Název: | Support vector machine optimized by firefly algorithm for emphysema classification in lung tissue CT images |
Autoři: | Tuba, Eva Tuba, Milan Simian, Dana |
Citace zdrojového dokumentu: | WSCG '2017: short communications proceedings: The 25th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2016 in co-operation with EUROGRAPHICS: University of West Bohemia, Plzen, Czech RepublicMay 29 - June 2 2017, p. 159-166. |
Datum vydání: | 2017 |
Nakladatel: | Václav Skala - UNION Agency |
Typ dokumentu: | konferenční příspěvek conferenceObject |
URI: | wscg.zcu.cz/WSCG2017/!!_CSRN-2702.pdf http://hdl.handle.net/11025/29747 |
ISBN: | 978-80-86943-45-9 |
ISSN: | 2464-4617 |
Klíčová slova: | podpora vektorových strojů;klasifikace plicních tkání;CT obrazy;zpracování obrazu;algoritmus světluška;inteligence rojů |
Klíčová slova v dalším jazyce: | support vector machines;lung tissue classification;CT images;image processing;firefly algorithm;swarm intelligence |
Abstrakt: | Digital images and digital image processing facilitated significant progress in numerous areas where medicine is an important one of them. Computer-aided detection and diagnostics systems are used to assist specialists in interpretation of medical digital images. One of the important research issues is detection and classification of the chronic obstructive pulmonary disease in lung CT images. In this paper we proposed a method for emphysema classification based on texture and intensity features. Only six different characteristics of the uniform local binary pattern and intensity histogram were used as input vector for support vector machine that was used as classifier. Feature vector was significantly reduced compared to the other state-of-the-art methods while the classification accuracy was increased. On images from standard dataset global accuracy of our proposed algorithm was 98.18% compared to 95.24% and 93.9% of two other compared algorithms. |
Práva: | © Václav Skala - UNION Agency |
Vyskytuje se v kolekcích: | WSCG '2017: Short Papers Proceedings |
Soubory připojené k záznamu:
Soubor | Popis | Velikost | Formát | |
---|---|---|---|---|
Tuba.pdf | Plný text | 727,73 kB | Adobe PDF | Zobrazit/otevřít |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/29747
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.