Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorRedka, David
dc.contributor.authorWinter, Jan
dc.contributor.authorGadelmeier, Christian
dc.contributor.authorDjuranovic, Alexander
dc.contributor.authorGlatzel, Uwe
dc.contributor.authorMinár, Jan
dc.contributor.authorHuber, Heinz Paul
dc.date.accessioned2023-02-06T11:00:24Z-
dc.date.available2023-02-06T11:00:24Z-
dc.date.issued2022
dc.identifier.citationREDKA, D. WINTER, J. GADELMEIER, CH. DJURANOVIC, A. GLATZEL, U. MINÁR, J. HUBER, HP. Control of ultrafast laser ablation efficiency by stress confinement due to strong electron localization in high-entropy alloys. APPLIED SURFACE SCIENCE, 2022, roč. 594, č. AUG 30 2022, s. nestránkováno. ISSN: 0169-4332cs
dc.identifier.issn0169-4332
dc.identifier.uri2-s2.0-85129032983
dc.identifier.urihttp://hdl.handle.net/11025/51338
dc.description.abstractIn the context of current state of the art, understanding the laser ablation efficiency decrease for pulse durations High-entropy alloy; CrMnFeCoNi; Ultrafast laser ablation; Pulse duration; Ablation efficiency; Stress confinementexceeding the mechanical relaxation time of a few ps remains a pending research question. A heuristic approach may be used to reveal the role of effective penetration depth on ablation efficiency. Extending familiar contributions of this quantity by a term related to the mechanical surface expansion during pulse irradiation, the relation of ablation efficiency and pulse duration is deciphered. Thus, longer pulses are coupled into an expanded surface, revealing a direct link to the violation of stress confinement. To best demonstrate this hypothesis, a material with high electron–phonon coupling as well as low thermal conductivity, i.e., strong electron localization, is required. These properties are accomplished by high-entropy alloys, and the CrMnFeCoNi alloy serves as prime candidate. We report on single-pulse ablation efficiency experiments of the CrMnFeCoNi alloy which are support by our proposed model.de
dc.format8 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherElsevieren
dc.relation.ispartofseriesApplied Surface Scienceen
dc.rights© authorsen
dc.titleControl of ultrafast laser ablation efficiency by stress confinement due to strong electron localization in high-entropy alloysen
dc.typečlánekcs
dc.typearticleen
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.description.abstract-translatedIn the context of current state of the art, understanding the laser ablation efficiency decrease for pulse durations High-entropy alloy; CrMnFeCoNi; Ultrafast laser ablation; Pulse duration; Ablation efficiency; Stress confinementexceeding the mechanical relaxation time of a few ps remains a pending research question. A heuristic approach may be used to reveal the role of effective penetration depth on ablation efficiency. Extending familiar contributions of this quantity by a term related to the mechanical surface expansion during pulse irradiation, the relation of ablation efficiency and pulse duration is deciphered. Thus, longer pulses are coupled into an expanded surface, revealing a direct link to the violation of stress confinement. To best demonstrate this hypothesis, a material with high electron–phonon coupling as well as low thermal conductivity, i.e., strong electron localization, is required. These properties are accomplished by high-entropy alloys, and the CrMnFeCoNi alloy serves as prime candidate. We report on single-pulse ablation efficiency experiments of the CrMnFeCoNi alloy which are support by our proposed model.en
dc.subject.translatedHigh-entropy alloyen
dc.subject.translatedCrMnFeCoNien
dc.subject.translatedUltrafast laser ablationen
dc.subject.translatedPulse durationen
dc.subject.translatedAblation efficiencyen
dc.subject.translatedStress confinementen
dc.identifier.doi10.1016/j.apsusc.2022.153427
dc.type.statusPeer-revieweden
dc.identifier.document-number802562700004
dc.identifier.obd43938295
dc.project.IDSGS-2021-030/Vývoj nových materiálů, aplikace moderních metod jejich zpracování, ekologické výroby, svařování a testování.cs
dc.project.IDEF15_003/0000358/Výpočetní a experimentální design pokročilých materiálů s novými funkcionalitamics
Vyskytuje se v kolekcích:Články / Articles (RAM)
OBD

Soubory připojené k záznamu:
Soubor VelikostFormát 
RWG+22_Redka_Appl_Phys_HEA.pdf2,18 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/51338

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.

hledání
navigace
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD