Název: | Visualization of multimedimensional data taking into account the learning flow of the self-organizing neural network |
Autoři: | Dzemyda, Gintautas Kurasova, Olga |
Citace zdrojového dokumentu: | Journal of WSCG. 2003, vol. 11, no. 1-3. |
Datum vydání: | 2003 |
Nakladatel: | UNION Agency – Science Press |
Typ dokumentu: | článek article |
URI: | http://wscg.zcu.cz/wscg2003/Papers_2003/C11.pdf http://hdl.handle.net/11025/1629 |
ISSN: | 1213-6972 |
Klíčová slova: | vizualizace dat;neuronové sítě;samoorganizující se mapy |
Klíčová slova v dalším jazyce: | data visualization;neural networks;self-organizing maps |
Abstrakt: | In the paper, we discuss the visualization of multidimensional vectors taking into account the learning flow of the self-organizing neural network. A new algorithm realizing a combination of the self-organizing map (SOM) and Sammon’s mapping has been proposed. It takes into account the intermediate learning results of the SOM. The experiments have showed that the algorithm gives lower mean projection errors as compared with a consequent application of the SOM and Sammon’s mapping. This is the essential advantage of the new algorithm, i.e. we succeed to eliminate the influence of the “magic factor” a ( 0 <a £1 ) on Sammon’s mapping results. For larger values of a (a >1 ), the mean projection error grows. However, in this case the new algorithm operates more stable and gives smaller values of the mean projection error. |
Práva: | © UNION Agency – Science Press |
Vyskytuje se v kolekcích: | Volume 11, number 1-3 (2003) |
Soubory připojené k záznamu:
Soubor | Popis | Velikost | Formát | |
---|---|---|---|---|
C11.pdf | 129,74 kB | Adobe PDF | Zobrazit/otevřít |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/1629
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.