Full metadata record
DC FieldValueLanguage
dc.contributor.authorDaridon, Loic
dc.contributor.authorDelaume, Eric
dc.contributor.authorMonerie, Yann
dc.contributor.authorPerales, Frédéric
dc.date.accessioned2020-12-09T07:39:25Z
dc.date.available2020-12-09T07:39:25Z
dc.date.issued2020
dc.identifier.citationApplied and Computational Mechanics. 2020, vol. 14, no. 2, p. 107-122.en
dc.identifier.issn1802-680X (Print)
dc.identifier.issn2336-1182 (Online)
dc.identifier.urihttp://hdl.handle.net/11025/42271
dc.format16 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherUniversity of West Bohemiaen
dc.rights© University of West Bohemiaen
dc.subjectshodacs
dc.subjecthierarchiecs
dc.subjectadaptivitacs
dc.subjectmetoda upřesněnícs
dc.titleLocal adaptive refinement method applied to solid mechanicsen
dc.typečlánekcs
dc.typearticleen
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.description.abstract-translatedA good spatial discretization is of prime interest in the accuracy of the Finite Element Method. This paper presents a new refinement criterion dedicated to an h-type refinement method called Conforming Hierarchical Adaptive Refinement MethodS (CHARMS) and applied to solid mechanics. This method produces conformally refined meshes and deals with refinement from a basis function point of view. The proposed refinement criterion allow adaptive refinement where the mesh is still too coarse and where a strain or a stress field has a large value or a large gradient. The sensitivity of the criterion to the value or to the gradient ca be adjusted. The method and the criteria are validated through 2-D test cases. One limitation of the h-adaptive refinement method is highlighted: the discretization of boundary curves.en
dc.subject.translatedconformityen
dc.subject.translatedhierarchyen
dc.subject.translatedadaptivityen
dc.subject.translatedrefinement methoden
dc.identifier.doihttps://doi.org/10.24132/acm.2020.570
dc.type.statusPeer-revieweden
Appears in Collections:Volume 14, Number 2 (2020)
Volume 14, Number 2 (2020)

Files in This Item:
File Description SizeFormat 
570-3872-1-PB.pdfPlný text3,93 MBAdobe PDFView/Open


Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/42271

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.