Název: | Real-time capable system for hand gesture recognition Using hidden Markov models in stereo color image sequences |
Autoři: | Elmezain, Mahmoud Al-Hamadi, Ayoub Michaelis, Bernd |
Citace zdrojového dokumentu: | Journal of WSCG. 2008, vol. 16, no. 1-3, p. 65-72. |
Datum vydání: | 2008 |
Nakladatel: | Václav Skala - UNION Agency |
Typ dokumentu: | článek article |
URI: | http://hdl.handle.net/11025/1315 http://wscg.zcu.cz/wscg2008/Papers_2008/journal/!_WSCG2008_Journal_final.zip |
ISBN: | 978-80-86943-14-5 |
ISSN: | 1213–6972 (hardcopy) 1213–6980 (CD-ROM) 1213–6964 (online) |
Klíčová slova: | rozpoznávání gest;počítačové vidění;zpracování obrazu;rozpoznávání vzorů |
Klíčová slova v dalším jazyce: | gesture recognition;computer vision;image processing;pattern recognition |
Abstrakt: | This paper proposes a system to recognize the alphabets and numbers in real time from color image sequences by the motion trajectory of a single hand using Hidden Markov Models (HMM). Our system is based on three main stages; automatic segmentation and preprocessing of the hand regions, feature extraction and classification. In automatic segmentation and preprocessing stage, YCbCr color space and depth information are used to detect hands and face in connection with morphological operation where Gaussian Mixture Model (GMM) is used for computing the skin probability. After the hand is detected and the centroid point of the hand region is determined, the tracking will take place in the further steps to determine the hand motion trajectory by using a search area around the hand region. In the feature extraction stage, the orientation is determined between two consecutive points from hand motion trajectory and then it is quantized to give a discrete vector that is used as input to HMM. The final stage so-called classification, Baum-Welch algorithm (BW) is used to do a full train for HMM parameters. The gesture of alphabets and numbers is recognized by using Left-Right Banded model (LRB) in conjunction with Forward algorithm. In our experiment, 720 trained gestures are used for training and also 360 tested gestures for testing. Our system recognizes the alphabets from A to Z and numbers from 0 to 9 and achieves an average recognition rate of 94.72%. |
Práva: | © Václav Skala - UNION Agency |
Vyskytuje se v kolekcích: | Number 1-3 (2008) |
Soubory připojené k záznamu:
Soubor | Popis | Velikost | Formát | |
---|---|---|---|---|
Elmezain.pdf | 630,09 kB | Adobe PDF | Zobrazit/otevřít |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/1315
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.