Title: Travelling waves in the Fisher–KPP equation with nonlinear degenerate or singular diffusion
Authors: Drábek, Pavel
Takáč, Peter
Citation: DRÁBEK, P., TAKÁČ, P. Travelling waves in the Fisher–KPP equation with nonlinear degenerate or singular diffusion. Applied mathematics and optimization, 2021, roč. 84, č. 2, s. 1185-1208. ISSN 0095-4616.
Issue Date: 2021
Publisher: Springer
Document type: článek
URI: 2-s2.0-85082957434
ISSN: 0095-4616
Keywords in different language: Fisher–Kolmogoroff–Petrovsky–Piscounoff equation;Travelling wave;Degenerate and/or singular diffusion;Non-smooth reaction term;Existence and non-existence of travelling waves;An overdetermined first-order boundary value problem
Abstract in different language: We consider a one-dimensional reaction–diffusion equation of Fisher–Kolmogoroff– Petrovsky–Piscounoff type. We investigate the effect of the interaction between the nonlinear diffusion coefficient and the reaction termon the existence and non-existence of travelling waves. Our diffusion coefficient is allowed to be degenerate or singular at both equilibrium points, 0 and 1, while the reaction term need not be differentiable. These facts influence the existence and qualitative properties of travelling waves in a substantial way.
Rights: Plný text není přístupný.
© Springer
Appears in Collections:Články / Articles (KMA)
Články / Articles (NTIS)

Files in This Item:
File SizeFormat 
Drabek_Takac_online.pdf615,46 kBAdobe PDFView/Open    Request a copy

Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/45043

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD