Název: | Existence of analytical solution, stability assessment and periodic response of vibrating systems with time varying parameters |
Autoři: | Dupal, Jan Zajíček, Martin |
Citace zdrojového dokumentu: | Applied and Computational Mechanics. 2020, vol. 14, no. 2, p. 123-144. |
Datum vydání: | 2020 |
Nakladatel: | University of West Bohemia |
Typ dokumentu: | článek article |
URI: | http://hdl.handle.net/11025/42272 |
ISSN: | 1802-680X (Print) 2336-1182 (Online) |
Klíčová slova: | vibrace;periodická odezva;stabilita;integro-diferenciální rovnice;periodická Greenova funkce |
Klíčová slova v dalším jazyce: | vibration;periodic response;stability;integro-differential equation;periodic Green’s function |
Abstrakt v dalším jazyce: | The paper is focused on a solution of a vibrating system with one-degree-of-freedom (1 DOF). The goal of this presentation is to deal with the method for periodical response calculation (if exists) reminding Harmonic Balance Method (HBM) of linear systems having time dependent parameters of mass, damping and stiffness under arbitrary periodical excitation. As a starting point of the investigation, a periodic Green’s function (PGF) construction of the stationary part of the original differential equation is used. The PGF then enables a transformation of the differential equation to the integro-differential one whose analytical solution is given in this paper. Such solution exists only in case that the investigated system is stable and can be expressed in exact form. The second goal of the paper is stability and solution existence assessment. For this reason a methodology of (in)stable parametric domain border determination has been accurately developed. |
Práva: | © University of West Bohemia |
Vyskytuje se v kolekcích: | Články / Articles (NTIS) Volume 14, Number 2 (2020) Volume 14, Number 2 (2020) |
Soubory připojené k záznamu:
Soubor | Popis | Velikost | Formát | |
---|---|---|---|---|
532-3873-1-PB.pdf | Plný text | 946,19 kB | Adobe PDF | Zobrazit/otevřít |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/42272
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.