Full metadata record
DC FieldValueLanguage
dc.contributor.authorVrba, Jan
dc.contributor.authorMareš, Jan
dc.contributor.editorPinker, Jiří
dc.identifier.citation2020 International Conference on Applied Electronics: Pilsen, 8th – 9h September 2020, Czech Republic.en
dc.identifier.isbn978-80-261-0891-7 (Print)
dc.identifier.isbn978-80-261-0892-4 (Online)
dc.identifier.issn1803-7232 (Print)
dc.identifier.issn1805-9597 (Online)
dc.format4 s.cs
dc.publisherZápadočeská univerzita v Plznics
dc.rights© Západočeská univerzita v Plznics
dc.subjectzpracování signálucs
dc.subjectadaptivní systémycs
dc.subjectadaptivní algoritmycs
dc.subjectdetekce novinkycs
dc.subjectdetekce změny trenducs
dc.titleROC Analysis of Extreme Seeking Entropyfor Trend Change Detectionen
dc.typekonferenční příspěvekcs
dc.description.abstract-translatedThis paper is dedicated to the evaluation ofthe ROC curve of recently introduced Extreme SeekingEntropy algorithm. The ROC curve is evaluated for atrend change in the signal that contains additive Gaussiannoise. The resulting ROC curve of the Extreme SeekingEntropy algorithm is compared with other adaptivenovelty detection methods, namely Learning Entropyand Error and Learning Based Novelty Detection asthose algorithms are also evaluating the adaptive weightsincrements. The ROC curves are evaluated for multiplenoise variances and area under those ROC curves isestimated.en
dc.subject.translatedsignal processingen
dc.subject.translatedadaptive systemsen
dc.subject.translatedadaptive algorithmsen
dc.subject.translatednovelty detectionen
dc.subject.translatedtrend change detectionen
Appears in Collections:Applied Electronics 2020
Applied Electronics 2020

Files in This Item:
File Description SizeFormat 
09232845.pdfPlný text314,76 kBAdobe PDFView/Open

Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/39932

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.