Full metadata record
DC pole | Hodnota | Jazyk |
---|---|---|
dc.contributor.author | Nikolayev, Denys | |
dc.contributor.author | Zhadobov, Maxim | |
dc.contributor.author | Karban, Pavel | |
dc.contributor.author | Sauleau, Ronan | |
dc.date.accessioned | 2019-02-11T11:00:17Z | - |
dc.date.available | 2019-02-11T11:00:17Z | - |
dc.date.issued | 2018 | |
dc.identifier.citation | NIKOLAYEV, D., ZHADOBOV, M., KARBAN, P., SAULEAU, R. Electromagnetic radiation efficiency of body-implanted devices. Physical Review Applied, 2018, roč. 9, č. 2, s. 1-12. ISSN 2331-7019. | en |
dc.identifier.issn | 2331-7019 | |
dc.identifier.uri | 2-s2.0-85043480902 | |
dc.identifier.uri | http://hdl.handle.net/11025/30942 | |
dc.format | 12 s. | cs |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | en |
dc.publisher | American Physical Society | en |
dc.rights | Plný text je přístupný v rámci univerzity přihlášeným uživatelům. | cs |
dc.rights | © American Physical Society | en |
dc.title | Electromagnetic radiation efficiency of body-implanted devices | en |
dc.type | článek | cs |
dc.type | article | en |
dc.rights.access | restrictedAccess | en |
dc.type.version | publishedVersion | en |
dc.description.abstract-translated | Autonomous wireless body-implanted devices for biotelemetry, telemedicine, and neural interfacing constitute an emerging technology providing powerful capabilities for medicine and clinical research. We study the through-tissue electromagnetic propagation mechanisms, derive the optimal frequency range, and obtain the maximum achievable efficiency for radiative energy transfer from inside a body to free space. We analyze how polarization affects the efficiency by exciting TM and TE modes using a magnetic dipole and a magnetic current source, respectively. Four problem formulations are considered with increasing complexity and realism of anatomy. The results indicate that the optimal operating frequency f for deep implantation (with a depth d3 cm) lies in the (108-109)-Hz range and can be approximated as f=2.2×107/d. For a subcutaneous case (d3 cm), the surface-wave-induced interference is significant: within the range of peak radiation efficiency (about 2×108 to 3×109 Hz), the max-to-min ratio can reach a value of 6.5. For the studied frequency range, 80%-99% of radiation efficiency is lost due to the tissue-air wave-impedance mismatch. Parallel polarization reduces the losses by a few percent; this effect is inversely proportional to the frequency and depth. Considering the implantation depth, the operating frequency, the polarization, and the directivity, we show that about an order-of-magnitude efficiency improvement is achievable compared to existing devices. | en |
dc.subject.translated | dielectric-properties | en |
dc.subject.translated | biological tissues | en |
dc.subject.translated | frequency-range | en |
dc.subject.translated | antennas | en |
dc.subject.translated | ghz | en |
dc.identifier.doi | 10.1103/PhysRevApplied.9.024033 | |
dc.type.status | Peer-reviewed | en |
dc.identifier.document-number | 426346700002 | |
dc.identifier.obd | 43924800 | |
dc.project.ID | LO1607/RICE-NETESIS - nové technologie a koncepce pro inteligentní průmyslové systémy (NETESIS) | cs |
Vyskytuje se v kolekcích: | Články / Articles (KTE) Články / Articles (RICE) OBD |
Soubory připojené k záznamu:
Soubor | Velikost | Formát | |
---|---|---|---|
Karban_Physical Review Applied.pdf | 14,19 MB | Adobe PDF | Zobrazit/otevřít Vyžádat kopii |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/30942
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.