Název: Sequence-to-Sequence CNN-BiLSTM Based Glottal Closure Instant Detection from Raw Speech
Autoři: Matoušek, Jindřich
Tihelka, Daniel
Citace zdrojového dokumentu: MATOUŠEK, J. TIHELKA, D. Sequence-to-Sequence CNN-BiLSTM Based Glottal Closure Instant Detection from Raw Speech. In Artificial Neural Networks in Pattern Recognition; 10th IAPR TC3 Workshop, ANNPR 2022; Dubai, United Arab Emirates, November 24-26, 2022; Proceedings. Cham: Springer Nature Switzerland AG, 2022. s. 107-120. ISBN: 978-3-031-20649-8 , ISSN: 0302-9743
Datum vydání: 2022
Nakladatel: Springer Nature Switzerland AG
Typ dokumentu: konferenční příspěvek
ConferenceObject
URI: 2-s2.0-85142752874
http://hdl.handle.net/11025/51298
ISBN: 978-3-031-20649-8
ISSN: 0302-9743
Klíčová slova v dalším jazyce: glottal closure instant detection;deep learning;recurrent neural network;convolutional neural network
Abstrakt v dalším jazyce: In this paper, we propose to frame glottal closure instant (GCI) de- tection from raw speech as a sequence-to-sequence prediction problem and to explore the potential of recurrent neural networks (RNNs) to handle this prob- lem. We compare the RNN architecture to widely used convolutional neural net- works (CNNs) and to some other machine learning-based and traditional non- learning algorithms on several publicly available databases. We show that the RNN architecture improves GCI detection. The best results were achieved for a joint CNN-BiLSTM model in which RNN is composed of bidirectional long short-term memory (BiLSTM) units and CNN layers are used to extract relevant features.
Práva: Plný text je přístupný v rámci univerzity přihlášeným uživatelům.
© The Author(s), under exclusive licence to Springer Nature B.V.
Vyskytuje se v kolekcích:Konferenční příspěvky / Conference Papers (KKY)
OBD

Soubory připojené k záznamu:
Soubor VelikostFormát 
Matousek_Tihelka_Sequence-to-Sequence_ANNPR_2022.pdf551,79 kBAdobe PDFZobrazit/otevřít  Vyžádat kopii


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/51298

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.

hledání
navigace
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD