Název: | Gender prediction using individual perceptual image aesthetics |
Autoři: | Azam, Samiul Gavrilova, Marina |
Citace zdrojového dokumentu: | Journal of WSCG. 2016, vol. 24, no. 2, p. 53-62. |
Datum vydání: | 2016 |
Nakladatel: | Václav Skala - UNION Agency |
Typ dokumentu: | článek article |
URI: | http://wscg.zcu.cz/WSCG2016/!_2016_Journal_WSCG-No-2.pdf http://hdl.handle.net/11025/21646 |
ISSN: | 1213-6972 (print) 1213-6980 (CD-ROM) 1213-6964 (on-line) |
Klíčová slova: | vlastnosti;vnímání;obraz;pohlaví;genetický algoritmus |
Klíčová slova v dalším jazyce: | features;perception;image;gender;genetic algorithm |
Abstrakt v dalším jazyce: | Images have rarely been used for psychological behavior analysis or for person identification in the information technology domain of research. In this paper, we present one of the first methods that allows to accurately predict gender from a collection of person’s favorite images. We select 56 image aesthetic features, and propose a mixture of expert models consisting of support vector machine, K-nearest neighbor and Decision tree. Final decision is taken based on the weighted combination of probability generated by individual classifiers. We introduce a genetic algorithm based method to improve the prediction accuracy of the model, which allows us to find the best combination of feature subset in 56D binary search space. Moreover, feature dimension is reduced significantly that decreases the testing time. Finally, three weights of the prediction model are adjusted using genetic algorithm in 3D real-number search space. Experimental results conducted on a true image database of 24000 images provided by 120 Flickr users. The experimental results demonstrate superiority of the proposed method over other approaches for gender prediction from perceptual image aesthetics preferences. |
Práva: | © Václav Skala - UNION Agency |
Vyskytuje se v kolekcích: | Volume 24, Number 2 (2016) |
Soubory připojené k záznamu:
Soubor | Popis | Velikost | Formát | |
---|---|---|---|---|
Azam.pdf | Plný text | 1,47 MB | Adobe PDF | Zobrazit/otevřít |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/21646
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.