ (a− bjv)

∂Pj

∂v
+

∂Pj

∂t
= 0, (4.15)

for both j = 1, 2, where the parameters uj, aj and bj are defined as follows

u1 =
1
2

, u2 = −1
2

, a = κθ, b1 = κ + λ− ρσ, b2 = κ + λ. (4.16)

For the option price to satisfy the boundary conditions (4.7) - (4.11), the partial dif-
ferential equations (4.15) are subject to the terminal condition

Pj(x, v, T; ln[K]) = I{x≥ln [K]}, (4.17)

where I is an indicator function. As explained in the Appendix of Heston [14], when
x is the stochastic process satisfying

dx(t) =[r + ujv(t)]dt +
√

v(t)dWS(t),

dv(t) =[a− bjv(t)]dt + σ
√

v(t)dWv(t),

where the parameters uj, a and bj remain as defined in (4.16), then Pj is the condi-
tional probability that the option expires in-the-money

Pj(x, v, T; ln[K]) = P[x(T) ≥ ln[K] | x(t) = x, v(t) = v]. (4.18)

Appendix of Heston [14] shows that the characteristic functions of these probabili-
ties satisfy the same partial differential equations (4.15), subject to the terminal condi-
tion

f j(x, v, T; φ) = eiφx. (4.19)

The characteristic function solution takes the form

f j(x, v, t; φ) = exp{C(T − t; φ) + D(T − t; φ)v + iφx}, (4.20)
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where

C(τ; φ) = rφiτ +
a

σ2

{
(bj − ρσφi + d)τ − 2ln

[
1− gedr

1− g

]}
, (4.21)

D(τ; φ) =
bj − ρσφi + d

σ2

[
1− edr

1− gedr

]
, (4.22)

and

g =
bj − ρσφi + d
bj − ρσφi− d

, (4.23)

d =
√
(ρσφi− bj)2 − σ2(2ujφi− φ2), (4.24)

for j = 1, 2.
The terms P1, P2 are defined via the inverse Fourier transformation, for j = 1, 2

Pj(x, v, T; ln[K]) =
1
2
+

1
π

∫ ∞

0
Re
[

e−iφln[K] f j(x, v, T; φ)

iφ

]
dφ. (4.25)

The equations (4.12), (4.25) and (4.20) give the solution for European call options as
first introduced by Heston in [14]. The integrand in equation (4.25) is a smooth function
that decays rapidly and presents no difficulties as was pointed out also in [14].

4.3 Valuation under risk-neutral measure

In order to eliminate the parameter λ we define the risk-adjusted parameters

κ∗ = κ + λ

and

θ∗ =
κθ

κ + λ
,

thus substituting into equation (4.5) gives under the risk-neutral measure P̃, also
called equivalent1 martingale measure (more on this topic can be found for example in
Chapter 5 of Shreve [32])

1
2

S2v
∂2c
∂S2 + ρσSv

∂2c
∂Sv

+
1
2

σ2v
∂2c
∂v2 + rS

∂c
∂S

+ {κ∗[θ∗ − v(t)]} ∂c
∂v
− rc +

∂c
∂t

= 0. (4.26)

1Equivalent measures agree about which sets have probability zero, see Definition 1.6.3 in Shreve [32].
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Since we are interested in pricing, we will assume that the Heston process with
parameters fitted to option prices generates the risk-neutral measure so that the market
price of volatility risk λ in the general valuation equation (4.5) is set to zero in equation
(4.26). Derivation of (4.26) can be found in Appendix. Under the risk neutral measure
we have now

a = κ∗θ∗, b1 = κ∗ − ρσ, b2 = κ∗.

In what follows, we will assume that the SDEs for S and v are in risk-neutral terms
because we are interested in fitting the Heston model to option prices. Effectively, we
assume that we are imputing the risk-neutral measure directly by fitting the parameters
of the process that we are imposing, see Gatheral [11].

4.4 The Little Heston Trap

The Characteristic function solution is (4.20) as presented by Heston in [14], however
this formulation of the Heston characteristic function was later the subject of the paper
called "The Little Heston Trap" [1] by Albrecher et al., who investigated in detail the
properties and relations between the original formulation given by Heston and other
formulation presented for example in Gatheral [11], which is identical to the Heston
formulation, but causes fewer numerical problems in the implementation of the model.
Change of term (4.23) is desired and the new form is

g′ =
bj − ρσφi− d
bj − ρσφi + d

, (4.27)

which is in fact

g′ = g−1, (4.28)

as well as change of formulation of terms C(τ; φ) given by (4.21) and D(τ; φ) given
by (4.22). The new formulations read

C(τ; φ) = rφiτ +
a

σ2

{
(bj − ρσφi− d)τ − 2ln

[
1− gedr

1− g

]}
, (4.29)

D(τ; φ) =
bj − ρσφi− d

σ2

[
1− edr

1− gedr

]
. (4.30)

These changes produce an equivalent formulation to the original Heston formu-
lation, but regarding properties of both formulations Albrecher et al. in [1] provided
proofs that the Heston formulation is unstable under certain conditions and the alter-
native formulation is stable under the full parameter space. They also established a
threshold maturity from which the Heston formulation suffers from instability. When
the Feller condition is exactly satisfied, they encountered no problems in any of both
versions. The paper of Kahl and Jäckel [19] also concerns itself with this problem and
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use the rotation count algorithm to overcome the discontinuities in the original Heston
formulation.
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Chapter 5

Simulation

5.1 Heston simulation schemes

Monte Carlo approach is a popular and flexible pricing alternative. As computational
power still increases it may result in even wider application of Monte Carlo techniques
in the near future. Especially for certain derivatives which can not be priced in a closed
form.

5.1.1 Dynamics of the model

Let us consider the system

dS(t) = rS(t)dt +
√

v(t)S(t)dW̃S(t), S(0) := S0 ≥ 0, (5.1)

dv(t) = κ(θ − v(t))dt + σ
√

v(t)dW̃Sv(t) v(0) := v0 ≥ 0, (5.2)

where r, κ, θ and σ are as in previous chapter and (W̃S, W̃v) is a two-dimensional
Brownian motion under the risk-neutral measure P̃ with instantaneous correlation ρ,
i.e.

dW̃S(t)dW̃v(t) = ρdt. (5.3)

5.1.2 Euler scheme

Let us now apply the Euler scheme (2.18) to the variance process (5.2), a naive Euler
discretization of the variance process reads

vn+1 = vn + κ(θ − vn)∆n + σ
√

vnZv
√

∆n (5.4)

where Zv is standard normal random variable. The main problem when using the
above scheme is the fact, that the scheme does not preserve the positivity of the process.
The discrete process vn can become negative with non-zero probability,
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P(vn+1 < 0) = P(Zv <
−vn − κ(θ − vn)∆n

σ
√

vn
√

∆n
) = Φ(

−vn − κ(θ − vn)∆n

σ
√

vn
√

∆n
),

as Zv is standard normal variable, Φ denotes the standard normal cumulative distri-
bution function. This makes the computation of

√
vn impossible and the time-stepping

scheme fails. To avoid this, the practitioners adopted two ways of fixing it. First ap-
proach is referred to as the absorption. This approach follows the rule that process
equals to zero whenever it attains a negative value. The other approach is called reflec-
tion. The process is being reflected by its origin. i.e. : if v < 0 then v = −v. [11]

The various schemes can be unified in the following framework

vn+1 = f1(vn) + κ(θ − f2(vn))∆n + σ
√

f3(vn)Zv
√

∆n, (5.5)

where fi(x) = x for x ≤ 0 and i = 1, 2, 3 and f3(x) ≤ 0 for all x ∈ R.
The particular choices for the "fixing" functions fi(x) in the literature are the iden-

tity function ( f (x) = x), for the absorption ( f (x) = x+), where x+ = max(x, 0) and
( f (x) = |x|) for reflection. In the paper by Higham and Mao [15] the scheme uses
the following configuration f1(x) = f2(x) := x and f3(x) := |x|, whereas for example
in paper by Deelstra and Delbaen [9] f3(x) := x+ is used. All schemes coincide and
are to be bias-free as ∆n → 0 and so the choice of the fix functions may seem almost
indifferent, but the contrary is true. While some schemes are extremely biased for prac-
tical sizes of the time step, others turn out to be almost bias-free for not "too extreme
parameter configurations" as pointed out in [34] by Van Haastrecht and Pelsser.

According to the paper by Lord et al. [24] scheme called the full truncation scheme
produces the smallest bias, closely followed by the moment-matching, Euler scheme
using log-normal approximation by Andersen and Brotherton-Ratcliffe [3] and the par-
tial truncation scheme by Deelstra and Delbaen in [9].

The full truncation scheme uses f1(x) := x and f2(x) = f3(x) := x+. The resulting
Euler scheme reads

vn+1 = vn + κ(θ − v+n )∆n + σ

√
v+n Zv

√
∆n, (5.6)

where x+ =max(x; 0).
The simulation schemes of the corresponding asset price process (5.1) is then

Sn+1 = Sn + rSn∆n + Sn

√
v+n ZS

√
∆n, (5.7)

where ZS is standard normal random variable with correlation ρ to Zv. This pair
of correlated standard normal random variables Zv and ZS with a correlation of ρ be-
tween the driving Brownian motions using Cholesky decomposition can be simulated
by setting

Zv := Z1 (5.8)
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and

ZS := ρZv +
√

1− ρ2Z2, (5.9)

where Z1 and Z2 are two independent draws from the standard normal distribution.

Alternatively, the process for logS(t) can be simulated, and then exponentiated. If
we discretize log-stock price S rather than the stock price S, there are no higher order
corrections to the Euler discretization for details, see [11]. The log-Euler scheme

log(Sn+1) = log(Sn) + [r− 1
2

v+n ]∆n +
√

v+n ZS
√

∆n. (5.10)

as noted in [34] does not entail any discretization error in the stock price direction,
on the other hand the scheme usually shows biases in the Euler discretization of the
variance process (and thus in resulting stock prices).

5.1.3 Milstein scheme

Now we consider the scheme (2.20), which is a refinement to the Euler scheme pro-
duced by adding an extra term using Itô lemma. As pointed out by Gatheral in [11],
applying this scheme to the variance process yields reduced frequency with which the
process goes negative relative to the Euler scheme. Nevertheless, negative values still
appear and we have to adopt similar fixes. As a = κ(θ − vn) and b = σ

√
vn the scheme

reads

vn+1 = vn + κ(θ − v+n )∆n + σ

√
v+n Zv

√
∆n +

1
4

σ2(Z2
v − 1)∆n, (5.11)

where Zv stands for standard normal random variable. Similarly we can apply the
scheme (2.20) to the the process S(t), as this time a = rS(t) and b = S(t)

√
vt produces

Sn+1 = Sn + rSn∆n + Sn

√
v+n ZS

√
∆n +

1
2

Snv+n (Z2
S − 1)∆n, (5.12)

where ZS is standard normal random variable with correlation ρ to Zv. This how-
ever is not a refinement to the log-Euler scheme for the log-stock price S introduced
earlier as (5.10).

5.1.4 Kahl-Jäckel scheme

Introduced in Kahl and Jäckel [20] as IJK scheme, it follows

vn+1 =
vn + κθ∆t + σ

√
vnZv

√
∆t + 1

4 σ2∆t(Z2
v − 1)

1 + κ∆t
,
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log(Sn+1) =logSn + r∆n −
1
4
(Vn+1 + Vn)∆n + ρ

√
Vn
√

∆nZv +
1
2
(
√

vn+

+
√

vn+1)(ZS − ρZv)
√

∆n +
1
4

σρ(Z2
v − 1)∆n.

This scheme was developed as a drop-in replacement for the standard log-Euler pro-
cedure since it requires no additional random numbers per step or any adaptive refine-
ment. Authors Kahl and Jäckel [20] claim the IJK scheme is not superior in convergence
order to the log-Euler scheme, but they praise the fact that it excels over other equally
simple methods by showing a superior convergence behaviour that is faster by a mul-
tiplicative factor.

5.1.5 Haastrecht and Pelsser [34] revised

Haaserecht and Pelser commented on Kahl-Jäckel scheme implemented in the follow-
ing way. Conditional on time s a discretization of the log Stock price process S for t > s
(with δt := t− s) reads exactly

log(S(t)) =log(S(s)) + [r− v(s) + v(t)
4

]∆t + ρ
√

v(s)ZV
√

∆t+

+
1
2
(
√

v(s) +
√

v(t))(ZS + ρZV)
√

∆t +
ρξ∆t

2
(Z2

V − 1)

We left the original notation as well. This however does not match our implementa-
tion of the scheme. The Heston log price S comes from the formula by Kahl and Jäckel
[20], which is exactly

lnStn+1 =lnStn + µ∆tn −
1
4
(V2p

tn
+ V2p

tn+1
)∆tn + ρVp

tn
∆Zn+

1
2
(Vp

tn
+ Vp

tn+1
)(∆Wn − ρ∆Zn) +

1
2

ρpVp−1
tn

bn · (∆Z2
n − ∆tn).

For Heston model we have parameter p = 1
2 . Also note that ∆W = ZS

√
∆t and ∆Z

is ZV
√

∆t to match the notation a bit as well.
Clearly the sign in the term (ZS + ρZV) is wrong and should be (ZS − ρZV) instead.
What appears not to be a typo is the the mistake in the last term, where there is 1

2 in-
stead of 1

4 compared to our equation. bn is ξvp
n for Heston in the original article by

Kahl and Jäckel [20]. This implies b(s) = ξv(s)1/2, which cancels out with v(s)−1/2

and leaves ξ in the notation of Haastrecht and Pelsser. This is probably due to the fact
that the IJK scheme in Kahl-Jäckel [20] was not stated explicitly for Heston model. The
wrongly interpreted scheme published in [34] can be found in some other papers as
well.
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5.1.6 Exact scheme

In Broadie and Kaya [6] an exact simulation algorithm has been devised for the Heston
model. In numerical comparisons of their algorithm to an Euler discretisation with the
absorption fix, they find that for the pricing of European options in the Heston model
and variations thereof, the exact algorithm compares favourably in terms of root-mean-
squared (RMS) error. According to Broadie and Kaya [6] the volatility at time t, given
the values of vu and for u < t, can be written as

vt = vu + κθ(t− u)− κ
∫ t

u
vsds + σ

∫ t

u

√
vsdW(1)

s (5.13)

and similarly the stock price at time t, given the values of Su and vu for u < t, can
be written as

log(St) = log(Su) + r(t− u)− 1
2

∫ t

u
vsds + ρ

∫ t

u

√
vsdW(1)

s +
√

1− ρ2
∫ t

u

√
vsdW(2)

s ,

(5.14)
where W(1) and W(2) are uncorrelated Brownian motions. Substituting

∫ t
u
√

vsdW(1)
s

from (5.13) into (5.14) yields

log(St) = log(Su) + r(t− u) +
(κρ

σ
− 1

2

) ∫ t

u
vsds +

ρ

σ
(vt − vu − κθ(t− u))

+
√

1− ρ2
∫ t

u

√
vsdW(2)

s . (5.15)

The exact simulation method uses sampling exactly from the distribution of vt. This
can be done given vu for some u < t by using sampling from the noncentral chi-squared
distribution. The next step having vt and sample from vu is generating a sample from
the distribution of the integral

∫ t
u vsds.

This is done by inverting the characteristic function. Broadie and Kaya uses this ap-
proach to obtain the probability function of the random variable V(u, t), which has the
same distribution as the integral

∫ t
u vsds conditional on vu and vt. They use the trape-

zoidal rule to compute the probability distribution. The value of the integral is then
simulated by the inverse transform method. By first generating a uniform standard
normal variable U and then looking for the value of x for which the Pr{V(u, t) ≤ x} is
equal to U.

Knowing all the terms in (5.13) except for σ
∫ t

u
√

vsdW(1)
s , the value of σ

∫ t
u
√

vsdW(1)
s

can be easily obtained from (5.13). Furthermore they use the fact that vt is independent
of the Brownian motion W(t)(2) and therefore the distribution of

∫ t
u
√

vsdW(2)
s given the

path generated by vt is normal with mean 0 and variance
∫ t

u
√

vs. This scheme gives an
unbiased estimator of the derivative price.
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The algorithm is however very time-consuming, because of the application of the
numerical inversion of a cumulative distribution using the characteristic function in-
volving modified Bessel function of the first kind. Also we found out that with finer
discretization the modified Bessel function of the first kind takes too large values (in
particular - unrepresentable values). Therefore it is not recommended for the pricing of
options when requiring the value of the asset price on a larger number of time instants.
Nonetheless, (5.15) will be used in the next sections.

5.1.7 QE scheme

The Quadratic Exponential scheme, also known as QE was introduced by Andersen [2].
It exploits the fact that the value vn+1 conditional on value vn follows a non-central chi-
square distribution. It uses two different approximations to the non-central chi-square
distribution, depending on the values of the variance.

The non-centrality paramater of the distribution for vn+1 is proportional to vn and
for sufficiently large values of vn the scheme uses a power function applied to a stan-
dard normal variable Zv to approximate vn+1. Thus a critical level ψC ∈ [1, 2] is intro-
duced and compared to ψ, which is given by

ψ = s2/m2,

where given vn

s2 =
vnσ2e−κ∆n

κ
(1− e−κ∆) +

θσ2

2κ
(1− e−κ∆)2

and

m = θ + (vn − θ)e−κ∆n .

The algorithm uses Uv, which is a uniform random number.
1. If ψ ≤ ψC we set

vn+1 = a(b + Zv)
2,

where

a =
m

1 + b2 ,

b2 = 2ψ−1 − 1 +
√

2ψ−1
√

2ψ−1 − 1 ≥ 0

and

Zv = Φ−1(Uv).

2. If ψ > ψC we set
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vn+1 = Ψ−1(Uv; p, β),

where

Ψ−1(u) = Ψ−1(u; p, β) =

{
0 for 0 ≤ u ≤ p

β−1 log
( 1−p

1−u

)
for p < u ≤ 1

,

p =
ψ− 1
ψ + 1

,

and

β =
1− p

m
.

As stated above the value of ψC indicates which approximation to use. The first
approximation can be only used for ψ ≤ 2. For higher values of ψ, that correspond to
low values of vn, the scheme will fail. For ψ ≥ 1 the second one can be used. Therefore
ψC ∈ [1, 2]. Andersen in [2] states that the exact choice for ψC appears to have relatively
small effects on the quality of the overall simulation scheme and proposes ψC = 1.5.

This scheme can not be used with the Euler discretization of S(t), since it would
result in too feeble effective correlation and, consequently, paths of S with poor dis-
tribution tails. Instead Andersen used the exact scheme from Broadie and Kaya (5.15)
and tried to preserve the key driver of the correlation between Sn+1 and vn+1, which is
ρ
σ vn+1. Instead of sampling the integral

∫ t
u vsds he used an approximation∫ t

u
vsds ≈ ∆n[γ1vn + γ2vn+1],

where setting γ1 = 1, γ2 = 0 yields Euler like setting. For the last integral same
approach as in (5.14) is applied, thus∫ t

u

√
vsdW(2)

s ≈
√

γ1vn + γ2vn+1ZS
√

∆n,

where ZS is standard normal random variable. This leads to the following dis-
cretization scheme for S(t)

log(Sn+1) = log(Sn) + K0 + K1vn + K2vn+1 +
√

K3vn + K4vn+1 · ZS, (5.16)

where K0, ..., K4 are given by:

K0 = −ρκθ

σ
∆n, K1 = γ1∆n

(
κρ

σ
− 1

2

)
− ρ

σ
, K2 = γ2∆n

(
κρ

σ
− 1

2

)
+

ρ

σ
,

K3 = γ1∆n(1− ρ2), K4 = γ2∆n(1− ρ2).
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and γ1 = γ2 = 0.5 for a central discretization of the time integral of v in the exact
scheme.

Equation (5.16) is the exact proposal as can be found in Andersen [2]. However, we
will also include the drift, thus the resulting scheme we will use for S(t) reads

log(Sn+1) = log(Sn) + r∆n + K0 + K1vn + K2vn+1 +
√

K3vn + K4vn+1 · ZS. (5.17)

5.1.8 E+M scheme

We will also consider a combination of the exact scheme for the underlying asset pro-
cess with Milstein scheme for the volatility process. The motivation for this is the fact
that the frequency of negative values of the variance process decreases for the Milstein
scheme (5.11) compared to Euler as pointed out for example in Gatheral [11]. The mo-
tivation behind the use of the exact scheme by Broadie and Kaya (5.15) is that it can be
used for discretizations on a larger number of time instants when not trying to sample
the integral, but using an approximation instead.

Thus, we expect this scheme to perform better than Milstein and log-Euler scheme.
The question is whether it can outperform the QE scheme, because QE scheme ap-
proximates the non-central chi-square distribution and therefore does not suffer from
negative values for the variance process. However, the proposed scheme does not in-
clude switching between different approximations, which makes it easier to implement
and quite possibly faster compared to the QE scheme.

5.2 MC simulations

Most of the tests done in previous literature are quite easy to pass, they typically involve
at-the-money options and model parameters are not similar to what we we are about
to obtain in the Chapter 7. Thus we aim to test the schemes using parameters obtained
from real market and for range of Strikes, that is also similar to market range.

Table 5.1: Set of used parameters from March 19, 2013.

Parameter Value

v0 0.02497
kappa 1.22136
theta 0.06442
sigma 0.55993
rho -0.66255
S0 7962.31
r 0.00207
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We use the set of parameters listed in Table 5.1. The model implied parameters were
obtained by Genetic algorithm and then refined using nonlinear least-squares method.
Using the model with this set of parameters we were able to obtain prices with mean
absolute relative error of 0.65% and maximum absolute relative error of 2.22%. For
details, see Chapter 7.

However, as we stated above the choice of the parameters can cause problems. The
following Figure 5.1 shows the mean path of the underlying asset for the examined
schemes. We used ∆ = 2−6 and T = 1. Number of simulations was nPaths=100 000.
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Figure 5.1: Mean of 100000 paths using parameters from Table 5.1, ∆ = 2−6 and T = 1.

It is clear in Figure 5.1 that the paths simulated by IJK scheme differ significantly.
This behaviour is invariable over changing number of simulation and the step size ∆
and results in great errors when trying to price the options using Monte-Carlo method.
IJK scheme clearly does not work for this set of parameters and thus we will consider
it as a competing scheme. Nonetheless the results for IJK scheme will be presented for
illustration.

It is arguable whether the IJK scheme is of any practical use, since even with so
to speak friendlier set of parameters the IJK scheme seems to be outperformed by the
other schemes presented here.
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5.3 MC test

We designed the following test for measuring performance of pricing the options using
the previous schemes.

We have four maturities at times T=0.25, 0.5, 0.75 and 1. We will be pricing 28
options for each maturity with strikes

[
7100, 7200, ..., 7500, 7550, 7600, ..., 8350, 8400, 8500, ..., 9000

]
We can compute the price of the options at time 0 denoted as C(0) with the param-

eters from Table 5.1 using the pricing formula from the previous chapter for all values
of K and for each maturity. Resulting in 4*28=112 option prices.

Similarly we can use the Monte-Carlo method and compute the approximate value
Ĉ(0) by computing the expectation

Ĉ(0) = e−rTE[(Ŝ(T)− K)+], (5.18)

where we will be using the introduced schemes to approximate the value of S(T)
by Ŝ(T) . In particular, for each scheme for Ŝ(T) we will draw nPaths independent
samples of Ŝ(1)(T), Ŝ(2)(T),...Ŝ(nPaths)(T), where nPaths=100 000, 250 000 and 500 000
using time grid with step ∆ = 2−6, ..., 2−11. Thus Ĉ(0) will be estimated as

Ĉ(0) ≈ e−rT 1
nPaths

nPaths

∑
i=1

(Ĉ(i)(T)− K)+. (5.19)

This will lead to error

e = C(0)− Ĉ(0). (5.20)

We will be measuring errors for different steps ∆ and also number of simulations
used in terms of mean absolute relative error, thus

ε̂ j =
1
N

N

∑
n=1

|C(0)− Ĉ(0)|
C(0)

, (5.21)

where N is the number of options, in our case N = 112. However ε̂ j will be a
random variable taking different value in different batch j = 1, .., M. We will estimate
the variance σ2

ε of ε̂ by arranging the nPaths simulations into M batches and use it to
construct a confidence interval for the absolute error ε. In particular we will estimate
the mean of the batch averages

ε̂ =
1
M

M

∑
j=1

ε j (5.22)
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and then use formula

σ̂2
ε =

1
M− 1

M

∑
j=1

(ε̂ j − ε̂)2 (5.23)

to estimate the variance σ2
ε . For the Student t-distribution with M − 1 degrees of

freedom an 100(1− α)% confidence interval for ε has the form

(ε̂− ∆ε̂, ε̂ + ∆ε̂), (5.24)

where

∆ε̂ = t1−α,M−1

√
σ̂2

ε

M
(5.25)

with t1−α,M−1 is determined from the Student t-distribution with M− 1 degrees of
freedom.

5.4 MC test results

This section presents the results. Figures 5.2 - 5.4 correspond to Tables 5.2 - 5.4. They
differ in the number of simulated paths. As we can see the mean absolute relative
errors decrease with higher number of simulated paths. The behaviour of the particular
schemes is consistent through all the three values. Results show that the QE scheme is
the best choice for cases where we do not need small step size ∆. We did not include
the results for ∆ smaller than 2−8 since the scheme was not improving and it also took
too long to simulate the paths this way.

This is a factor which we mentioned earlier and indeed the E+M scheme was bet-
ter in terms of speed, but as we can see from the pictures it needed four times finer
discretization to reach the level of mean absolute relative error of the QE scheme.

Table 5.2: Results for ∆ = 2−4 − 2−11, for 100 000 simulated paths, number of batches
M = 100. IJK scheme is included.

logEuler Milstein QE+drift E+M IJK
∆ ε̂ ε̂∆ ε̂ ε̂∆ ε̂ ε̂∆ ε̂ ε̂∆ ε̂ ε̂∆

2−4 3.730% 0.069% 2.466% 0.024% 0.440% 0.041% 0.728% 0.050% 27.981% 0.112%
2−5 1.477% 0.070% 1.308% 0.027% 0.395% 0.033% 0.566% 0.055% 28.209% 0.103%
2−6 0.682% 0.055% 0.770% 0.031% 0.412% 0.042% 0.417% 0.035% 28.259% 0.109%
2−7 0.472% 0.051% 0.528% 0.038% 0.394% 0.033% 0.407% 0.039% 28.191% 0.113%
2−8 0.448% 0.044% 0.450% 0.038% 0.423% 0.038% 0.400% 0.035% 28.297% 0.117%
2−9 0.390% 0.035% 0.417% 0.031% - - 0.398% 0.035% 28.412% 0.096%
2−10 0.414% 0.037% 0.424% 0.039% - - 0.421% 0.042% 28.368% 0.109%
2−11 0.403% 0.034% 0.422% 0.033% - - 0.420% 0.041% 28.289% 0.109%
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Figure 5.2: Results for ∆ = 2−4 − 2−11, for 100 000 simulated paths, number of batches
M = 100.

Nevertheless the combination of the exact approach provided with the variance pro-
cess discretized using Milstein scheme performed significantly better than the log-Euler
scheme and plain Milstein scheme without much of an additional code needed. And
this scheme can be used when greater precision is required for larger number of times
steps.

We also included the results of IJK scheme although it proved to be not useful for
this set of parameters. We can see this also in Table 5.2. The errors are high and do not
depend on the time step ∆. The following Figure 5.3 corresponds to Table 5.3. This time
250 000 paths were simulated.

The errors are dropping with rising number of simulations and the average abso-
lute relative error for the QE scheme across the range of 28 Strikes for four maturities
is 0.203% with ±0.015% 95% confidence interval when simulating 500 000 paths and
taking ∆ = 2−4, which can be observed in the last Figure 5.4. For the full results see
Table 5.4 on the next page.
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Table 5.3: Results for ∆ = 2−4 − 2−11, for 250 000 simulated paths, number of batches
M = 100. IJK scheme is included.

logEuler Milstein QE+drift E+M IJK
∆ ε̂ ε̂∆ ε̂ ε̂∆ ε̂ ε̂∆ ε̂ ε̂∆ ε̂ ε̂∆

2−4 3.777% 0.051% 2.471% 0.016% 0.245% 0.020% 0.733% 0.041% 27.992% 0.071%
2−5 1.388% 0.044% 1.262% 0.017% 0.261% 0.025% 0.419% 0.033% 28.140% 0.071%
2−6 0.579% 0.034% 0.702% 0.017% 0.261% 0.022% 0.277% 0.026% 28.246% 0.060%
2−7 0.307% 0.024% 0.429% 0.021% 0.273% 0.024% 0.273% 0.022% 28.261% 0.072%
2−8 0.282% 0.024% 0.307% 0.022% 0.270% 0.028% 0.256% 0.020% 28.249% 0.072%
2−9 0.269% 0.025% 0.267% 0.021% - - 0.261% 0.026% 28.357% 0.062%
2−10 0.237% 0.021% 0.258% 0.022% - - 0.263% 0.023% 28.296% 0.060%
2−11 0.248% 0.021% 0.242% 0.021% - - 0.271% 0.028% 28.386% 0.074%
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Figure 5.3: Results for ∆ = 2−4 − 2−11, for 250 000 simulated paths, number of batches
M = 100.
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Table 5.4: Results for ∆ = 2−4 − 2−11, for 500 000 simulated paths, number of batches
M = 100. IJK scheme is included.

logEuler Milstein QE+drift E+M IJK
∆ ε̂ ε̂∆ ε̂ ε̂∆ ε̂ ε̂∆ ε̂ ε̂∆ ε̂ ε̂∆

2−4 3.746% 0.036% 2.456% 0.010% 0.203% 0.015% 0.638% 0.026% 27.941% 0.051%
2−5 1.396% 0.032% 1.255% 0.012% 0.166% 0.014% 0.361% 0.025% 28.103% 0.053%
2−6 0.559% 0.025% 0.655% 0.011% 0.184% 0.014% 0.243% 0.022% 28.236% 0.051%
2−7 0.286% 0.020% 0.376% 0.015% 0.188% 0.017% 0.195% 0.019% 28.291% 0.048%
2−8 0.219% 0.017% 0.260% 0.018% 0.179% 0.020% 0.183% 0.014% 28.312% 0.046%
2−9 0.187% 0.020% 0.212% 0.016% - - 0.188% 0.017% 28.354% 0.044%
2−10 0.202% 0.019% 0.210% 0.018% - - 0.180% 0.018% 28.374% 0.043%
2−11 0.181% 0.015% 0.193% 0.015% - - 0.191% 0.018% 28.370% 0.047%
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Figure 5.4: Results for ∆ = 2−4 − 2−11, for 500 000 simulated paths, number of batches
M = 100.
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Chapter 6

Calibration

Market prices are used to calibrate an option pricing model, which can then be used to
compute prices of more complex (exotic) options or compute hedge ratios.

Determining the model parameters to match the market prices of a set of options is
what is commonly referred to as "model calibration" problem, it is in fact the inverse
problem to the option pricing problem.

The price to pay for more realistic model such as the Heston model is the increased
complexity of model calibration. As pointed out by Jacquier and Jarrow [18], the esti-
mation method becomes as crucial as the model itself.

In order to compute option prices using the Heston model, we need input param-
eters that are not observable from the market data, therefore we can not use empirical
estimates. Bakshi et al. [4] documented that the implied structural parameters differ
significantly from their time-series estimated counterparts. For instance, the magni-
tudes of time-series correlation coefficient of the asset return and its volatility estimated
from the daily prices were much lower than their option-implied counterparts.

One of the difficulties in solving the calibration problem is that the information
observed from market data is insufficient to exactly identify the parameters. Several
sets of parameters may perform well and produce model prices that are consistent with
the prices prices observed on the market. This causes the ill-posedness of the problem.

In practice it is not possible nor meaningful to match exactly the observed prices.
Therefore the problem of calibrating the model is formulated as an optimization prob-
lem. Our aim is to minimize the pricing error between the model prices and the market
prices for a set of traded options. A common approach to measure this error is to use
the squared difference between market and model prices, this approach leads to the
nonlinear least square method

inf
Θ

G(Θ), G(Θ) =
N

∑
i=1

wi|CΘ
i (t, St, Ti, Ki)− C∗i (Ti, Ki)|2, (6.1)

where wi is a weight, C∗i (Ti, Ki) is the market price of the call option observed at
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time t. CΘ denotes the model price computed using vector of model parameters

Θ = (κ, θ, σ, v0, ρ).

Thinking of G as an objective function of Θ, the optimization problem (6.1) is not an
easy one. Function G is not convex and is not of any particular structure. Moreover it
may have more than one global minimum and even if it had not, it is not clear whether
the unique minimum can be reached by gradient based algorithm.

Local deterministic algorithms can be used, but there is always the possibility to end
up in a local minimum, one has to choose an initial guess, which is "good enough". Due
to high sensitivity to initial parameters various stochastic algorithms are suggested.
Nevertheless, for example Mikhailov and Nögel [29] use built in Excel solver, which is
a local optimizer using Generalized Reduced Gradient method.

Another method used to calibrate the model is regularisation. This method adds to
the objective function (6.1) penalization function, e.g. f (Θ) such that

inf G(Θ) + α f (Θ), (6.2)

is convex, hence gradient based optimizing procedure can be used. This yields
another parameter to be estimated α, which is called regularisation parameter. For
further details, see Cont and Hamida [7].

6.1 Calibration in progress

We will first test various optimizers on a set of generated prices. That means we will
actually know the optimal set of parameters that fully explain the synthetic market
prices. Then we proceed to use these optimizers on a real data observed on market.

6.1.1 Data generated

We generated 97 option prices using the following set of parameters.

Table 6.1: Set of used parameters

v0 0.034
kappa 2.210
theta 0.073
sigma 0.568

rho -0.952
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The choice of parameters was not random, but it was chosen to be close to parame-
ters, that explained prices of ODAX, options on DAX1. The initial stock price was set to
7260.33 and interest rate was 0.0022. We computed prices for 6 Maturities T with strike
prices K varying from 13 to 19 for each maturity. By doing so we strived for imitation
of the situation when obtaining the real market data available.

6.1.2 Measured errors

We measured the following errors:

1.MAAE (Maximum Absolute Relative Error)

MARE(Θ) = max
i

|CΘ
i − C∗i |

C∗i
; i = 1, ..., N.

2.AARE (Average Absolute Relative Error)

AARE(Θ) =
1
N

N

∑
i=1

|CΘ
i − C∗i |

C∗i
.

3.RMSE (Root-mean-square Error)

RMSE(Θ) =
1√
N

√√√√ N

∑
i=1

(CΘ
i − C∗i )

2 .

In our case N = 97.

6.1.3 Considered weights

As defined in the beginning of this chapter wi stands for particular weight. In practice
the weights are put where the most liquid quotes are on the market. This is usually
around ATM. With our market data we will use the bid ask spreads. Hence

Spread = Ask− Bid.

We aim to have the model prices as close to the Mid price defined in (3.3) as possible.
Thus we will put weight on the small spreads. According to U. Nögel everybody does
his own fine tuning on that, depending on the market and the products. We decided not

1DAX (Deutscher Aktien IndeX = German stock index), 30 major German companies trading on the
Frankfurt Stock Exchange
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to pick up just one choice for the weight function, but rather test more of these choices
and see if there is a significant influence on the results caused by the particular choice
of the weight function.

For one particular option we denoted the weights by capital letters A,B,C, where

weight A denotes
1

|Spread| ,

weight B denotes
1

(Spread)2

and weight C denotes
1√

Spread
.

The bigger the spread the less weight is put on the particular difference between the
model price and the market price during the calibration process.

6.2 Genetic algorithm

Genetic algorithm is part of MATLAB’s Global Optimization Toolbox, hence it is ideal
tool for looking for global minima of our nonlinear problem:

A genetic algorithm is a method for solving both constrained and unconstrained optimiza-
tion problems based on a natural selection process that mimics biological evolution. The al-
gorithm repeatedly modifies a population of individual solutions. At each step, the genetic al-
gorithm randomly selects individuals from the current population and uses them as parents
to produce the children for the next generation. Over successive generations, the population
"evolves" toward an optimal solution.2

Genetic algorithm is easy to implement, see the following code, and also improves
chances of finding a global solution for functions that are not differentiable nor contin-
uous.

options = gaoptimset('Generations',500,'PopulationSize',60,'TolFun',1e-12);
[calib,fval] = ga(@error_f,5,[],[],[],[],l_bounds,u_bounds,[],options)

Variables l_bounds and u_bounds store the bounds for the set of optimal param-
eters we are looking for, thus they remain unchanged for all the used optimizers.

2Sourcing MATLAB Documentation.
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Table 6.2 below shows the parameters we were able to retrieve using Genetic algo-
rithm with different weights wi.

Table 6.2: Set of retrieved parameters using different weights.

Used Weights
A B C

v0 0.03399 0.03537 0.03610
kappa 0.79087 0.39258 0.17567
theta 0.11581 0.18695 0.28482
sigma 0.47311 0.49517 0.36132
rho -0.84858 -0.82075 -0.91083

Next page contains graphical depiction of the absolute relative errors for each strike
and maturity with different weights. This can be seen in the left column of Figure 6.1.
The column on the right shows mean absolute relative errors in terms of moneyness for
the particular choice of weights.

We know the parameters that generated this set of prices. These were presented in
Table 6.1. Genetic algorithm did not provide us with the set that would be very close
to them. But looking at the right column we can see that the absolute relative error for
options at the money is still under 1%. The greatest errors are for the out of the money
options with shorter maturities. This fact can be observed in pictures (a), (c) and (d) in
Figure 6.1.
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Figure 6.1: Results for Genetic algorithm. Left column portrays the absolute relative
errors, average absolute relative errors in terms of moneyness are shown on the right.
Each row corresponds to a particular choice of weights. First row shows errors when
using weights A, the rows are then sorted in the alphabetical order.



6.3 modSQP

The most popular Newton method based algorithm for non-linear constrained opti-
mization problems is the sequential quadratic programming (SQP) method as sug-
gested by Kienitz and Wetterau in [22]. The algorithm was tested on a simple cali-
bration example in the book [22]. We implemented it to test it on the data closer to the
real market ones.

x0 = [0.2 0.5 0.5 1 -0.5]'; % initial guess
maxeval = 20*length(x0);
tol = 1e-12;
[xMin,fMin,perfSQP] = modSQP(@error_f,x0,[],l_bounds,u_bounds,[],maxeval,tol)

Below we can see the parameters we were able to obtain starting from initial point
x0=[0.2 0.5 0.5 1 -0.5]. However only the result for weights A are included,
since the algorithm did not converge to solution for weights B and C.

Table 6.3: Set of retrieved parameters using weights A.

v0 0.035187
kappa 0.061271
theta 0.726061
sigma 0.328934

rho -0.996691

The results given in Figure 6.2 are comparable to the ones obtained by the Genetic
algorithm, although modSQP is a local optimizer. We can also observe greater absolute
relative errors for out of the money options with short maturities.

6950
7200

7450
7700

0

0.37

0.89

1.14 0%

 5%

10%

15%

20%

Maturities

Strikes

E
rr

o
r

(a)

<0.94 0.94−0.97 0.97−1.00 1.00−1.03 1.03−1.06 >1.06
  0%

0.5%

  1%

1.5%

  2%

2.5%

  3%

3.5%

  4%

Moneyness

E
rr

or

(b)

Figure 6.2: Results for SQP. (a) the absolute relative errors, (b) the average absolute
relative errors in terms of moneyness.

49



6.4 Excel’s Solver

We used the Solver built in Microsoft Excel 2003, which according to the official site is
using Generalized Reduced Gradient Algorithm. This can be done by using the Spread-
sheet Link™ EX. It allows us to execute any MATLAB function directly from MS Excel
and thus optimize our cost function with the parameters from MS Excel sheet using the
Solver. We did try to use newer versions of MS Excel and their built in solvers, but they
did not give a better performance.

The following Table 6.4 shows the retrieved set of parameters. Again they are not
close to the set which generated our prices, but we were quite impressed by the perfor-
mance of the Solver. We strived for same conditions as this is another local optimizer
so we started with initial guess same as for modSQP, hence

x0=[0.2 0.5 0.5 1 -0.5].

Table 6.4: Set of retrieved parameters using different weights.

Used Weights
A B C

v0 0.04416 0.03530 0.03654
kappa 0.37454 0.61008 0.88055
theta 0.25995 0.13617 0.10582
sigma 1.06295 0.50483 0.54082
rho -0.48373 -0.84125 -0.76837

The result using weights A was not great, see first row of Figure 6.3. Also notice sig-
nificantly higher value of v0 in Table 6.4. However, using weights B and C we were able
to obtain comparable results to Genetic algorithm, see the pictures (c) and (e) in Figure
6.3 for the absolute relative errors using different weights presented in the graphical
form. The absolute relative errors in terms of moneyness are portrayed in pictures (d)
and (f).
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Figure 6.3: Results for Excel’s Solver. Left column portrays the absolute relative errors,
average absolute relative errors in terms of moneyness are shown on the right. Each
row corresponds to a particular choice of weights. First row shows errors when using
weights A, the rows are then sorted in the alphabetical order.



6.5 Adaptive Simulated Annealing

We used ASA 28.14 package3. The ASA code was first developed in 1987 as Very Fast
Simulated Reannealing (VFSR) to deal with the necessity of performing adaptive global
optimization on multivariate nonlinear stochastic systems.

Beginning in January 1993, many adaptive features were developed, largely in re-
sponse to users’ requests, leading to this ASA code. After installing we can use ASA
program in order to optimize a cost function coded in MATLAB language.

x0 = [0.2 0.5 0.5 1 -0.5]
xt=-1 * ones(5,1);
[fval,calib]=asamin('minimize','error_f',x0,l_bounds,u_bounds,xt)

The vector xt indicates the desired form of the output argument. If xt is equal to
-1, it means the result is a real. The following Table 6.5 shows the retrieved parameters
using ASA algorithm.

Table 6.5: Set of retrieved parameters using different weights.

Used Weights
A B C

v0 0.04218 0.04510 0.053049
kappa 3.45525 0.85780 1.00718
theta 0.08428 0.15793 0.16211
sigma 2.16748 1.15227 1.67937
rho -0.20591 -0.65788 -0.52136

Surprisingly, the results for parameters obtained using ASA algorithm were quite
poor. We immediately recognize in Table 6.5 rather high parameters sigma accompa-
nied by the lowest values of rho so far. The absolute relative errors for individual strikes
and maturities as well as the absolute relative errors in terms of moneyness are depicted
in Figure 6.4 on the next page.

3Package is available at http://ingber.com.
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Figure 6.4: Results for ASA. Left column portrays the absolute relative errors, average
absolute relative errors in terms of moneyness are shown on the right. Each row corre-
sponds to a particular choice of weights. First row shows errors when using weights A,
the rows are then sorted in the alphabetical order.



6.6 MATLAB’s lsqnonlin

MATLAB’s function lsqnonlin is an intuitive choice for our problem since it solves
nonlinear least-squares problems, including nonlinear data-fitting problems. Never-
theless, as we are about to see it is extremely sensitive to initial guess.

To overcome this we used a deterministic grid to divide the state space of parame-
ters in order to generate a set of initial points for this function. As a result, only around
6.5% of initial points were close enough to converge to set of parameters, which pro-
duced mean absolute relative error of less than 1%. This shows how important is the
choice of the initial point when using lsqnonlin. Nonetheless, we were able to re-
trieve the original set of parameter using this deterministic grid method. The parame-
ters are presented in the following Table 6.6.

Table 6.6: Closest set of retrieved parameters

v0 0.03400
kappa 2.21004
theta 0.07300
sigma 0.56800

rho -0.95199

To illustrate the extreme sensitivity some more, we will also include the results
when using the initial guess x0=[0.2 0.5 0.5 1 -0.5]. We obtained the parame-
ters presented in Table 6.7.

x0=[0.2 0.5 0.5 1 -0.5];
options=optimset('MaxFunEvals',20000,'TolFun',1e-12,'TolX',1e-12);
[calib]=lsqnonlin(@error_f,x0,l_bounds,u_bounds,options);

Table 6.7: Set of retrieved parameters using different weights.

Used Weights
A B C

v0 0.08957 0.10251 0.09199
kappa 0.35932 0.35858 0.35601
theta 0.35569 0.35493 0.35197
sigma 1.96603 2.18412 1.93802
rho -0.64682 -0.69506 -0.63865

The next page portrays the absolute relative errors and mean absolute relative errors
in terms of moneyness. Figure 6.5 gives the big picture of what we mentioned earlier,
thus high sensitivity to the initial guess.
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Figure 6.5: Results for lsqnonlin. Left column portrays the absolute relative errors,
average absolute relative errors in terms of moneyness are shown on the right. Each
row corresponds to a particular choice of weights. First row shows errors when using
weights A, the rows are then sorted in the alphabetical order.



6.7 SA

We also considered MATLAB’s Simulated annealing (SA) method for solving uncon-
strained and bound-constrained optimization problems, which is part of Global Opti-
mization Toolbox. However, we decided not to include the results, since they were also
very sensitive to the initial guess and in comparison with lsqnonlin the SA method was
too time consuming.

6.8 Conclusion

The results are presented in the following Table 6.8. We generated this set of prices,
therefore we not only knew that there was an optimal set of paramaters but we also
knew the actual values of the parameters. We used this artificial data to test the selected
optimizers. We compared two global optimizers - MATLAB’s Genetic algorithm (GA)
and Adaptive Simulated Annealing (ASA).

Looking at the results, its safe to say that GA provided better results on this set of
data, although chosen weights played an important role. Excel’s Solver performed very
well bearing in mind it is a local optimizer and it is very sensitive to the initial guess.
modSQP was rather unstable and was able to converge to a possible local minimum
using only weights A. Although it worked on a school example in Kienitz and Wetterau
[22], when applied to our set of data it failed to deliver the results for weights B and C.

MATLAB’s lsqnonlin also suffers from sensitivity to initial point, but generating
number of initial points within the state space of possible parameters we were able to
get close enough and retrieve the original parameters. Briefly mentioned SA did not
tackle the problem in a way which could be of any use to us.
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Chapter 7

Calibration to real market

In this chapter we will calibrate Heston model to data obtained from real market. We
used Bloomberg’s Option Monitor to obtain data for two consecutive days for ODAX
call options. The following Table 7.1 sums up the data we will use to calibrate the
Heston model.

Table 7.1: Real market data

Day Maturities Strikes S0 r

March 18, 2013 5 97 7953.70 0.206%
March 19, 2013 6 107 7962.31 0.207%

As a risk free interest rate r we used the corresponding 3 month EURIBOR rate1,
these are widely available. S0 is the current DAX value at the time of obtaining the
data.

7.1 March 18, 2013

In this section we present the results of calibration of the Heston model to the first set
of data from March 18, 2013. We were using GA and ASA as global optimizers and MS
Excel’s Solver and MATLAB’s lsqnonlin as local optimizers.

7.1.1 GA

The following Table 7.2 shows the result of the calibration using Genetic algorithm
(GA) with different weights. We were able to obtain a negative correlation rho between
the underlying asset and volatility. Using weights A and B resulted in similar set of

1The Euribor rates are based on the average interest rates at which European banks borrow funds from
one another.
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parameters which naturally implies similar absolute relative errors, see pictures (a) -
(d) in Figure 7.1.

Table 7.2: Set of retrieved parameters using different weights.

Used Weights
A B C

v0 0.03226 0.03193 0.03035
kappa 0.07065 0.07747 0.55662
theta 0.73827 0.73826 0.11191
sigma 0.81988 0.85729 0.71420
rho -0.52083 -0.55003 -0.55050

The best result in terms of absolute relative errors was obtained by using weights
C. We can still observe higher absolute relative errors in Figure 7.1, picture (e) for out
of the money options, especially those maturing on June 21, 2013. Represented by the
first row, not to be confused with June 20, 2014. But higher parameter kappa and lower
long mean average resulted in lowest average absolute relative error, this can be partly
observed in terms of moneyness in picture (f) and fully in Table 7.9 which provides the
comprehensive results at the end of this section.
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Figure 7.1: Results for Genetic algorithm. Left column portrays the absolute relative
errors, average absolute relative errors in terms of moneyness are shown on the right.
Each row corresponds to a particular choice of weights. First row shows errors when
using weights A, the rows are then sorted in the alphabetical order.



7.1.2 ASA

Table 7.3 shows the result of the calibration using Adaptive Simulated Annealing (ASA)
with different weights.

We can observe three quite different sets of parameters. All three contain negative
correlation parameter rho for the underlying asset and volatility, but other than that the
parameters quite vary.

This produces three different portraits of absolute relative errors. Using weights A
we were able to calibrate the model with average absolute relative error similar to the
one using GA with weights C, see Table 7.9. This error is also accompanied by higher
absolute relative errors for out of the money options with short maturity, this can be
seen in figure 7.2, picture (a).

Using weights B produced very low absolute relative errors. Only deep out of
money options suffered higher than 0.8% average absolute relative error. This is the
best result obtained so far and absolute relative errors can be seen in Figure 7.2 pictures
(c) and (d).

When using weights C we obtained rather high initial volatility v0 together with
high volatility sigma. As can be seen in pictures (e) and (f) in Figure 7.2 this is not the
set of parameters that explains the market values of options very well. The maximum
absolute relative error reaches 33.54%.

Table 7.3: Set of retrieved parameters using different weights.

Used Weights
A B C

v0 0.03219 0.02845 0.04111
kappa 1.12162 1.26339 0.80249
theta 0.08278 0.06718 0.13210
sigma 0.96401 0.67255 1.55269
rho -0.54227 -0.62816 -0.47895
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Figure 7.2: Results for ASA. Left column portrays the absolute relative errors, average
absolute relative errors in terms of moneyness are shown on the right. Each row corre-
sponds to a particular choice of weights. First row shows errors when using weights A,
the rows are then sorted in the alphabetical order.



7.1.3 Deterministic grid for lsqnonlin

We showed in the previous chapter, that lsqnonlin is extremely sensitive to the pro-
vided initial value. To overcome this we divided the state space of possible parameters’
values again in order to obtain a set of initial values. We used these as initial values
and this method gave us the best results in terms of absolute relative errors, also the
maximum relative error was in line with the rest of the errors, we do not observe high
values for the out of the money options with short maturities in Figure 7.3, picture (a).

We used weights B, which according to further results appears to be the best choice
for lsqnonlin.

Table 7.4 shows the set of parameters and we can see the lowest value of initial
volatility v0 and volatility of volatility so far. Also the negative correlation is the highest
one so far. This results in maximum absolute relative error under 2.5%.

However this method is not quite elegant. We will try another approach in the next
section and see if we can match the magnitude of the errors for the paramaters obtained
in this section.

v0 0.02741
kappa 1.18184
theta 0.06586
sigma 0.57479

rho -0.66686

Table 7.4: Set of retrieved parameters using weights B.
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Figure 7.3: Results for lsqnonlin. (a) absolute relative errors, (b) the average absolute
relative errors in terms of moneyness.
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7.1.4 Excel’s Solver

We did observe quite high absolute relative errors for out of the money options with
short maturities even for the best results when using global optimizers ASA and GA.
In order to eliminate these errors, we tried a different approach and the results will be
presented in this section.

At first we employed MS Excel’s Solver and provided it with the initial guesses from
the global optimizers (GA, ASA) and the results were as follows. We denoted the initial
point obtained by GA by x∗

x∗ = [0.03035 0.55662 0.11191 0.71420 − 0.55050]

and x∗∗

x∗∗ = [0.02845 1.26339 0.06718 0.67255 − 0.62816],

which is the initial point obtained by ASA. Table 7.5 shows obtained parameters for
the model using initial point x∗. We can see that except for when using weights C for
x∗ Excel was able to refine the values of parameters.

Table 7.5: Set of retrieved parameters using different weights starting from initial point
x∗. Initial point x∗ is included for comparison.

x∗
Used Weights

A B C

v0 0.03035 0.02746 0.02683 0.03035
kappa 0.55662 1.12422 0.66747 0.55663
theta 0.11191 0.06762 0.08426 0.11192
sigma 0.71420 0.57479 0.46984 0.71417
rho -0.55050 -0.66342 -0.67899 -0.55050

For the choice of weights B we were able to match the best result in terms of average
absolute relative error, this can be partly observed in Figure 7.4 (c) and (d), also we were
able to obtain maximum absolute relative error under 3%.
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Figure 7.4: Results for Excel’s Solver. Left column portrays the absolute relative errors,
average absolute relative errors in terms of moneyness are shown on the right. Each
row corresponds to a particular choice of weights. First row shows errors when using
weights A, the rows are then sorted in the alphabetical order. The initial point was x∗.



In the following Table 7.6 we can see the parameters obtained when starting MS
Excel’s Solver from x∗∗. Although the average absolute error was already at the low
value of 0.58%, we were able to refine the parameters using MS Excel’s Solver.

The lowest average absolute error was obtained using weights A, this can be seen
partly in Figure 7.5. Also the maximum absolute relative error is lowered to 3.53%.
Similar results were obtained using weights C, see figure 7.6 (c) and (d) . Using weights
B, Excel’s Solver did not refine the parameters significantly.

Table 7.6: Set of retrieved parameters using different weights starting from initial point
x∗∗. Initial point x∗∗ is included for comparison.

x∗∗
Used Weights

A B C

v0 0.02845 0.02745 0.02843 0.02729
kappa 1.26339 1.09385 1.26363 1.06117
theta 0.06718 0.06818 0.06716 0.06852
sigma 0.67255 0.57187 0.67246 0.55391
rho -0.62816 -0.64966 -0.62834 -0.65495
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Figure 7.5: Results for Excel’s Solver. The absolute relative errors in (a), average ab-
solute relative errors in terms of moneyness are shown on the right in (b). Errors were
obtained using weights A and the initial point was x∗∗.
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Figure 7.6: Results for Excel’s Solver. Left column portrays the absolute relative errors,
average absolute relative errors in terms of moneyness are shown on the right. Each
row corresponds to a particular choice of weights. First row shows errors when using
weights B, the second row is for weights C. The initial point was x∗∗.
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7.1.5 lsqnonlin

We applied the same approach for lsqnonlin as previously for MS Excel’s Solver, thus
starting from initial points x∗ and x∗∗. lsqnonlin was able to refine the parameters
using all the weights and starting from both x∗ and x∗∗.

Using weights B and starting from the initial point provided by GA we were able to
calibrate the model with average absolute relative error of 0.52%, also we obtained the
lowest maximum absolute error of 2.33%, see Figure 7.7 (c) and (d).

Table 7.7: Set of retrieved parameters using different weights starting from initial point
x∗. Initial point x∗ is included for comparison.

x∗
Used Weights

A B C

v0 0.03035 0.02747 0.02760 0.02732
kappa 0.55662 1.09567 1.20011 0.97657
theta 0.11191 0.06829 0.06601 0.07120
sigma 0.71420 0.57399 0.59282 0.54564
rho -0.55050 -0.65043 -0.65886 -0.65127

The best result when starting from x∗∗ was also obtained when using weights B
and that was in terms of both maximum absolute relative error and average absolute
relative error. This can be seen in Figure 7.8 (c) and (d). Nevertheless it is not better
than what we were able to obtain when using initial guess from GA.

Table 7.8: Set of retrieved parameters using different weights starting from initial point
x∗∗. Initial point x∗∗ is included for comparison.

x∗∗
Used Weights

A B C

v0 0.02845 0.02750 0.02786 0.02730
kappa 1.26339 1.11668 1.24433 0.97637
theta 0.06718 0.06781 0.06596 0.07113
sigma 0.67255 0.57870 0.62264 0.54339
rho -0.62816 -0.64958 -0.64732 -0.65279
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Figure 7.7: Results for lsqnonlin. Left column portrays the absolute relative errors,
average absolute relative errors in terms of moneyness are shown on the right. Each
row corresponds to a particular choice of weights. First row shows errors when using
weights A, the rows are then sorted in the alphabetical order. The initial point was x∗.
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Figure 7.8: Results for lsqnonlin. Left column portrays the absolute relative errors,
average absolute relative errors in terms of moneyness are shown on the right. Each
row corresponds to a particular choice of weights. First row shows errors when using
weights A, the rows are then sorted in the alphabetical order. The initial point was x∗∗.



7.1.6 Conclusion

The following Table 7.9 sums up the results. This time we compared the global opti-
mizers ASA and GA on the real set of data, thus there probably is not a set of param-
eters which would fully explain the market prices. However, using the lsqnonlin
and starting from predetermined number of initial points we were able to calibrate the
model with average absolute relative error (AARE) 0.51% and maximum absolute rela-
tive error (MARE) of 2.44%. The illustrations are given in Figure 7.3.

As mentioned before this is not quite a way to calibrate the model since it is very
time consuming. But we can consider it as a some sort of benchmark value.

Using the global optimizers and then employing MS Excel’s Solver we were able
to obtain set of parameters resulting in a similar magnitude of errors. For example in
terms of average absolute relative error, we managed to calibrate the model using an
initial point provided by GA with error of 0.51%, whereas the maximum relative error
was 2.79%. The mean average relative error was of the same value as for lsqnonlin
using deterministic grid for the initial points.

The lowest maximum absolute relative error was obtained when using lsqnonlin
with initial point provided again by GA and it was 2.33% with average absolute relative
error of 0.52%.

We can say that best initial point for local optimization was provided by GA algo-
rithm, which is part of MATLAB’s Global Optimization Toolbox and requires no addi-
tional installation as opposed to ASA.

The choice of weights plays an important role though. We are not able to distin-
guish, which weight is the most suitable one at this time. Since for example using
weights C with Excel did not work for an initial point provided by GA. But considering
an initial point provided by ASA, the solver provided us with the best result as far as
the maximum absolute relative error is concerned.

It is very likely based on the results in Table 7.9 that weights B suit lsqnonlin the
best in terms of both average absolute relative error and maximum absolute relative
error.
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7.2 March 19, 2013

We did find out in the previous section that the global optimizers GA and ASA are com-
parable, although it seemed that GA provided us with a better starting point for local
optimizers. MS Excel’s Solver was competing very well against MATLAB’s lsqnonlin.
We will repeat what we did in the previous section on the data obtained on March 19,
2013. This time we will have 10 more data available with one more maturity.

7.2.1 GA

Table 7.10 shows the results using different weights and GA optimizer. This time we
did not obtain similar set of parameters as we did on the previous day. The best result
appears to be obtained using weights A. This can be observed in Figure 7.9 in pictures
(a) and (b) in comparison to (c) - (f).

Table 7.10: Set of retrieved parameters using different weights.

Used Weights
A B C

v0 0.02897 0.03073 0.03300
kappa 0.68921 0.06405 0.83930
theta 0.10313 0.94533 0.10826
sigma 0.79492 0.91248 1.14674
rho -0.53769 -0.53915 -0.49923

The pictures in Figure 7.9 are similar to what we obtained on the previous day, thus
we can observe higher absolute relative errors for out of the money options.
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Figure 7.9: Results for Genetic algorithm. Left column portrays the absolute relative
errors, average absolute relative errors in terms of moneyness are shown on the right.
Each row corresponds to a particular choice of weights. First row shows errors when
using weights A, the rows are then sorted in the alphabetical order.



7.2.2 ASA

This section gives the results for the other global optimizer ASA. Table 7.11 provides
us with the set of retrieved parameters using different. We can see less negative values
of correlation parameter rho compared to previous section. Doing some more compar-
ison to the previous section, using ASA we also obtained three rather different sets of
parameters.

Best results were obtained using weights C. The worst with B, which is in contrast
to the results from previous day, on which weights B gave the best results and weights
C performed the worst.

The graphs portraying the absolute relative errors using weights B can be seen in
Figure 7.10, pictures (c) and (d). The errors are rather high for deep out of the money
options indeed.

The best performing in terms of average absolute relative errors and maximum ab-
solute relative errors were weights C and the errors are portrayed in pictures (e) and (f)
of Figure 7.10.

Table 7.11: Set of retrieved parameters using different weights.

Used Weights
A B C

v0 0.03876 0.03721 0.03550
kappa 0.80811 1.45765 1.22482
theta 0.13781 0.09663 0.09508
sigma 1.63697 1.86941 1.44249
rho -0.46680 -0.37053 -0.49063
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Figure 7.10: Results for ASA. Left column portrays the absolute relative errors, average
absolute relative errors in terms of moneyness are shown on the right. Each row corre-
sponds to a particular choice of weights. First row shows errors when using weights A,
the rows are then sorted in the alphabetical order.



7.2.3 Deterministic grid for lsqnonlin

For this set of data we also generated a grid of initial points and used these as starting
values for MATLAB’s lsqnonlin. We obtained the following set of parameters in
table 7.12. The results are again the best so far in terms of absolute relative errors. The
maximum absolute relative error is less than 3.5%, as can be seen in Figure 7.11.

As far as the parameters are concerned, we can observe the lowest values v0, theta
and sigma. On the other hand kappa is of the highest value so far. Also we can see the
strongest negative correlation rho.

We will see in the next section if the local optimizers can refine the values provided
by the global optimizers ASA and GA and get closer in the sense of errors to these
parameters.

Table 7.12: Set of retrieved parameters using weights B.

v0 0.02382
kappa 1.75680
theta 0.04953
sigma 0.42134

rho -0.84493
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Figure 7.11: (a) the absolute relative errors, (b) the average absolute relative errors in
terms of moneyness.
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7.2.4 MS Excel’s Solver

We will use the same approach as for the data from previous day. We will first employ
MS Excel’s Solver and provide it with the initial guesses from the global optimizers
(GA, ASA). This time denoting the initial point obtained by GA by x∗

x∗ = [0.02897 0.68921 0.10313 0.79492 − 0.53769]

and the initial point obtained by ASA by x∗∗

x∗∗ = [0.03550 1.22482 0.09508 1.44249,−0.49063]

Looking at the Tables 7.13 and 7.14 and the initial points above, we can see that MS
Excel’s Solver did not converge to any better value provided both initial guesses. The
parameters are very much the same and there was no significant refinement. See Table
7.17 for comprehensive information.

Table 7.13: Set of retrieved parameters using different weights and initial point x∗.

Used Weights
A B C

v0 0.02897 0.02896 0.02903
kappa 0.68922 0.68921 0.68932
theta 0.10314 0.10314 0.10294
sigma 0.79490 0.79492 0.79464
rho -0.53769 -0.53769 -0.53763

Table 7.14: Set of retrieved parameters using different weights and initial point x∗∗.

Used Weights
A B C

v0 0.03550 0.03439 0.03550
kappa 1.22482 1.22399 1.22482
theta 0.09509 0.09740 0.09509
sigma 1.44248 1.43711 1.44248
rho -0.49062 -0.49115 -0.49062
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7.2.5 lsqnonlin

MATLAB’s lsqnonlin also did not refine the parameters when starting from the ini-
tial guess provided by ASA. But it was able to refine the set of parameters when starting
from the initial guess provided by GA.

We included both tables, we can see the results for when starting from x∗ in Table
7.15 and as we can observe, these are different from the initial point. The improved
errors can be seen in Figure 7.12.

x∗
Used Weights

A B C

v0 0.02897 0.02491 0.02497 0.02486
kappa 0.68921 0.82270 1.22136 0.75195
theta 0.10313 0.07597 0.06442 0.07886
sigma 0.79492 0.48665 0.55993 0.46936
rho -0.53769 -0.67099 -0.66255 -0.67266

Table 7.15: Set of retrieved parameters using different weights starting from initial
point x∗. Initial point x∗ is included for comparison.

Table 7.16 shows the parameters obtained when starting from the initial point pro-
vided by ASA. These are almost identical to the initial point and did not lead to any
significant improvement. This fact can be seen in the final Table 7.17.

x∗∗
Used Weights

A B C

v0 0.03550 0.03550 0.03511 0.03550
kappa 1.22482 1.22482 1.22672 1.22482
theta 0.09508 0.09508 0.09636 0.09508
sigma 1.44249 1.44249 1.44194 1.44249
rho -0.49063 -0.49063 -0.49089 -0.49063

Table 7.16: Set of retrieved parameters using different weights starting from initial
point x∗∗. Initial point x∗∗ is included for comparison.

The best result was again when using weights B and we were able to obtain maxi-
mum absolute relative error under 2.5%, see Figure 7.12, pictures (c) and (d).
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Figure 7.12: Results for lsqnonlin. Left column portrays the absolute relative errors,
average absolute relative errors in terms of moneyness are shown on the right. Each
row corresponds to a particular choice of weights. First row shows errors when using
weights A, the rows are then sorted in the alphabetical order. The initial point x∗.



7.2.6 Conclusion

Although performing well for the previous set of data, this time Excel failed to signif-
icantly refine the initial values provided by the global optimizers. On the other hand
using MATLAB’s lsqnonlin we were able to refine the initial set of parameters pro-
vided by GA and obtain average absolute relative error comparable to average absolute
relative error obtained by the method using deterministic grid as the initial value for
lsqnonlin.

When comparing the global otimizers GA provided better results than ASA, which
again is quite pleasant since it is part of MATLAB’s Toolbox and it is easier to work with.
Also the initial guess from GA was the one which was later refined by lsqnonlin
producing lowest maximum absolute relative error (MARE) of 2.22%.

Interesting fact is that as far as the weights are concerned, we can not say which
work the best for GA and ASA. Different weights yielded best results for both GA and
ASA when compared to the previous set of data. On the contrary according to the
results lsqnonlin seems to be favoring weights B.

All the discussed above can be seen in Table 7.17 on the following page.
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Chapter 8

Conclusion

The aim of this thesis was to study the current state of the art of both calibration pro-
cess and the methods of simulating the paths of the Heston model. We also proposed
possible improvements for both.

We studied the available articles and literature to find the most popular and indus-
try standard methods to simulate the Heston model variables. We introduced the most
popular ones in the thesis and we ruled out the Exact scheme by Broadie and Kaya [6]
from the testing not only because of the computationally expensive numerical inversion
but also because of the problems of dividing two modified Bessel functions of the first
kind, these two were causing difficulties because of the representation of their rather
high values for finer discretizations. Also IJK scheme [20], which is supposed to be a
drop-in method for simple schemes is tested with parameters obtained from the mar-
ket and it appears not to be useful for pricing options using Monte Carlo simulations.
We also did experiments and proposed a scheme compromising speed and accuracy
based on the observed performances of the so far known schemes and we seem to have
out-performed the other simple schemes when using the Monte Carlo simulations for
pricing options. The proposed scheme uses Milstein scheme for the variance process ex-
ploiting the lower frequency of negative values and combines it with the Exact scheme
approach by Broadie and Kaya for the asset process and could be a drop-in replacement
for log-Euler or Milstein scheme if higher precision is required. The best in terms of
precision appears to be the QE scheme [2], which is the most popular one among the
practitioners these days. All the conclusions were made based on the test that involved
mimicking real market situation and thus we avoided parameters or range of strikes
and maturities that could favor some of the schemes purposely.

We did experience rather turbulent behaviour with the classical numerical schemes
probably due to the possible negative values and the consequent fixes of the variance
process and thus we did not provide a proper results in terms of convergence crite-
rion. This appears to be an issue, which could use some further exploration and proper
analysis. Also further study of the Exact scheme and possible simplifications seems at-
tractive since practitioners prefer these schemes to the higher order numerical schemes,
e.g. Milstein.
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Calibration of the Heston model is not covered in the literature in such extent that
could be comparable to the coverage of the simulation schemes. We take the real data
from the market and try to calibrate the model to them. This is not an easy task, espe-
cially when one uses rather high number of options. We approached it by combining
the local optimizers, which tend to be sensitive to an initial guess and thus we think one
should avoid using only those, with the global optimizers. We suggested using the Ge-
netic algorithm from the MATLAB’s Global Optimization Toolbox and we developed
what we believe is a stable procedure combining the Genetic algorithm providing an
initial guess, which is later refined by non-linear least squares method (lsqnonlin).
Having the opportunity to run long computations on the departmental server1 we were
able to find benchmark values by creating a grid of the state space for the parameters
and find out what the model is capable of. We managed to match the magnitude of
the errors by our procedure, but of course in shorter computational time. We believe
this is an approach that could be further used to compare for example SABR model to
the Heston model. SABR model by Hagan, Kumar, Lesniewski and Woodward [13] is a
newer model of the stochastic volatility and is very popular these days. Our procedure
could be used for comparison of these two while avoiding inadequate results because
of the calibration procedure. We also used Adaptive Simulated Annealing and Excel’s
Solver and compared the results for two consecutive days. Another conclusion is that
slight adjustments to weights used during calibration can play significant role and one
can improve the results when experimenting with them.

1damadama.fav.zcu.cz
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Appendix A

Risk-Neutral Valuation

Suppose that under a risk-neutral measure P̃ a stock price is governed by

dS(t) = rS(t)dt +
√

v(t)S(t)dW̃S(t), (A.1)

where the interest rate r is constant and the volatility
√

v(t) is itself a stochastic
process governed by the equation

dv(t) = (a− bv(t))dt + σ
√

v(t)dW̃v(t). (A.2)

The parameters a, b and σ are positive constants, and W̃S(t) and W̃v(t) are correlated
Brownian motions under P̃ with

dW̃S(t)dW̃v(t) = ρdt

for some ρ ∈ (−1, 1). Since the two dimensional process (S(t), v(t)) is governed
by the pair of stochastic differential equations (A.1) and (A.2), it is a two dimensional
Markov process. So long as trading takes place only in the stock and money market
account, this model is incomplete1. One can create a one-parameter family of risk-
neutral measures by changing the dt term in (A.2) without affecting (A.1).
According to risk-neutral pricing formula, for example in Shreve [32], at time t, the
risk neutral price of a call expiring at time T ≥ t in this stochastic volatility model
is Ẽ[e−r(T−t)(S(T) − K)+ | F (t)], where Ẽ denotes E w.r.t. P̃. Thank to the Markov
property, there is a function c(t, s, v) such that

c(t, S(t), v(t)) = Ẽ[e−r(T−t)(S(T)− K)+ | F (t)], 0 ≤ t ≤ T. (A.3)

This appendix shows that the function c(t, S, v) satisfies the partial differential equa-
tion

ct + rScS + (a− bv)cv +
1
2

S2vcSS + ρσSvcSv +
1
2

σ2vcvv = rc (A.4)

1There are two sources of risk and only one traded asset (volatility is not a traded asset).
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in the region 0 ≤ t < T, S ≥ 0, and v ≥ 0. The function c(t, S, v) also satisfies the
boundary conditions

c(T, S, v) = (S− K)+for all S ≥ 0, v ≥ 0, (A.5)

c(t, 0, v) = 0 for all 0 ≤ t ≤ T, v ≥ 0, (A.6)

c(t, S, 0) = (S− e−r(T−t)K)+ for all 0 ≤ t ≤ T, S ≥ 0, (A.7)

lim
S→∞

c(t, S, v)
S− K

= 1 for all 0 ≤ t ≤ T, v ≥ 0, (A.8)

lim
v→∞

c(t, S, v) = s for all 0 ≤ t ≤ T, s ≥ 0. (A.9)

We will be concerned with (A.5).

A.1 Part (i)

We will show that e−rtc(t, S(t), v(t)) is a martingale under P̃, and use this fact to obtain
(A.4).

From (A.3) and using the iterated conditioning we get for 0 ≤ s ≤ t ≤ T

Ẽ[e−rtc(t, S(t), v(t)) | F (s)] = Ẽ
[
Ẽ[e−rT(S(T)− K)+ | F (t)] | F (s)

]
= Ẽ[e−rT(S(T)− K)+ | F (s)]
= e−rsc(s, S(s), V(s)).

Using the stochastic differential equations (A.1) and (A.2) and noting that
dW̃S(t)dW̃v(t) = ρdt, we take the differential of the P̃-martingale e−rtc(t, S(t), v(t)).
This differential according to Itô product rule2 is

d
(
e−rtc(t, S(t), v(t))

)
= −re−rtc(t, S(t), v(t))dt + e−rtdc(t, S(t), v(t))

Following the Two-dimensional Itô-Doeblin formula3 and denoting c(t, S(t), v(t))
as c we obtain

2Itô product rule is given as Corollary 4.6.3 in Shreve [32].
3For example Theorem 4.6.2 in Shreve [32].
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d(e−rtc) = e−rt
[
− rcdt + ctdt + cSdS + cvdv +

1
2

cSSdSdS +
1
2

cSvdSdv +
1
2

cvvdvdv
]

= e−rt
[
− rc + ct + cSrS(t) + cv(a− bv(t)) +

1
2

cSSv(t)S2(t)

+
1
2

cSvσρv(t)S(t) +
1
2

cvvσ2v(t)
]
dt + e−rt

[
cS

√
v(t)S(t)dW̃S(t)

+ cvσ
√

v(t)dW̃v(t)
]
.

In order to be a martingale, the dt term must be zero, which implies equation (A.4).

A.2 Part (ii)

We suppose there are functions f (t, x, v) and g(t, x, v) satisfying

ft +

(
r +

1
2

v
)

fx + (a− bv + ρσv) fv +
1
2

v fxx + ρσv fxv +
1
2

σ2v fvv = 0, (A.10)

gt +

(
r− 1

2
v
)

gx + (a− bv)gv +
1
2

vgxx + ρσvgxv +
1
2

σ2vgvv = 0, (A.11)

in the region 0 ≤ t < T, −∞ < x < ∞, and v ≥ 0. We will show that if we define

c(t, S, v) = S f (t, ln S, v)− e−r(T−t)Kg(t, ln S, v), (A.12)

then c(t, S, v) satisfies the partial differential equation (A.4).

Taking (A.4) and (A.12) and denoting f (t, x, v) as f satisfying (A.10) and g(t, x, v) as
g satisfying (A.11) we get
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rc = S ft − re−r(T−t)Kg− e−r(T−t)Kgt︸ ︷︷ ︸
ct

+ rS f + rS fs − rKe−r(T−t)gS︸ ︷︷ ︸
rScS

+ (a− bv)(S fv − e−r(T−t)Kgv)︸ ︷︷ ︸
(a−bv)cv

+
1
2

S2v
(

1
S

fS +
1
S

fSS − e−r(T−t)K
1
S2 gSS + e−r(T−t)K

1
S2 gS

)
︸ ︷︷ ︸

1
2 S2vcSS

+ ρσSv
(

fv + fSv − e−r(T−t)K
1
S

gSv

)
︸ ︷︷ ︸

ρσSvcSv

+
1
2

σ2v
(

S fvv − e−r(T−t)Kgvv

)
︸ ︷︷ ︸

1
2 σ2vcvv

=

[
ft +

(
r +

1
2

v
)

fS + (a− bv + ρσv) fv +
1
2

v fSS + ρσv fSv +
1
2

σ2v fvv

]
S

−
[

gt +

(
r− 1

2
v
)

gS + (a− bv)gv +
1
2

vgSS + ρσvgSv +
1
2

σ2vgvv

]
Ke−r(T−t)

+ rS f − re−r(T−t)Kg

= r
(
S f − e−r(T−t)Kg

)
= rc.

And so (A.12) indeed satisfies the partial differential equation (A.4).

A.3 Part (iii)

Suppose a pair of processes (X(t), v(t)) is governed by the stochastic differential equa-
tions

dX(t) =
(

r +
1
2

v(t)
)

dt +
√

v(t)dW̃S(t), (A.13)

dv(t) = (a− bv(t) + ρσv(t))dt + σ
√

v(t)dW̃v(t), (A.14)

where W̃S(t) and W̃v(t) are Brownian motions under some probability measure P

with dW̃S(t)dW̃v(t) = ρdt. Define

f (t, x, v) = Et,x,vI{X(T)≥ln K}, (A.15)

where the notation Et,x,v emphasizes the dependence on t, x and v.
We will show that f (t, x, v) satisfies the partial differential equation (A.10) and the

boundary condition

f (T, x, v) = I{x≥ln K} for all x ∈ R, v ≥ 0. (A.16)
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Using Markov property we obtain

E[I{X(T)≥ln K} | F (t)] = f (t, X(t), v(t)), (A.17)

and so

f (T, X(t), v(t)) = I{X(T)≥ln K},

which implies the boundary condition (A.16) for all x ∈ R, v ≥ 0. Markov property
(A.17) and use of iterated conditioning shows that for 0 ≤ s ≤ t ≤ T

E[ f (t, X(t), v(t) | F (s)] = E[E[I{X(T)≥ln K} | F (t) | F (s)]

= E[I{X(T)≥ln K} | F (s)]

= f (s, X(s), v(s)).

We denote f (t, x, v) as f and take its differential using Two-dimensional Itô-Doeblin
formula

d f = ftdt + fxdX(t) + fvdv(t) +
1
2

fxxv(t)dt + fxvσρv(t)dt +
1
2

fvvσ2v(t)dt

=

[
ft + fx

(
r +

1
2

v(t)
)
+ fv

(
a− bv(t) + ρσv(t)

)
+

1
2

fxxv(t) + fxvσρv(t)

+
1
2

fvvσ2v(t)
]

dt + fx

√
v(t)dW̃S(t) + fvσ

√
v(t)dW̃v(t).

Setting the drift term to zero in order for f to be a martingale we get the partial
differential equation (A.10).

A.4 Part (iv)

Suppose a pair of processes (X(t), v(t)) is governed by the stochastic differential equa-
tions

dX(t) =
(

r− 1
2

v(t)
)

dt +
√

v(t)dW̃S(t), (A.18)

dv(t) =
(
a− bv(t)

)
dt + σ

√
v(t)dW̃v(t), (A.19)

where W̃S(t) and W̃v(t) are Brownian motions under some probability measure P

with dW̃S(t)dW̃v(t) = ρdt. Define

g(t, x, v) = Et,x,vI{X(T)≥ln K}. (A.20)
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We will show that g(t, x, v) satisfies the partial differential equation (A.11) and the
boundary condition

g(T, x, v) = I{x≥ln K} for all x ∈ R, v ≥ 0. (A.21)

Similarly as in previous part we denote g(t, x, v) as g and compute its differential
using Two-dimensional Itô-Doeblin formula

dg = gtdt + gxdX(t) + gvdv(t) +
1
2

gxxv(t)dt + gxvσρv(t)dt +
1
2

gvvσ2v(t)dt

=

[
gt + gx

(
r− 1

2
v(t)

)
+ gv

(
a− bv(t)

)
+

1
2

gxxv(t) + gxvσρv(t)

+
1
2

gvvσ2v(t)
]

dt + gx

√
v(t)dW̃S(t) + gvσ

√
v(t)dW̃v(t).

Setting the term dt to zero we get the partial differential equation (A.11). Markov
property implies the boundary condition (A.21) as in Part (iii).

A.5 Part (v)

We will show that with f (t, x, v) and g(t, x, v) as in (iii) and (iv), the function c(t, x, v)
of (A.12) satisfies the boundary condition (A.5).

The following lines shows the boundary condition (A.5) is satisfied

c(T, S, v) = SI{ln S≥ln K} − e−r(T−T)KI{ln S≥ln K}

= (S− K)I{S≥K}

= (S− K)+.
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Appendix B

Content of the CD

CD contains file with the thesis in folder THESIS, obtained data from the Bloomberg
Option Monitor can be found in DATA. Folder CALIBRATION contains codes used
to calibrate the Heston model. Folder MC_TESTS provides codes used to test various
schemes. Directory structure of the CD:

• CALIBRATION
• DATA
•MC_TESTS
• THESIS
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