Název: | Double pendulum contact problem |
Autoři: | Špička, Jan Hynčík, Luděk Hajžman, Michal |
Citace zdrojového dokumentu: | Applied and Computational Mechanics. 2014, vol. 8, no. 1, p. 115-128. |
Datum vydání: | 2014 |
Nakladatel: | University of West Bohemia |
Typ dokumentu: | článek article |
URI: | http://www.kme.zcu.cz/acm/acm/article/view/234/273 http://hdl.handle.net/11025/11675 |
ISSN: | 2336-1182 (Online) 1802-680X (Print) |
Klíčová slova: | biomechanické systémy;numerické modelování;kontaktní síla;dvojkyvadlo |
Klíčová slova v dalším jazyce: | biomechanical systems;numerical modelling;contact force;double pendulum |
Abstrakt: | The work concerns contact problems focused on biomechanical systems modelled by a multibody approach. The example is modelling of impact between a body and an infrastructure. The paper firstly presents algorithm for minimum distance calculation. An analytical approach using a tangential plain perpendicular to an initial one is applied. Contact force generated during impact is compared by three different continuous force models, namely the Hertz’s model, the spring-dashpot model and the non-linear damping model. In order to identify contact parameters of these particular models, the method of numerical optimization is used. Purpose of this method is to find the most corresponding results of numerical simulation to the original experiment. Numerical optimization principle is put upon a bouncing ball example for the purpose of evaluation of desirable contact force parameters. The contact modelling is applied to a double pendulum problem. The equation of motion of the double pendulum system is derived using Lagrange equation of the second kind with multipliers, respecting the contact phenomena. Applications in biomechanical research are hinted at arm gravity motion and a double pendulum impact example. |
Práva: | © 2014 University of West Bohemia. All rights reserved. |
Vyskytuje se v kolekcích: | Volume 8, number 1 (2014) Články / Articles (MMI) Volume 8, number 1 (2014) |
Soubory připojené k záznamu:
Soubor | Popis | Velikost | Formát | |
---|---|---|---|---|
Spicka.pdf | Plný text | 1,34 MB | Adobe PDF | Zobrazit/otevřít |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/11675
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.