Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorOmar, Luma
dc.contributor.authorIvrissimtzis, Ioannis
dc.contributor.editorSkala, Václav
dc.date.accessioned2018-04-12T08:49:00Z-
dc.date.available2018-04-12T08:49:00Z-
dc.date.issued2016
dc.identifier.citationWSCG 2016: poster papers proceedings: 24th International Conference in Central Europe on Computer Graphics, Visualization and Computer Visionin co-operation with EUROGRAPHICS Association, p. 79-82.en
dc.identifier.isbn978-80-86943-59-6
dc.identifier.issn2464-4617
dc.identifier.uriwscg.zcu.cz/WSCG2016/!!_CSRN-2603.pdf
dc.identifier.urihttp://hdl.handle.net/11025/29599
dc.description.abstractLiveness tests are techniques employed by face recognition authentication systems, aiming at verifying that a live face rather than a photo is standing in front of the system camera. In this paper, we study the resilience of a standard liveness test under imposter photo attacks, under the additional assumption that the photos used in the attack may have been processed by common image processing operations such as sharpening, smoothing and corruption with salt and pepper noise. The results verify and quantify the claim that this type of liveness tests rely on the imposter photo images being less sharp than live face images.en
dc.format4 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencyen
dc.relation.ispartofseriesWSCG 2016: poster papers proceedingsen
dc.rights© Václav Skala - Union Agencycs
dc.subjectzkoušky životnostics
dc.subjectrozpoznání obličejecs
dc.subjectsvětelné modelycs
dc.subjectrozdıl dvou Gaussiánůcs
dc.subjectlogistická regresecs
dc.titleResilience of luminance based liveness tests under attacks with processed imposter imagesen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.subject.translatedliveness testsen
dc.subject.translatedface recognitionen
dc.subject.translatedluminance modelsen
dc.subject.translateddifference of Gaussiansen
dc.subject.translatedlogistic regressionen
dc.type.statusPeer-revieweden
Vyskytuje se v kolekcích:WSCG 2016: Poster Papers Proceedings

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
Omar.pdfPlný text386,59 kBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/29599

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.