Název: | LSTM-Based Speech Segmentation Trained on Different Foreign Languages |
Autoři: | Hanzlíček, Zdeněk Vít, Jakub |
Citace zdrojového dokumentu: | HANZLÍČEK, Z. VÍT, J. LSTM-Based Speech Segmentation Trained on Different Foreign Languages. In: Text, Speech, and Dialogue 23rd International Conference, TSD 2020, Brno, Czech Republic, September 8-11, 2020, Proceedings. Cham: Springer Nature Switzerland AG, 2020. s. 456-464. ISBN 978-3-030-58322-4, ISSN 0302-9743. |
Datum vydání: | 2020 |
Nakladatel: | Springer Nature Switzerland AG |
Typ dokumentu: | konferenční příspěvek conferenceObject |
URI: | 2-s2.0-85091145791 http://hdl.handle.net/11025/43117 |
ISBN: | 978-3-030-58322-4 |
ISSN: | 0302-9743 |
Klíčová slova v dalším jazyce: | Speech segmentation;Neural networks;LSTM |
Abstrakt v dalším jazyce: | This paper describes experiments on speech segmentation by using bidirectional LSTM neural networks. The networks were trained on various languages (English, German, Russian and Czech), segmentation experiments were performed on 4 Czech professional voices. To be able to use various combinations of foreign languages, we defined a reduced phonetic alphabet based on IPA notation. It consists of 26 phones, all included in all languages. To increase the segmentation accuracy, we applied an iterative procedure based on detection of improperly segmented data and retraining of the network. Experiments confirmed the convergence of the procedure. A comparison with a reference HMM-based segmentation with additional manual corrections was performed. |
Práva: | Plný text není přístupný. © Springer |
Vyskytuje se v kolekcích: | Konferenční příspěvky / Conference papers (NTIS) Konferenční příspěvky / Conference Papers (KKY) OBD |
Soubory připojené k záznamu:
Soubor | Velikost | Formát | |
---|---|---|---|
Hanzlíček-Vít2020_Chapter_LSTM-BasedSpeechSegmentationTr.pdf | 551,95 kB | Adobe PDF | Zobrazit/otevřít Vyžádat kopii |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/43117
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.