Název: Second-order derivative of domain-dependent functionals along Nehari manifold trajectories
Autoři: Bobkov, Vladimír
Kolonitskii, Sergey
Citace zdrojového dokumentu: BOBKOV, V., KOLONITSKII, S. Second-order derivative of domain-dependent functionals along Nehari manifold trajectories. ESAIM-Control optimisation and calculus of variations, 2020, roč. 26, č. 48, s. 1-29. ISSN 1292-8119.
Datum vydání: 2020
Nakladatel: EDP Sciences
Typ dokumentu: článek
article
URI: 2-s2.0-85091818874
http://hdl.handle.net/11025/39877
ISSN: 1292-8119
Klíčová slova v dalším jazyce: Shape Hessian;second-order shape derivative;domain derivative;Hadamard formula;perturbation of boundary;superlinear nonlinearity;Nehari manifold;least energy solution;first eigenvalue
Abstrakt v dalším jazyce: Assume that a family of domain-dependent functionals EΩt possesses a corresponding family of least energy critical points ut which can be found as (possibly nonunique) minimizers of EΩt over the associated Nehari manifold N(Ωt). We obtain a formula for the second-order derivative of EΩt with respect to t along Nehari manifold trajectories of the form αt(u0(Φt−1(y)) + tv(Φt−1(y))), y ∈ Ωt, where Φt is a diffeomorphism such that Φt(Ω0) = Ωt, αt ∈ ℝ is a N(Ωt)-normalization coefficient, and v is a corrector function whose choice is fairly general. Since EΩt [ut] is not necessarily twice differentiable with respect to t due to the possible nonuniqueness of ut, the obtained formula represents an upper bound for the corresponding second superdifferential, thereby providing a convenient way to study various domain optimization problems related to EΩt. An analogous formula is also obtained for the first eigenvalue of the p-Laplacian. As an application of our results, we investigate the behaviour of the first eigenvalue of the Laplacian with respect to particular perturbations of rectangles.
Práva: © EDP Sciences
Plný text není přístupný.
Vyskytuje se v kolekcích:Články / Articles (NTIS)
OBD

Soubory připojené k záznamu:
Soubor VelikostFormát 
BobkovKolonitskii_SecondDerivative_2020_published.pdf699,56 kBAdobe PDFZobrazit/otevřít  Vyžádat kopii


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/39877

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.

hledání
navigace
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD