Full metadata record
DC pole | Hodnota | Jazyk |
---|---|---|
dc.contributor.author | Soukup, Lukáš | |
dc.date.accessioned | 2022-03-28T10:00:30Z | - |
dc.date.available | 2022-03-28T10:00:30Z | - |
dc.date.issued | 2021 | |
dc.identifier.citation | SOUKUP, L. Automatic Coral Reef Annotation, Localization and Pixel-wise Parsing Using Mask R-CNN. In Working Notes of CLEF 2021 - Conference and Labs of the Evaluation Forum. Bucharest: CEUR-WS, 2021. s. 1359-1364. ISBN: neuvedeno , ISSN: 1613-0073 | cs |
dc.identifier.isbn | neuvedeno | |
dc.identifier.issn | 1613-0073 | |
dc.identifier.uri | 2-s2.0-85113420229 | |
dc.identifier.uri | http://hdl.handle.net/11025/47278 | |
dc.format | 6 s. | cs |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | en |
dc.publisher | CEUR-WS | en |
dc.relation.ispartofseries | Working Notes of CLEF 2021 - Conference and Labs of the Evaluation Forum | en |
dc.rights | © authors | en |
dc.title | Automatic Coral Reef Annotation, Localization and Pixel-wise Parsing Using Mask R-CNN | en |
dc.type | konferenční příspěvek | cs |
dc.type | ConferenceObject | en |
dc.rights.access | openAccess | en |
dc.type.version | publishedVersion | en |
dc.description.abstract-translated | This paper describes the methods that were used for annotation, localization and pixel-wise parsing of the coral reefs from underwater images. The proposed system achieved competitive results in the third edition of ImageCLEFcoral 2021 challenge. Specifically, in case of annotation and localization task achieved mean average precision with Intersection over Union (IoU) greater that 0.5 (mAP@0.5) 0.121 and in case of pixel-wise parsing task achieved mAP@0.5 0.075 on the test set. The proposed method is based on Mask R-CNN object detection and segmentation framework with online data augmentations. | en |
dc.subject.translated | Object detection, Semantic segmentation, Neural networks, Deep learning, Machine learning, Coral reefs detection, Coral reefs segmentation | en |
dc.type.status | Peer-reviewed | en |
dc.identifier.obd | 43933957 | |
dc.project.ID | SGS-2019-027/Inteligentní metody strojového vnímání a porozumění 4 | cs |
dc.project.ID | 90140/Velká výzkumná infrastruktura_(J) - e-INFRA CZ | cs |
Vyskytuje se v kolekcích: | Konferenční příspěvky / Conference Papers (KKY) OBD |
Soubory připojené k záznamu:
Soubor | Velikost | Formát | |
---|---|---|---|
Soukup_Automatic_Coral_Reef_Annotation.pdf | 38,23 MB | Adobe PDF | Zobrazit/otevřít |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/47278
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.