Název: On qualitative properties of solutions for elliptic problems with the p-Laplacian through domain perturbations
Autoři: Bobkov, Vladimír
Kolonitskii, Sergey
Citace zdrojového dokumentu: BOBKOV, V. ., KOLONITSKII, S. . On qualitative properties of solutions for elliptic problems with the p-Laplacian through domain perturbations. Communications in partial differential equations, 2020, roč. 45, č. 3, s. 230-252. ISSN 0360-5302.
Datum vydání: 2020
Nakladatel: Taylor & Francis
Typ dokumentu: článek
article
URI: 2-s2.0-85074414532
http://hdl.handle.net/11025/36953
ISSN: 0360-5302
Klíčová slova v dalším jazyce: p-Laplacian;superlinear nonlinearity;domain derivative;shape optimization;Hadamard formula;Nehari manifold;least energy solution;nodal solution;nonradiality.
Abstrakt: We study the dependence of least nontrivial critical levels of the energy functional corresponding to the zero Dirichlet problem −Δ_p u=f(u) in a bounded domain Ω⊂R^N upon domain perturbations. Assuming that the nonlinearity f is superlinear and subcritical, we establish Hadamard-type formulas for such critical levels. As an application, we show that among all (generally eccentric) spherical annuli Ω least nontrivial critical levels attain maximum if and only if Ω is concentric. As a consequence of this fact, we prove the nonradiality of least energy nodal solutions whenever Ω is a ball or concentric annulus.
Práva: Plný text není přístupný.
© Taylor & Francis
Vyskytuje se v kolekcích:Články / Articles (NTIS)
OBD

Soubory připojené k záznamu:
Soubor VelikostFormát 
Bobkov_Kolonitskii-Published-2020.pdf2,11 MBAdobe PDFZobrazit/otevřít  Vyžádat kopii


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/36953

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.

hledání
navigace
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD