Název: | Structural identification of crystal lattices based on fuzzy neural network approach |
Autoři: | Kirsh, Dmitriy Kupriyanov, Alexandr Paringer, Rustam |
Citace zdrojového dokumentu: | WSCG '2018: short communications proceedings: The 26th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2016 in co-operation with EUROGRAPHICS: University of West Bohemia, Plzen, Czech Republic May 28 - June 1 2018, p. 183-189. |
Datum vydání: | 2018 |
Nakladatel: | Václav Skala - UNION Agency |
Typ dokumentu: | konferenční příspěvek conferenceObject |
URI: | wscg.zcu.cz/WSCG2018/!!_CSRN-2802.pdf http://hdl.handle.net/11025/34671 |
ISBN: | 978-80-86943-41-1 |
Klíčová slova: | krystalové mřížky fuzzy neuronové sítě identifikace krystalové struktury mřížkový systém buňka neuronová síť typu Takagi-Sugeno-Kang neuronová síť typu Wang-Mendel |
Klíčová slova v dalším jazyce: | crystal lattice fuzzy neural networks crystal structure identification lattice system unit cell Takagi-Sugeno-Kang neural network Wang-Mendel neural network |
Abstrakt: | Each crystal nanostructure consists of a set of minimal building blocks (unit cells) which parameters comprehensively describe the location of atoms or atom groups in a crystal. However, structure recognition is greatly complicated by the ambiguity of unit cell choice. To solve the problem, we propose a new approach to structural identification of crystal lattices based on fuzzy neural networks. The paper deals with the Takagi- Sugeno-Kang model of fuzzy neural networks. Moreover, a three-stage neural network learning process is presented: in the first two stages crystal lattices are grouped in non-overlapping classes, and lattices belonging to overlapping classes are recognized at the third stage. The proposed approach to structural identification of crystal lattices has shown promising results in delimiting adjacent lattice types. The structure identification failure rates decreased to 10 % on average. |
Práva: | © Václav Skala - UNION Agency |
Vyskytuje se v kolekcích: | WSCG '2018: Short Papers Proceedings |
Soubory připojené k záznamu:
Soubor | Popis | Velikost | Formát | |
---|---|---|---|---|
Kirsh.pdf | Plný text | 1,89 MB | Adobe PDF | Zobrazit/otevřít |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/34671
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.