Název: Anisotropic octrees: a tool for fast normals estimation on unorganized point clouds
Autoři: Ravaglia, Joris
Bac, Alexandra
Fournier, Richard A.
Citace zdrojového dokumentu: WSCG '2017: short communications proceedings: The 25th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2016 in co-operation with EUROGRAPHICS: University of West Bohemia, Plzen, Czech RepublicMay 29 - June 2 2017, p. 101-110.
Datum vydání: 2017
Nakladatel: Václav Skala - UNION Agency
Typ dokumentu: konferenční příspěvek
conferenceObject
URI: wscg.zcu.cz/WSCG2017/!!_CSRN-2702.pdf
http://hdl.handle.net/11025/29740
ISBN: 978-80-86943-45-9
ISSN: 2464-4617
Klíčová slova: bodová mračna;zakřivení;oktáva;anizotropie;kvadratická plocha
Klíčová slova v dalším jazyce: point clouds;curvature;octree;anisotropy;quadratic surface
Abstrakt: With the recent advances in remote sensing of objects and environments, point cloud processing has become a major field of study. Three-dimensional point cloud collected with remote sensing instruments may be very large, containing up to several tens of billions of points. This imposes the use for efficient and automatic algorithms to extract geometric or structural elements of the scanned surfaces. In this paper, we focus on the estimation of normal directions in an unorganized point cloud and provide a curvature indicator. We avoid point-wise operations to accelerate the running time for normals estimation. Instead, our method rely on an innovative anisotropic partitioning of the point cloud using an octree structure guided by the geometric complexity of the data and generates patches of points. These patches are then approximated by a quadratic surface in order to estimate the normal directions and curvatures. Our method has been applied to six models of various types presenting different characteristics and performs, in average, 2.65 times faster than multi-threads implementations available in current pieces of software. The results obtained are a compromise between running time efficiency and normals accuracy. Moreover, this work opens up promising perspectives and can be easily inserted in wide range of workflows.
Práva: © Václav Skala - UNION Agency
Vyskytuje se v kolekcích:WSCG '2017: Short Papers Proceedings

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
Ravaglia.pdfPlný text5,37 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/29740

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.