Title: Využití alfa–stabilního rozdělení k modelování migrace
Other Titles: Migration modeling as application of alpha–stable distribution
Authors: Kukal, Jaromír
Tran, Van Quang
Citation: Trendy v podnikání = Business trends : vědecký časopis Fakulty ekonomické ZČU v Plzni. 2018, roč. 8, č. 2, s. 25-32.
Issue Date: 2018
Publisher: Západočeská univerzita v Plzni
Document type: článek
URI: http://hdl.handle.net/11025/31029
ISSN: 1805-0603
Keywords: alfa-stabilní distribuce;anomální difúze;stochastická simulace;migrační model;hraniční efekt
Keywords in different language: alpha–stable distribution;anomalous diffusion;stochastic simulation;migration model;boundary effect
Abstract in different language: Migration is very wide term describing any case of object movement in given space. Migration phenomena can be modelled from a theoretical as well as an empirical perspective. Many researches have been analysing the causes of this timely event to give the answer to questions who, why, when and where people migrate and what are the social and economic consequences for migrants as well as for those in the origin and destination areas This study is focused on theoretical background of anomalous diffusion of points in 2D spaces. Meanwhile the theory of traditional diffusion is connected with Gaussian distribution and Brownian motion, the anomalous diffusion is driven by alpha–stable distribution and particles perform Lévy flights. Basic properties of stochastic migration model with anomalous diffusion and various boundary conditions are demonstrated and compared with traditional diffusion. This approach will be useful for more complex investigation of economical subject migration involving deterministic driving forces, spatial inhomogeneity and complex geographical boundary conditions in the future.
Rights: © Západočeská univerzita v Plzni
Appears in Collections:Číslo 2 (2018)
Číslo 2 (2018)

Files in This Item:
File Description SizeFormat 
4_Kukal_Tran.pdfPlný text340,73 kBAdobe PDFView/Open

Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/31029

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.