Název: Nonparametric Kernel Estimation and Its Practical Application
Další názvy: Nonparametric Kernel Estimation and Its Practical Application
Autoři: Ťoupal, Tomáš
Marek, Patrice
Datum vydání: 2016
Nakladatel: VŠB - Technical University of Ostrava
Typ dokumentu: konferenční příspěvek
conferenceObject
URI: http://hdl.handle.net/11025/30440
ISBN: 978-80-248-3994-3
ISSN: 2464-6970
Klíčová slova: Neparametrické jádrové odhady, jádrová funkce, regresní funkce, podkladové aktivum, vyhlazovací parametr.
Klíčová slova v dalším jazyce: Nonparametric kernel estimation, kernel function, regression function, underlying asset, smoothing parameter.
Abstrakt: Tento článek se zabývá problematikou neparametrického jádrového odhadu, zejména neparametrického jádrového odhadu regresní funkce na reálných souborech dat. Existuje zde mnoho oblastí použití (hrubý domácí produkt, nezaměstnanost, burza apod.), a z tohoto důvodu se prezentovaný článek zaměřuje na odhad regresní funkce vybraného podkladového aktiva. Nejprve je popsána neparametrická jádrová regrese zahrnující vlivy hlavních parametrů (vyhlazovací parametr, jádrová funkce apod.) na tvar aproximované funkce. Dále je analyzován a detailně popsán vyhlazovací parametr a jeho odhad ve vztahu k regresní křivce. Získané výsledky se aplikují na vygenerovaný soubor dat a na reálný soubor dat podkladového aktiva (ČEZ).
Abstrakt v dalším jazyce: This paper deals with the problem of nonparametric kernel estimation, particularly nonparametric kernel estimation of regression function in real life situations. There are many fields of application (Gross Domestic Product, Unemployment, Stock Market, etc.) and therefore this paper is focused on estimation of regression function of the selected underlying asset. First, there is described nonparametric regression including the influences of the main parameters (smoothing parameter, kernel function, etc.) on the shape of regression function. Then, there is analyzed and described in detail smoothing parameter and its estimation in relation to the regression curve. The obtained results are applied to generated data collection and real data collection of underlying asset (CEZ).
Práva: © VŠB - Technical University of Ostrava
Plný text je přístupný v rámci univerzity přihlášeným uživatelům.
Vyskytuje se v kolekcích:Postprinty / Postprints (KMA)
OBD

Soubory připojené k záznamu:
Soubor VelikostFormát 
Nonparametric Kernel Estimation and Its Practical Application.pdf2,05 MBAdobe PDFZobrazit/otevřít  Vyžádat kopii


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/30440

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.

hledání
navigace
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD