Název: Modeling of BRT System Travel Time Prediction Using AVL Data and ANN Approach
Autoři: Baradaranshahidin, Milad
Shabani, Shahin
Khalilzadeh, Mohammadreza
Tahmasbi Ashtiani, Saman
Tajaddini, Siavash
Azimipour, Mohammad
Citace zdrojového dokumentu: BARADARANSHAHIDIN, M. SHABANI, S. KHALILZADEH, M. TAHMASBI ASHTIANI, S. TAJADDINI, S. AZIMIPOUR, M. Modeling of BRT System Travel Time Prediction Using AVL Data and ANN Approach. European Transport / Trasporti Europei, 2021, roč. 84, č. 6, s. 1-16. ISSN: 1825-3997
Datum vydání: 2021
Nakladatel: Institute for Transport Studies in the European Economic Integration
Typ dokumentu: článek
article
URI: 2-s2.0-85123735748
http://hdl.handle.net/11025/51202
ISSN: 1825-3997
Klíčová slova v dalším jazyce: Bus Rapid Transit (BRT);Travel Time Prediction;Artificial Neural Network (ANN);Linear Regression;Automatic Vehicle Location (AVL)
Abstrakt v dalším jazyce: Improving the quality of public transportation systems and encouraging passengers to use them are effective solutions for reducing transportation problems in metropolitan. Prediction of travel time and providing information to passengers are significant factors in this process. In this research not only the travel time components in Bus Rapid Transit (BRT) system were investigated but also an Artificial Neural Network (ANN) model and a regression model for travel time prediction were presented. To enhance this aim, data was collected by AVL data and field observation and after investigating the primary independent variables, the significant ones were determined using statistical analysis, then ANN development was done. Moreover, linear regression method was used for this purpose. The results prove that although both models have high level of prediction accuracy, ANN model outperform the regression model and the accuracy for the route sections with no signalized intersections is higher than the others.
Práva: © Institute for Transport Studies in the European Economic Integration
Vyskytuje se v kolekcích:Články / Articles (KGM)
OBD

Soubory připojené k záznamu:
Soubor VelikostFormát 
ET_2021_84_6.pdf1,42 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/51202

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.

hledání
navigace
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD