Název: Label errors in point cloud in training data for classification using machine learning
Další názvy: Dopad chybovosti trénovacích dat na výstup strojového učení pro klasifikaci mračen bodů elektrického vedení
Autoři: Beran, Daniel
Li, Nan
Pfeifer, Norbert
Citace zdrojového dokumentu: BERAN, D., LI, N., PFEIFER, N. Label errors in point cloud in training data for classification using machine learning. In: Symposium GIS Ostrava 2020 Prostorová data pro Smart City a Smart Region. Ostrava: Vysoká škola báňská-Technická univerzita Ostrava, 2020. s. 1-5. ISBN 978-80-248-4398-8 , ISSN 1213-239X.
Datum vydání: 2020
Nakladatel: Vysoká škola báňská-Technická univerzita Ostrava
Typ dokumentu: konferenční příspěvek
conferenceObject
URI: http://hdl.handle.net/11025/41918
ISBN: 978-80-248-4398-8
ISSN: 1213-239X
Klíčová slova: mračno bodů;LiDAR;ULS;strojové učení;elektrické vedení
Klíčová slova v dalším jazyce: point cloud;LiDAR;ULS;machine learning;power line
Abstrakt: Jednou z mnoha aplikací ULS (UAV-borne laser scanning) je inspekce elektrického vedení. Nicméně s výstupem LiDAR sběru dat (mračen bodů) přichází i potřeba data automaticky klasifikovat, neboli sémanticky segmentovat, za účelem navazující analýzy. Metod pro automatickou klasifikaci mračen bodů bylo představeno nemalé množství, mnoho z nich s využitím strojového učení. Motivací tohoto výzkumu je nutná podmínka strojového učení v podobě referenčních (trénovačích) dat pro učení modelu - konkrétně dopad chybovosti v klasifikaci referenčních dat na přesnost modelované klasifikace výstupů modelu. K zjištění dopadu chybovosti trénovacích dat na výstup strojového učení pro klasifikaci mračen bodů elektrického vedení jsme použili metodu klasifikačních a regresních stromů (CART) implementovanou v programu Opals. V rámci výzkumu byly testovány datové sady s různou mírou a různým typem chybovosti referenčních dat a jejich vliv na výslednou přesnost byl porovnán s daty, které nebyly použity pro samotné učení modelu.
Abstrakt v dalším jazyce: One of the applications of ULS (UAV-borne laser scanning) lies in power line inspection. However, with LiDAR data (i.e. point clouds) comes the need for reliable automatic classification, also called semantic segmentation, of data which allows further analysis of gathered data. Vast number of possible methods for automatic classification of point clouds have been proposed and implemented, many of which depend on machine learning. Motivation for this research is the need for pre-classified data for training of machine learning models, specifically the impact of label accuracy/error in the pre-classified data used for machine learning classification. To find out what is the impact of error levels of labels on machine learning classification of power line point clouds we have used the method of Classification and regression trees (CART) using Opals software. During this research several tests were conducted with various levels and types of error in class labelling of training data and the results were compared with correctly labelled data to calculate confusion matrices and thus evaluate the impact of different error levels.
Práva: Plný text není přístupný.
© Vysoká škola báňská-Technická univerzita Ostrava
Vyskytuje se v kolekcích:Konferenční příspěvky / Conference papers (NTIS)
Konferenční příspěvky / Conference Papers (KGM)
OBD

Soubory připojené k záznamu:
Soubor VelikostFormát 
gis20205e65e837ad124.pdf357,26 kBAdobe PDFZobrazit/otevřít  Vyžádat kopii


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/41918

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.

hledání
navigace
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD