Název: Neural-network-based fluid–structure interaction applied to vortex-induced vibration
Autoři: Bublík, Ondřej
Heidler, Václav
Pecka, Aleš
Vimmr, Jan
Citace zdrojového dokumentu: BUBLÍK, O. HEIDLER, V. PECKA, A. VIMMR, J. Neural-network-based fluid–structure interaction applied to vortex-induced vibration. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, roč. 428, č. AUG 2023, s. nestránkováno. ISSN: 0377-0427
Datum vydání: 2023
Nakladatel: Elsevier
Typ dokumentu: článek
article
URI: 2-s2.0-85149732684
http://hdl.handle.net/11025/52988
ISSN: 0377-0427
Klíčová slova v dalším jazyce: convolution neural network;fluid–structure interaction;unsteady fluid flow;vortex-induced vibration
Abstrakt: In this paper, a fluid–structure interaction (FSI) solver with neural-network-based fluid-flow prediction is proposed. This concept is applied to the problem of vortex-induced vibration of a cylinder. The majority of studies that are concerned with fluid-flow prediction using neural networks solve problems with fixed boundary. In this paper, a convolutional neural network (CNN) is used to predict unsteady incompressible laminar flow with moving boundary. A deformable non-Cartesian grid, which traces the boundary of the fluid domain, is used in this paper. The CNN is trained for oscillating cylinder with various frequencies and amplitudes. The dynamics of the elastically-mounted cylinder is modelled using a linear spring–mass–damper model and solved by an implicit differential scheme. The results show that the CNN-based FSI solver is capable of capturing the so-called lock-in phenomenon for the problem of vortex-induced vibration of a cylinder and the quantitative behaviour is similar to the results of the CFD-based FSI solver. Moreover, the CNN-based FSI solver is two orders of magnitude faster than the CFD-based FSI solver and the speedup is expected to be even greater on larger problems.
Abstrakt v dalším jazyce: In this paper, a fluid–structure interaction (FSI) solver with neural-network-based fluid-flow prediction is proposed. This concept is applied to the problem of vortex-induced vibration of a cylinder. The majority of studies that are concerned with fluid-flow prediction using neural networks solve problems with fixed boundary. In this paper, a convolutional neural network (CNN) is used to predict unsteady incompressible laminar flow with moving boundary. A deformable non-Cartesian grid, which traces the boundary of the fluid domain, is used in this paper. The CNN is trained for oscillating cylinder with various frequencies and amplitudes. The dynamics of the elastically-mounted cylinder is modelled using a linear spring–mass–damper model and solved by an implicit differential scheme. The results show that the CNN-based FSI solver is capable of capturing the so-called lock-in phenomenon for the problem of vortex-induced vibration of a cylinder and the quantitative behaviour is similar to the results of the CFD-based FSI solver. Moreover, the CNN-based FSI solver is two orders of magnitude faster than the CFD-based FSI solver and the speedup is expected to be even greater on larger problems.
Práva: Plný text je přístupný v rámci univerzity přihlášeným uživatelům
© Elsevier
Vyskytuje se v kolekcích:Články / Articles (NTIS)
Články / Articles (KME)
OBD

Soubory připojené k záznamu:
Soubor VelikostFormát 
NN2.pdf2,01 MBAdobe PDFZobrazit/otevřít  Vyžádat kopii


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/52988

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.

hledání
navigace
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD