Název: Structural identification of crystal lattices based on fuzzy neural network approach
Autoři: Kirsh, Dmitriy
Kupriyanov, Alexandr
Paringer, Rustam
Citace zdrojového dokumentu: WSCG '2018: short communications proceedings: The 26th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2016 in co-operation with EUROGRAPHICS: University of West Bohemia, Plzen, Czech Republic May 28 - June 1 2018, p. 183-189.
Datum vydání: 2018
Nakladatel: Václav Skala - UNION Agency
Typ dokumentu: konferenční příspěvek
conferenceObject
URI: wscg.zcu.cz/WSCG2018/!!_CSRN-2802.pdf
http://hdl.handle.net/11025/34671
ISBN: 978-80-86943-41-1
Klíčová slova: krystalové mřížky
fuzzy neuronové sítě
identifikace krystalové struktury
mřížkový systém
buňka
neuronová síť typu Takagi-Sugeno-Kang
neuronová síť typu Wang-Mendel
Klíčová slova v dalším jazyce: crystal lattice
fuzzy neural networks
crystal structure identification
lattice system
unit cell
Takagi-Sugeno-Kang neural network
Wang-Mendel neural network
Abstrakt: Each crystal nanostructure consists of a set of minimal building blocks (unit cells) which parameters comprehensively describe the location of atoms or atom groups in a crystal. However, structure recognition is greatly complicated by the ambiguity of unit cell choice. To solve the problem, we propose a new approach to structural identification of crystal lattices based on fuzzy neural networks. The paper deals with the Takagi- Sugeno-Kang model of fuzzy neural networks. Moreover, a three-stage neural network learning process is presented: in the first two stages crystal lattices are grouped in non-overlapping classes, and lattices belonging to overlapping classes are recognized at the third stage. The proposed approach to structural identification of crystal lattices has shown promising results in delimiting adjacent lattice types. The structure identification failure rates decreased to 10 % on average.
Práva: © Václav Skala - UNION Agency
Vyskytuje se v kolekcích:WSCG '2018: Short Papers Proceedings

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
Kirsh.pdfPlný text1,89 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/34671

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.