Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorLandívar, Jerry
dc.contributor.authorOrmaza, Carolina
dc.contributor.authorAsanza, Víctor
dc.contributor.authorOjeda, Verónica
dc.contributor.authorAvilés, Juan Carlos
dc.contributor.authorPeluffo-Ordóñez, Diego H.
dc.contributor.editorPinker, Jiří
dc.date.accessioned2022-11-03T14:00:01Z
dc.date.available2022-11-03T14:00:01Z
dc.date.issued2022
dc.identifier.citation2022 International Conference on Applied Electronics: Pilsen, 6th – 7th September 2022, Czech Republic, p. 19-24.en
dc.identifier.isbn978-1-6654-9482-3
dc.identifier.urihttp://hdl.handle.net/11025/49843
dc.description.sponsorshipESPOL Research Deanateen
dc.format6 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherFakulta elektrotechnická ZČUcs
dc.rights© IEEEen
dc.subjecttrilateracecs
dc.subjectstrojové učenícs
dc.subjectRSSIcs
dc.subjectvnitřní polohovací systémycs
dc.titleTrilateration-based Indoor Location using Supervised Learning Algorithmsen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.description.abstract-translatedThe indoor positioning system (IPS) has a wide range of applications, due to the advantages it has over Global Positioning Systems (GPS) in indoor envi- ronments. Due to the biosecurity measures established by the World Health Organization (WHO), where the social distancing is provided, being stricter in indoor environ- ments. This work proposes the design of a positioning system based on trilateration. The main objective is to predict the positioning in both the ‘x’ and ‘y’ axis in an area of 8 square meters. For this purpose, 3 Access Points (AP) and a Mobile Device (DM), which works as a raster, have been used. The Received Signal Strength Indication (RSSI) values measured at each AP are the variables used in regression algorithms that predict the x and y position. In this work, 24 regression algorithms have been evaluated, of which the lowest errors obtained are 70.322 [cm] and 30.1508 [cm], for the x and y axes, respectivelyen
dc.subject.translatedtrilaterationen
dc.subject.translatedmachine learningen
dc.subject.translatedRSSIen
dc.subject.translatedIndoor Positioning Systemsen
dc.type.statusPeer-revieweden
Vyskytuje se v kolekcích:Applied Electronics 2022
Applied Electronics 2022

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
uvod.pdfPlný text1,61 MBAdobe PDFZobrazit/otevřít
Trilateration-based_Indoor_Location_using_Supervised_Learning_Algorithms.pdfPlný text2,5 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/49843

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.