Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorXi, Pengcheng
dc.contributor.authorXu, Tao
dc.contributor.editorSkala, Václav
dc.date.accessioned2013-01-25T12:18:54Z
dc.date.available2013-01-25T12:18:54Z
dc.date.issued2004
dc.identifier.citationWSCG '2004: Posters: The 12-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, 2.-6. February 2004, Plzen, p. 197-200.en
dc.identifier.isbn80-903100-6-0
dc.identifier.urihttp://wscg.zcu.cz/wscg2004/Papers_2004_Poster/J07.pdf
dc.identifier.urihttp://hdl.handle.net/11025/974
dc.description.abstractPrincipal Component Analysis (PCA) is a basis transformation to diagonalize an estimate of the covariance matrix of input data and, the new coordinates in the Eigenvector basis are called principal components. Since Kernel PCA is just a PCA in feature space F, the projection of an image in input space can be reconstructed from its principal components in feature space. This enables us to perform several applications concerning de-noising and recovering images. Because of the superiority of Kernel PCA over linear PCA, we also get satisfactory effects of de-noising images using Kernel PCA.en
dc.format4 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherUNION Agencyen
dc.relation.ispartofseriesWSCG '2004: Postersen
dc.rights© UNION Agencycs
dc.subjectkernelová analýza hlavních komponentcs
dc.titleDe-noising and recovering images based on Kernel PCA theoryen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.subject.translatedkernel principal component analysisen
dc.type.statusPeer-revieweden
Vyskytuje se v kolekcích:WSCG '2004: Posters

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
J07.pdf257,18 kBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/974

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.