Název: Automatic Fungi Recognition: Deep Learning Meets Mycology
Autoři: Picek, Lukáš
Šulc, Milan
Matas, Jiří
Heilmann-Clausen, Jacob
Jeppesen, Thomas S.
Lind, Emil
Citace zdrojového dokumentu: PICEK, L. ŠULC, M. MATAS, J. HEILMANN-CLAUSEN, J. JEPPESEN, TS. LIND, E. Automatic Fungi Recognition: Deep Learning Meets Mycology. SENSORS, 2022, roč. 22, č. 2, s. 1-22. ISSN: 1424-8220
Datum vydání: 2022
Nakladatel: MDPI
Typ dokumentu: článek
article
URI: 2-s2.0-85122898591
http://hdl.handle.net/11025/51169
ISSN: 1424-8220
Klíčová slova v dalším jazyce: Artificial intelligence;Classification;Computer vision;Fine-grained;Fungi;Machine learning;Recognition;Species;Species recognition
Abstrakt v dalším jazyce: The article presents an AI-based fungi species recognition system for a citizen-science community. The system’s real-time identification too — FungiVision — with a mobile application front-end, led to increased public interest in fungi, quadrupling the number of citizens collecting data. FungiVision, deployed with a human-in-the-loop, reaches nearly 93% accuracy. Using the collected data, we developed a novel fine-grained classification dataset — Danish Fungi 2020 (DF20) — with several unique characteristics: species-level labels, a small number of errors, and rich observation metadata. The dataset enables the testing of the ability to improve classification using metadata, e.g., time, location, habitat and substrate, facilitates classifier calibration testing and finally allows the study of the impact of the device settings on the classification performance. The continual flow of labelled data supports improvements of the online recognition system. Finally, we present a novel method for the fungi recognition service, based on a Vision Transformer architecture. Trained on DF20 and exploiting available metadata, it achieves a recognition error that is 46.75% lower than the current system. By providing a stream of labeled data in one direction, and an accuracy increase in the other, the collaboration creates a virtuous cycle helping both communities.
Práva: © authors
Vyskytuje se v kolekcích:Články / Articles (NTIS)
Články / Articles (KKY)
OBD

Soubory připojené k záznamu:
Soubor VelikostFormát 
Picek_et_al_Automatic_Fungi_Recognition_Sensors_2022.pdf15,37 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/51169

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.

hledání
navigace
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD