Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorNikolayev, Denys
dc.contributor.authorZhadobov, Maxim
dc.contributor.authorKarban, Pavel
dc.contributor.authorSauleau, Ronan
dc.date.accessioned2019-02-11T11:00:17Z-
dc.date.available2019-02-11T11:00:17Z-
dc.date.issued2018
dc.identifier.citationNIKOLAYEV, D., ZHADOBOV, M., KARBAN, P., SAULEAU, R. Electromagnetic radiation efficiency of body-implanted devices. Physical Review Applied, 2018, roč. 9, č. 2, s. 1-12. ISSN 2331-7019.en
dc.identifier.issn2331-7019
dc.identifier.uri2-s2.0-85043480902
dc.identifier.urihttp://hdl.handle.net/11025/30942
dc.format12 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherAmerican Physical Societyen
dc.rightsPlný text je přístupný v rámci univerzity přihlášeným uživatelům.cs
dc.rights© American Physical Societyen
dc.titleElectromagnetic radiation efficiency of body-implanted devicesen
dc.typečlánekcs
dc.typearticleen
dc.rights.accessrestrictedAccessen
dc.type.versionpublishedVersionen
dc.description.abstract-translatedAutonomous wireless body-implanted devices for biotelemetry, telemedicine, and neural interfacing constitute an emerging technology providing powerful capabilities for medicine and clinical research. We study the through-tissue electromagnetic propagation mechanisms, derive the optimal frequency range, and obtain the maximum achievable efficiency for radiative energy transfer from inside a body to free space. We analyze how polarization affects the efficiency by exciting TM and TE modes using a magnetic dipole and a magnetic current source, respectively. Four problem formulations are considered with increasing complexity and realism of anatomy. The results indicate that the optimal operating frequency f for deep implantation (with a depth d3 cm) lies in the (108-109)-Hz range and can be approximated as f=2.2×107/d. For a subcutaneous case (d3 cm), the surface-wave-induced interference is significant: within the range of peak radiation efficiency (about 2×108 to 3×109 Hz), the max-to-min ratio can reach a value of 6.5. For the studied frequency range, 80%-99% of radiation efficiency is lost due to the tissue-air wave-impedance mismatch. Parallel polarization reduces the losses by a few percent; this effect is inversely proportional to the frequency and depth. Considering the implantation depth, the operating frequency, the polarization, and the directivity, we show that about an order-of-magnitude efficiency improvement is achievable compared to existing devices.en
dc.subject.translateddielectric-propertiesen
dc.subject.translatedbiological tissuesen
dc.subject.translatedfrequency-rangeen
dc.subject.translatedantennasen
dc.subject.translatedghzen
dc.identifier.doi10.1103/PhysRevApplied.9.024033
dc.type.statusPeer-revieweden
dc.identifier.document-number426346700002
dc.identifier.obd43924800
dc.project.IDLO1607/RICE-NETESIS - nové technologie a koncepce pro inteligentní průmyslové systémy (NETESIS)cs
Vyskytuje se v kolekcích:Články / Articles (KTE)
Články / Articles (RICE)
OBD

Soubory připojené k záznamu:
Soubor VelikostFormát 
Karban_Physical Review Applied.pdf14,19 MBAdobe PDFZobrazit/otevřít  Vyžádat kopii


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/30942

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.

hledání
navigace
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD