Full metadata record
DC FieldValueLanguage
dc.contributor.authorLevý, Tomáš
dc.contributor.authorMay, Georg
dc.identifier.citationApplied and Computational Mechanics. 2022, vol. 16, no. 2, p. 119-134.en
dc.identifier.issn1802-680X (Print)
dc.identifier.issn2336-1182 (Online)
dc.format16 s.cs
dc.publisherUniversity of West Bohemiaen
dc.rights© University of West Bohemiaen
dc.subjecthybridizovaná diskontinuální Galerkinova metodacs
dc.subjectčasově závislé problémy konvekce-difúze-reakcecs
dc.subjectvzorce zpětné diferenciacecs
dc.subjectdiagonálně implicitní metoda Runge-Kuttacs
dc.subjectpřizpůsobení velikosti časového krokucs
dc.titleComparison of implicit time-discretization schemes for hybridized discontinuous Galerkin methodsen
dc.description.abstract-translatedThe present study is focused on the application of two families of implicit time-integration schemes for general time-dependent balance laws of convection-diffusion-reaction type discretized by a hybridized discontinuous Galerkin method in space, namely backward differentiation formulas (BDF) and diagonally implicit Runge-Kutta (DIRK) methods. Special attention is devoted to embedded DIRK methods, which allow the incorporation of time step size adaptation algorithms in order to keep the computational effort as low as possible. The properties of the numerical solution, such as its order of convergence, are investigated by means of suitably chosen test cases for a linear convection-diffusion-reaction equation and the nonlinear system of Navier-Stokes equations. For problems considered in this work, the DIRK methods prove to be superior to high-order BDF methods in terms of both stability and accuracy.en
dc.subject.translatedhybridized discontinuous Galerkin methoden
dc.subject.translatedtime-dependent convection-diffusion-reaction problemsen
dc.subject.translatedbackward differentiation formulasen
dc.subject.translateddiagonally implicit Runge-Kutta methoden
dc.subject.translatedtime step size adaptationen
Appears in Collections:Články / Articles (KME)
Volume 16, number 2 (2022)
Volume 16, number 2 (2022)

Files in This Item:
File Description SizeFormat 
786-4499-1-PB.pdfPlný text1,91 MBAdobe PDFView/Open

Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/50896

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.