Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorBoughzala, Omelkhir
dc.contributor.authorGuesmi, Lamia
dc.contributor.authorBen Abdallah, Asma
dc.contributor.authorHédi Bedoui, Mohamed
dc.contributor.editorSkala, Václav
dc.date.accessioned2018-05-21T05:06:06Z-
dc.date.available2018-05-21T05:06:06Z-
dc.date.issued2016
dc.identifier.citationWSCG '2016: short communications proceedings: The 24th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2016 in co-operation with EUROGRAPHICS: University of West Bohemia, Plzen, Czech RepublicMay 30 - June 3 2016, p. 343-349.en
dc.identifier.isbn978-80-86943-58-9
dc.identifier.issn2464-4617
dc.identifier.uriwscg.zcu.cz/WSCG2016/!!_CSRN-2602.pdf
dc.identifier.urihttp://hdl.handle.net/11025/29722
dc.description.abstractIn the context of medical diagnosis by image analysis, segmentation is the most critical step in image processing. The problem of image segmentation has been studied for years and many methods have been suggested in the literature. However, there is not yet any automatic method able to correctly process any type of image. In this work, we present an automated method for cell segmentation in Pap smear images. The automatic analysis of Pap smear images is one of the most interesting fields in medical image processing. The object of this paper is to present the strategy of the first part of the system segmentation. It is based on a segmentation of color images tested with different classical color spaces, namely RGB, L*a*b, HSV, and YCbCr, to select the best color space using k-means clustering to separate groups of objects. The k means clustering treats each object as having a location in space. The method is aimed at developing an automated Pap smear analysis system which can help cytotechnologists reduce examination time in pap screening process.en
dc.format7 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencyen
dc.relation.ispartofseriesWSCG '2016: short communications proceedingsen
dc.rights© Václav Skala - UNION Agencycs
dc.subjectpap testcs
dc.subjectlékařské zobrazovánícs
dc.subjectzpracovánícs
dc.subjectdetekce rakoviny děložního čípkucs
dc.subjectcytologický screeningcs
dc.subjectK-průměr clusteringcs
dc.titleAutomatic segmentation of cervical cells in Pap smear imagesen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.subject.translatedpap smearen
dc.subject.translatedmedical imagingen
dc.subject.translatedprocessingen
dc.subject.translatedcervical cancer detectionen
dc.subject.translatedcytologic screeningen
dc.subject.translatedK-means clusteringen
dc.type.statusPeer-revieweden
Vyskytuje se v kolekcích:WSCG '2016: Short Papers Proceedings

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
Boughzala.pdfPlný text840,14 kBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/29722

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.