Název: | Finding similar movies: dataset, tools, and methods |
Autoři: | Leng, Hongkun De La Cruz Paulino, Caleb Haider, Momina Lu, Rui Zhou, Zhehui Mengshoel, Ole Brodin, Per-Erik Forgeat, Julien Jude, Alvin |
Citace zdrojového dokumentu: | WSCG '2018: short communications proceedings: The 26th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2016 in co-operation with EUROGRAPHICS: University of West Bohemia, Plzen, Czech Republic May 28 - June 1 2018, p. 115-124. |
Datum vydání: | 2018 |
Nakladatel: | Václav Skala - UNION Agency |
Typ dokumentu: | konferenční příspěvek conferenceObject |
URI: | wscg.zcu.cz/WSCG2018/!!_CSRN-2802.pdf http://hdl.handle.net/11025/34663 |
ISBN: | 978-80-86943-41-1 |
ISSN: | 2464-4617 |
Klíčová slova: | doporučující systémy;podobnost položek;crowdsourcing;učení pod dohledem;MovieLens |
Klíčová slova v dalším jazyce: | recommender systems;item-item similarity;crowdsourcing;supervised learning;MovieLens |
Abstrakt: | Recommender systems are becoming ubiquitous in online commerce as well as in video-on-demand (VOD) and music streaming services. A popular form of giving recommendations is to base them on a currently selected product (or items), and provide “More Like This,” “Items Similar to This,” or “People Who Bought This also Bought” functionality. These recommendations are based on similarity computations, also known as item-item similarity computations. Such computations are typically implemented by heuristic algorithms, which may not match the perceived item-item similarity of users. In contrast, we study in this paper a data-driven approach to similarity for movies using labels crowdsourced from a previous work. Specifically, we develop four similarity methods and investigate how user-contributed labels can be used to improve similarity computations to better match user perceptions in movie recommendations. These four methods were tested against the best known method with a user experiment (n = 114) using the MovieLens 20M dataset. Our experiment showed that all our supervised methods beat the unsupervised benchmark and the differences were both statistically and practically significant. This paper’s main contributions include user evaluation of similarity methods for movies, user-contributed labels indicating movie similarities, and code for the annotation tool which can be found at http://MovieSim.org. |
Práva: | © Václav Skala - UNION Agency |
Vyskytuje se v kolekcích: | WSCG '2018: Short Papers Proceedings |
Soubory připojené k záznamu:
Soubor | Popis | Velikost | Formát | |
---|---|---|---|---|
Leng.pdf | Plný text | 1,58 MB | Adobe PDF | Zobrazit/otevřít |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/34663
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.