Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorPagáč, Jan
dc.contributor.authorKovář, Petr
dc.contributor.authorSlouka, Zdeněk
dc.date.accessioned2023-02-06T11:00:25Z-
dc.date.available2023-02-06T11:00:25Z-
dc.date.issued2022
dc.identifier.citationPAGÁČ, J. KOVÁŘ, P. SLOUKA, Z. Electric Potential Profiles in a Model Single-Path Electrodialysis Unit. Membranes, 2022, roč. 12, č. 11, s. nestránkováno. ISSN: 2077-0375cs
dc.identifier.issn2077-0375
dc.identifier.urihttp://hdl.handle.net/11025/51350
dc.description.abstractElectrodialysis is an important electromembrane separation process anticipated to play a significant role in developing future technologies. It produces ion-depleted and ion-concentrated product streams, intrinsically suggesting the formation of spatial gradients of relevant quantities. These quantities affect local conditions in an electrodialysis unit. To investigate the spatial distribution of electric potentials, we constructed a model electrodialysis system with a single diluate channel that included ports for inserting reference electrodes measuring potential profiles. We validated our system and measurement methods in a series of control experiments under a solution flow rate of 250 μL/min and current densities between 10 and 52 A/m2. The collected data showed that the electric potential in the diluate channel did not change in the vertical direction (direction of gravity force), and only minimally varied in the diluate channel center in the flow direction. Although we could not reconstruct the potential profile within ion-depleted layers due to the resolution of the method, we found appreciable potential variation across the diluate channel. The most significant potential drops were localized on the membranes with the developed ion-depleted zones. Interestingly, these potential drops abruptly increased when we applied current loads, yielding almost complete desalination. The increase in the resistance accompanied by relatively large fluctuations in the measured potential indicated the system transition into limiting and overlimiting regions, and the onset of overlimiting convection.de
dc.format17 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherMDPIen
dc.relation.ispartofseriesMembranesen
dc.rights© authorsen
dc.titleElectric Potential Profiles in a Model Single-Path Electrodialysis Uniten
dc.typečlánekcs
dc.typearticleen
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.description.abstract-translatedElectrodialysis is an important electromembrane separation process anticipated to play a significant role in developing future technologies. It produces ion-depleted and ion-concentrated product streams, intrinsically suggesting the formation of spatial gradients of relevant quantities. These quantities affect local conditions in an electrodialysis unit. To investigate the spatial distribution of electric potentials, we constructed a model electrodialysis system with a single diluate channel that included ports for inserting reference electrodes measuring potential profiles. We validated our system and measurement methods in a series of control experiments under a solution flow rate of 250 μL/min and current densities between 10 and 52 A/m2. The collected data showed that the electric potential in the diluate channel did not change in the vertical direction (direction of gravity force), and only minimally varied in the diluate channel center in the flow direction. Although we could not reconstruct the potential profile within ion-depleted layers due to the resolution of the method, we found appreciable potential variation across the diluate channel. The most significant potential drops were localized on the membranes with the developed ion-depleted zones. Interestingly, these potential drops abruptly increased when we applied current loads, yielding almost complete desalination. The increase in the resistance accompanied by relatively large fluctuations in the measured potential indicated the system transition into limiting and overlimiting regions, and the onset of overlimiting convection.en
dc.subject.translatedelectrodialysisen
dc.subject.translatedelectric potentialen
dc.subject.translateddiluateen
dc.subject.translatedoverlimiting currenten
dc.subject.translateddesalinationen
dc.identifier.doi10.3390/membranes12111136
dc.type.statusPeer-revieweden
dc.identifier.document-number910814900001
dc.identifier.obd43938548
Vyskytuje se v kolekcích:Články / Articles
OBD

Soubory připojené k záznamu:
Soubor VelikostFormát 
SLOUKA_membranes-12-01136.pdf1,45 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/51350

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.

hledání
navigace
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD