Full metadata record
DC FieldValueLanguage
dc.contributor.authorHynčík, Luděk
dc.contributor.authorKochová, Petra
dc.contributor.authorŠpička, Jan
dc.contributor.authorBońkowski, Tomasz
dc.contributor.authorCimrman, Robert
dc.contributor.authorKaňáková, Sandra
dc.contributor.authorKottner, Radek
dc.contributor.authorPašek, Miloslav
dc.date.accessioned2021-09-06T10:00:28Z-
dc.date.available2021-09-06T10:00:28Z-
dc.date.issued2021
dc.identifier.citationHYNČÍK, L., KOCHOVÁ, P., ŠPIČKA, J., BOŃKOWSKI, T., CIMRMAN, R., KAŇÁKOVÁ, S., KOTTNER, R., PAŠEK, M. Identification of the LLDPE Constitutive Material Model for Energy Absorption in Impact Applications. Polymers, 2021, roč. 13, č. 10. ISSN 2073-4360.cs
dc.identifier.issn2073-4360
dc.identifier.uri2-s2.0-85106663894
dc.identifier.urihttp://hdl.handle.net/11025/45056
dc.format25 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherMDPIen
dc.relation.ispartofseriesPolymersen
dc.rights© MDPIen
dc.titleIdentification of the LLDPE Constitutive Material Model for Energy Absorption in Impact Applicationsen
dc.typečlánekcs
dc.typearticleen
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.description.abstract-translatedCurrent industrial trends bring new challenges in energy absorbing systems. Polymer materials as the traditional packaging materials seem to be promising due to their low weight, structure, and production price. Based on the review, the linear low-density polyethylene (LLDPE) material was identified as the most promising material for absorbing impact energy. The current paper addresses the identification of the material parameters and the development of a constitutive material model to be used in future designs by virtual prototyping. The paper deals with the experimental measurement of the stress-strain relations of linear low-density polyethylene under static and dynamic loading. The quasi-static measurement was realized in two perpendicular principal directions and was supplemented by a test measurement in the 45 degrees direction, i.e., exactly between the principal directions. The quasi-static stress-strain curves were analyzed as an initial step for dynamic strain rate-dependent material behavior. The dynamic response was tested in a drop tower using a spherical impactor hitting a flat material multi-layered specimen at two different energy levels. The strain rate-dependent material model was identified by optimizing the static material response obtained in the dynamic experiments. The material model was validated by the virtual reconstruction of the experiments and by comparing the numerical results to the experimental ones.en
dc.subject.translatedLLDPEen
dc.subject.translatedquasi-static and dynamic experimental testsen
dc.subject.translatedimpact energy absorptionen
dc.subject.translatedmaterial parameter identificationen
dc.subject.translatedconstitutive material modelen
dc.subject.translatedvalidationen
dc.subject.translatedsimulationen
dc.identifier.doi10.3390/polym13101537
dc.type.statusPeer-revieweden
dc.identifier.document-number655159100001
dc.identifier.obd43933199
dc.project.IDSGS-2019-002/Biomechanické modely lidského těla, biologických tkání a biomechanických procesů s aplikací v průmyslu a medicíněcs
dc.project.IDEF17_048/0007280/Aplikace moderních technologií v medicíně a průmyslucs
Appears in Collections:Články / Articles (KME)
Články / Articles (NTIS)
Články / Articles
OBD

Files in This Item:
File SizeFormat 
Hyncik_polymers-13-01537.pdf3,07 MBAdobe PDFView/Open


Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/45056

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

search
navigation
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD