Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorTater, Adam
dc.contributor.authorHolman, Jiří
dc.date.accessioned2023-10-03T17:35:23Z
dc.date.available2023-10-03T17:35:23Z
dc.date.issued2023
dc.identifier.citationApplied and Computational Mechanics. 2023, vol. 17, no. 1, p. 71-84.en
dc.identifier.issn1802-680X (Print)
dc.identifier.issn2336-1182 (Online)
dc.identifier.urihttp://hdl.handle.net/11025/54295
dc.format14 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherUniversity of West Bohemiaen
dc.rights© University of West Bohemiaen
dc.subjectkřídlová kaskádacs
dc.subjectindex konvergence mřížkycs
dc.subject2D tok nevazké tekutinycs
dc.subjectNACA 65 seriescs
dc.subjectstrukturovaná síťovinacs
dc.titleMesh convergence error estimations for compressible inviscid fluid flow over airfoil cascades using multiblock structured meshen
dc.typearticleen
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.description.abstract-translatedThis work deals with estimations of errors, which are a consequence of a finite spatial discretisation that appears while solving differential equation numerically. More precisely, it deals with the estimation of errors that occur while computing compressible inviscid fluid flow over 2D airfoil cascades. This flow is described by the 2D Euler equations that are solved by the finite volume method in their conservative form. Numerical computations are performed on structured meshes consisting of four blocks, so the number of cells in the mesh can be easily adjusted. In this work, two estimation methods are used. Firstly, the grid convergence index is used to estimate the amount of cells needed to obtain certain accuracy of the solution. Secondly, the Richardson extrapolation is used to approximate the exact solution from a series of solutions obtained with meshes of different sizes. This analysis is performed on a well-known compressor cascade, which is composed of NACA 65 series airfoils. The obtained results should lead to a reasonable choice of the number of elements in a computational mesh based on the required accuracy of the solution and therefore also to computational time reduction while performing airfoil cascade computations. The results indicate that even for very precision demanding applications, 100 000 is a sufficient number of cells in a mesh.en
dc.subject.translatedairfoil cascadeen
dc.subject.translatedgrid convergence indexen
dc.subject.translated2D inviscid fluid flowen
dc.subject.translatedNACA 65 seriesen
dc.subject.translatedstructured meshen
dc.identifier.doiilhttps://doi.org/10.24132/acm.2023.827
dc.type.statusPeer-revieweden
Vyskytuje se v kolekcích:Volume 17, number 1 (2023)
Volume 17, number 1 (2023)

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
827-4681-1-PB.pdfPlný text7,63 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/54295

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.