Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorDuda, Daniel
dc.contributor.authorUruba, Václav
dc.contributor.authorYanovych, Vitalii
dc.date.accessioned2021-11-01T11:00:38Z-
dc.date.available2021-11-01T11:00:38Z-
dc.date.issued2021
dc.identifier.citationDUDA, D. URUBA, V. YANOVYCH, V. Wake width: Discussion of several methods how to estimate it by using measured experimental data. Energies, 2021, roč. 14, č. 15, s. 4712. ISSN: 1996-1073cs
dc.identifier.issn1996-1073
dc.identifier.uri2-s2.0-85112097747
dc.identifier.urihttp://hdl.handle.net/11025/45650
dc.format19 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherMDPIen
dc.relation.ispartofseriesEnergiesen
dc.rights©CC-BYen
dc.titleWake width: Discussion of several methods how to estimate it by using measured experimental dataen
dc.title.alternativeŠířka úplavu: diskuze různých metod určení v experimentálních datechcs
dc.typečlánekcs
dc.typearticleen
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.description.abstract-translatedSeveral methods of defining and estimating the width of a turbulent wake are presented and tested on the experimental data obtained in the wake past an asymmetric prismatic airfoil NACA 64(3)‐618, which is often used as tip profile of the wind turbines. Instantaneous velocities are measured by using the Particle Image Velocimetry (PIV) technique. All suggested methods of wake width estimation are based on the statistics of a stream‐wise velocity component. First, the expansion of boundary layer (BL) thickness is tested, showing that both displacement BL thickness and momentum BL thickness do not represent the width of the wake. The equivalent of 99% BL thickness is used in the literature, but with different threshold value. It is shown that a lower threshold of 50% gives more stable results. The ensemble average velocity profile is fitted by Gauss function and its σ‐parameter is used as another definition of wake width. The profiles of stream‐wise velocity standard deviation display a two‐peak shape; the distance of those peaks serves as wake width for Norberg, while another tested option is to include the widths of such peaks. Skewness (the third statistical moment) of stream‐wise velocity displays a pair of sharp peaks in the wake boundary, but their position is heavily affected by the statistical quality of the data. Flatness (the fourth statistical moment) of the stream‐wise velocity refers to the occurrence of rare events, and therefore the distance, where turbulent events ejected from the wake become rare and can be considered as another definition of wake width. The repeatability of the mentioned methods and their sensitivity to Reynolds’ number and model quality are discussed as well.en
dc.subject.translatedFlatnessen
dc.subject.translatedNACA 64‐618en
dc.subject.translatedParticle Image Velocimetryen
dc.subject.translatedSkewnessen
dc.subject.translatedWakeen
dc.subject.translatedWake widthen
dc.identifier.doi10.3390/en14154712
dc.type.statusPeer-revieweden
dc.identifier.document-number681885600001
dc.identifier.obd43933486
Vyskytuje se v kolekcích:Články / Articles (CEV)
Články / Articles (KKE)
OBD

Soubory připojené k záznamu:
Soubor VelikostFormát 
Duda_WakeWidth-v2.pdf2,02 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/45650

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.

hledání
navigace
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD